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Supplementary Figure S1. Enrichment and depletion of amino acids 
types in the DFL regions. The amino acid composition of residues in the 
DFL regions was compared against a generic set of residues collected from 
SwissProt ver. 51 using Composition Profiler. Residues on the x-axis are 
sorted according to the propensity for intrinsic disorder based on the TOP-
IDP scale, from low to high. Black bars indicate that the depletion or en-
richment is significant with p-value < 0.05. 

1 Amino acid composition in DFL regions 
Supplementary Figure S1 shows relative difference in the composition of 
each of the 20 AA types between residues in DFL regions and a reference 
population of residues collected from ver. 51 of SwissProt (Bairoch, et al., 
2005). The relative difference is defined as (AA content AA in DFLs – 
AA content in SwissProt) / AA content in SwissProt. Values > 0 denote 
that a given AA type is enriched in DFLs while values < 0 denote that it 
is depleted in DFLs. The analysis was performed using Composition Pro-
filer (Vacic, et al., 2007). AAs are sorted according to their propensity for 
intrinsic disorder based on the TOP-IDP scale (Campen, et al., 2008), from 
the most order-promoting AAs on the left to the most disorder promoting 
residues on the right. The residues significantly enriched (p-value < 0.05) 
in DFLs include Q, S, E, and P and they are also among the residues with 
the highest propensity for disorder. The residues significantly depleted (p-
value < 0.05) in DFLs are primarily biased to be order-promoting and in-
clude F, Y, I, M, L, and V. The one exception is H which is depleted in 
DFLs and disorder promoting at the same time. The depletion in the DFLs 
for this residue is potentially due to fact that H has low propensity for 
flexibility in contrast to Q, S, E, and P (Bhaskaran and Ponnuswamy, 

1988). Overall, as expected, the pattern of depletion and enrichment of 
AA in DFLs is primarily driven by the disordered nature of these regions.  

2 List of considered features for the predictive 
model 

Features from the amino acid (AA) sequence (40 features) 

• CENT_AA{AA type}: binary coding for the type of AA of the residue 
in the center (CENT) of the window (20 features). 

• WIN_AA_content{AA type}: number of residues of a given type of AA 
in the sliding window (WIN), divided by the length of the window 
(20 features). 

Features based physicochemical properties of AAs quantified based on the 
531 amino acid indices from the AAindex database (AAind, 2124 fea-
tures): 

• CENT_AAind_val{index name}: value of a given AAindex for the type 
of AA of the residue in the center of the window (531 features). 

• WIN_AAind_avg{index name}: average value of a given AAindex for all 
residues in the sliding window (531 features). 

• WIN_AAind_std{index name}: standard deviation of values of a given 
AAindex for all residues in the sliding window (531 features). 

• WIN_AAind_dif{index name}: difference between average value of a 
given AAindex for all residues in the sliding window and average 
value for residues on segments that flank the window on both sides; 
the number of these flanking residues equals to the half of the win-
dow size (i.e., eight residues that extend the original window on side 
are used). These features were inspired by ref. (Disfani, et al., 2012) 
(531 features). 

Features from the putative secondary structure (SS) derived from the input 
sequence using PSIPRED (SS, 22 features): 

• CENT_SS_is{H, E, C}: binary coding for the type of SS of the residue 
in the center (CENT) of the window (3 features). 

• WIN_SS_content{H, E, C}: number of helix, strand and coil residues in 
the sliding window divided by the length of the window (3 features). 

• WIN_SS_sum{HE, HC, EC}: sum of number of helix and strand residues, 
helix and coil residues, and strand and coil residues in the sliding 
window, normalized by the length of the window (3 features). 

• WIN_SS_num_region{H, E, C}: number of helix, strand and coil re-
gions in the sliding window, normalized by the length of the win-
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dow. Each region consists of a segment of consecutive he-
lix/strand/coil residues; the minimal length is 3/1/2, which is the size 
of the shortest helix/strand (beta bridge)/coil. (3 features). 

• WIN_SS_sum_regionHEC: sum of the number of helix, strand and 
coil regions in the sliding window, normalized by the length of the 
window (1 feature). 

• WIN_SS_{longest, shortest, avg}_region{H, E, C}: longest, shortest 
and average length of helix, strand and coil regions in the sliding 
window, normalized by the length of the window (3 × 3 = 9 fea-
tures). 

Features from the putative intrinsically disordered and structured regions 
derived from the input sequence using IUPred (IUP, 40 features): 

• CENT_IUP_is{L, S, D}: binary encoding of the prediction of long dis-
ordered regions with IUPred_long, short disordered regions with IU-
Pred_short and structured regions with IUPred_struct for the residue 
in the center of the window (3 features). 

• CENT_IUP_val{L, S}: propensity score for disorder predicted with 
IUPred_long and IUPred_short for the residue in the center of the 
window (2 features). 

• WIN_IUP_content{L, S}_{0, 1}: number of ordered and disorder resi-
dues predicted with IUPred_long and IUPred_short in the sliding 
window, divided by the length of the window (2 × 2 = 4 features). 

• WIN_IUP_num_region{L, S}_{0, 1}: number of ordered and disordered 
regions predicted with IUPred_long and IUPred_short in the sliding 
window, normalized by the length of the window. Each region con-
sists of a segment of consecutive disordered or ordered residues; the 
minimal length of disordered regions is 4 (Monastyrskyy, et al., 
2011; Monastyrskyy, et al., 2014) (2 × 2 = 4 features). 

• WIN_IUP_sum_region_{L, S}_01: sum of the number of ordered and 
disorder regions predicted with IUPred_long and IUPred_short in 
the sliding window, normalized by the length of the window (2 fea-
tures). 

• WIN_IUP_{longest, shortest, avg}_region{L, S}_{0, 1}: longest, short-
est and average length of ordered and disorder regions predicted 
with IUPred_long and IUPred_short in the sliding window, normal-
ized by the length of the window (3 × 2 × 2 = 12 features). 

• WIN_IUP_{avg, std}{L, S}: average and standard deviation of pro-
pensity scores predicted with IUPred_long and IUPred_short for res-
idues in the sliding window. (2 × 2 = 4 features). 

• WIN_IUP_fractionD{0, 1}: number of residues in structured regions 
and other regions (not located in structured regions) predicted with 
IUPred_struct in the sliding window, divided by the length of the 
window (2 features). 

• WIN_IUP_{longest, shortest, avg}_regionD{0, 1}: longest, shortest 
and average length of structured regions and other regions (not lo-
cated in structured regions) predicted with IUPred_struct in the slid-
ing window, normalized by the length of the window. Each region 
consists of a segment of consecutive structured or non-structured 
residues (3 × 2 = 6 features). 

• WIN_IUP_sum_regionD01: sum of the number of structured regions 
and other regions (not located in structured regions) predicted with 
IUPred_struct in the sliding window, normalized by the length of 
the window (1 feature). 

Features based on the sequence complexity derived from the input se-
quence using SEG (SEG, 10 features): 

• CENT_SEG_isH: binary encoding of the high vs. low complexity 
computed with SEG of residue in the center of the window (1 fea-
ture). 

• WIN_SEG_content{L, H}: number of residues in the sliding window 
in low and high complexity regions, divided by the length of the 
window (2 features). 

• WIN_SEG_{longest, shortest, avg}_region{L, H}: longest, shortest 
and average length of low and high complexity regions in the sliding 
window, normalized by the length of the window (3 × 2 = 6 fea-
tures). 

• WIN_SEG_sum_regionLH: sum of the number of low and high com-
plexity regions in the sliding window, normalized by the length of 
the window (1 feature). 

3  PREDICTIONS GENERATED BY THE 
CLOSEST ALTERNATIVE METHODS 

3.1 The UMA method 
Based on the description in ref. (Udwary, et al., 2002), first, we found 
homologous sequences for the query proteins in the test dataset by running 
BLAST with e-value equals 1e-20 against the non-redundant (NR) data-
base. We filtered the corresponding hits to insure that they have similar 
length compared to the length of the query sequence (± 20% of the query 
sequence length). We selected the first 14 hit sequences (ranked by the e-
value) as the homologs of the query sequence. According to the authors of 
UMA, 5 or more sequences in the multiple sequences alignment (MSA) 
are suggested, and in their software package they use 14 sequences for the 
multiple sequence alignment (MSA), and thus we maintained the same 
setup. If the number of filtered hits < 14 then we selected all hits. If the 
number of filtered hits < 7 then we relax the threshold on the e-value to 
1e-10. We generated the MSA profile with ClustalX (Thompson, et al., 
1997) and putative secondary structure with PHDsec (Rost, 1996; Rost 
and Sander, 1993); these tools are suggested by the authors of UMA. Since 
a low UMA score indicates that a residue is more likely to be a flexible 
linker, we used 1-UMA score (normalized to the range between 0 and 1 
using the min-max normalization) as the propensity score of a residue be-
ing in a DFL, to make it consistent with results generated by DFLpred and 
the other methods. UMA cannot predict the first 20 and last 20 residues in 
the input sequence due to the use of sliding windows and thus we exclude 
these residues from the evaluation of this method, i.e., we calculate the 
predictive quality using the remaining residues. 

3.2 Predictors of flexible residues 
The flexibility scores generated by FlexPred and PredBF were collected 
from their webservers; flexibility scores of Predyflexy and DynaMine 
were derived by running their standalone packages. All methods were run 
with their default parameters. Since different flexibility predictors output 
scores in different ranges, we normalized their outputs to the 0 to 1 range 
using the min-max normalization. For the DynaMine method that outputs 
S2 valued, we use (1 – S2 value) as the flexibility score because unlike the 
other flexibility predictors, smaller DynaMine output corresponds to resi-
dues that are predicted as more likely to be flexible. Predyflexy cannot 
predict the first 10 and last 10 residues due to the use of sliding windows 
and thus we exclude these residues from the evaluation of this method, 
i.e., we calculated the predictive quality using the remaining residues. 
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3.3  Domain Predictor 
We collected the domain conservation scores (DCS) from the ThreaDom 
webserver. We scaled the output score from 0 to 1 and since a higher DCS 
indicates a higher propensity of domain we use an inversed score (1 – nor-
malized DCS) as the propensity of a given residue for DFLs. Five se-
quences in our test set are shorter than the required length  of ThreaDom 
(≥ 80 residues) and they are excluded from our evaluations. 

3.4 Combination of UMA and disorder predictors and of 
flexibility and disorder predictors 

We applied two approaches to combine predictions: 1) by multiplying the 
scores predicted with UMA and flexibility predictors by the binary disor-
der predictions; and 2) by multiplying the scores predicted with UMA and 

flexibility predictors by the predicted real-valued propensity for the disor-
der. In the first scenario, if a given residues is predicted as disordered then 
we use the UMA score/flexibility score to quantify its predicted propen-
sity, otherwise (residues was not predicted as disordered) we set this pro-
pensity score to zero. The second scenario uses product of the putative 
disorder scores and UMA score/flexibility scores as the predicted propen-
sity score. Disorder scores of IUPred (long and short version) and Espritz 
(NMR, X-Ray and Disprot flavors) were derived from running standalone 
versions of the predictors. The disorder scores of MFDp were collected 
from its webserver. 
 
 

 
 
 
Supplementary Table S1. Cross validation results for the three types of classifiers on the training dataset. 
 

Classifier Tstep1 Tstep2 
Number of the se-

lected features Param. AUC AUClowFPR Ratio 

Logistic regression 0.50 0.35 4 r = 100 0.702 0.016 3.270 
Naive Bayes  0.50 0.35 4 N/A 0.680 + 0.014 + 2.812 + 
k-nearest neighbor 0.45 0.35 5 k = 500 0.677 + 0.015 + 2.933 + 

Tstep1: threshold for normalized rpb or φ; Tstep2: threshold for rpc; Param.: parameters selected for individual classifiers where r is the ridge for logistic regression and k is the 
number of nearest neighbors; AUC: area under the ROC; AUClowFPR: area of a part of the ROC for FPR between 0 and 0.1; Ratio = AUClowFPR/AUCrandom where AUCrandom is 
the AUC of random predictor assessed for FPR between 0 and 0.1. The AUC, AUClowFPR and ratio values were calculated over the 4 combined test folds in the cross validation, 
and thus they represent results on the entire training dataset. + indicates that difference in predictive quality between LR and another classifier is statistically significant at p-
value < 0.01. 

 

 

Supplementary Table S2. Comparison of predictive quality on the test dataset for residues localized in domains and outside of domains. 

Prediction 
target Method 

Evaluation on residues inside domains Evaluation on residues between domains 
AUCaverage 

AUC p-value AUClowFPR p-value Ratio p-value AUC p-value AUClowFPR p-value Ratio p-value 

DFLs DFLpred 0.717  0.017  3.288   0.727  0.019  3.843  0.722 
Flexible 
linkers UMA 0.290 0.000 0.006 0.002 1.240 0.002 0.415 0.000 0.001 0.002 0.107 0.002 0.352 

Flexible 
residues 

Predyflexy 0.568 0.001 0.007 0.002 1.364 0.002 0.507 0.000 0.007 0.000 1.233 0.000 0.538 
FlexPred 0.537 0.002 0.004 0.002 0.694 0.002 0.476 0.001 0.003 0.001 0.639 0.001 0.506 
PredBF 0.534 0.002 0.006 0.002 1.239 0.002 0.399 0.000 0.005 0.000 0.902 0.000 0.466 
PROFbval 0.436 0.002 0.006 0.002 0.662 0.002 0.446 0.000 0.008 0.004 0.300 0.000 0.441 
Dynamine 0.455 0.002 0.001 0.002 0.165 0.002 0.354 0.000 0.003 0.002 0.628 0.002 0.404 

Disordered 
residues 

 

Espritz NMR 0.504 0.000 0.000 0.002 0.093 0.002 0.338 0.000 0.002 0.002 0.289 0.002 0.421 
IUPred_short 0.387 0.000 0.000 0.002 0.001 0.002 0.323 0.002 0.000 0.000 0.062 0.000 0.355 
MFDp 0.273 0.000 0.000 0.002 0.000 0.002 0.316 0.000 0.000 0.002 0.000 0.002 0.294 

DFLs Espritz NMR & Predyflexy(best com-
bination using binary disorder) 0.504 0.000 0.008 0.000 1.486 0.000 0.424 0.000 0.005 0.001 1.024 0.001 0.464 

Espritz NMR & Predyflexy (best com-
bination using disorder propensity) 0.532 0.002 0.002 0.002 0.485 0.002 0.371 0.000 0.004 0.002 0.772 0.002 0.452 

The methods were ranked by AUC value in each category; p-values quantify significance of the differences in predictive quality when compared with DFLpred.



A  

B  

Supplementary Figure S2. Predictions and native annotations for the C-terminus of the chemotaxis cheA protein (panel A) and the N-terminus of the 
troponin I protein (panel B) from the test dataset. We include annotations and names of domains (green horizontal line at the bottom with names above 
the line), disordered regions (blue horizontal line at the bottom), DFLs (red horizontal line at the bottom), and predictions from DFLpred (thick red plot), 
UMA (thick violet plot), best performing disorder predictor Espritz (black line with diamond markers), best performing flexibility predictor PredyFlexy 
(dotted gray line with square markers), and the domain predictor TreaDom (dotted green line with square markers). 
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    ‹---------------------------- Hpt domain ----------------------------›                                               ‹------- CheY binding domain ---------›                                  ‹ H-kinase dim domain › 

                                                                                ‹------------------------------------------------------- IT arm -------------------------------------------------------›                      ‹-reg. head-› 
‹- Troponin I N-terminus domain -›                       ‹------------------------------------------------------------------- Troponin I domain ------------------------------------------------------------› 
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Supplementary Figure S3. ROC curves on the test dataset for methods that achieved AUC > 0.5 in Table 2 (on the whole test dataset) or in Supplementary 
Table S2 (we use average of the results for the intra- and inter-domain residues). Insert in the bottom right corner zooms on the ROCs for FPR between 
0 and 0.1. The scope of the prediction (all residues, in domains or between domains) and AUC values are shown inside brackets next to the names of 
methods in the figure legend. 
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