A humanized anti-DLL4 antibody promotes dysfunctional angiogenesis and inhibit breast tumor growth

 $\label{eq:continuous} Xuelian\ Jia^1,\ Wenyi\ Wang^{1,\,2},\ Zhuobin\ Xu^1,\ Shijing\ Wang^1,\ Tong\ Wang^1,\ Min\ Wang^{1,\,*},$ $Min\ Wu^{1,\,*}$

¹ State Key Laboratory of Natural Medicines, School of Life Science & Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China

² The Rutgers Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, United States

The authors Xuelian Jia and Wenyi Wang contributed equally to this work.

* Corresponding authors. Address: China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, China.

Tel.: +86 25 8327 1395. Fax: +86 25 8327 1395.

Email Address: minwang@cpu.edu.cn (Min Wang), mickeywu2001@163.com (Min Wu).

Introduction of back mutations to the CDR grafting

Canonical residues belonged to all the 3 types (e.g. VL-Y50, VH-I37) and/or with dStability most positive (e.g. VL-Y50, VL-Y72, VH-Y27, VH-I48, VH-I37) (see **Table. S1**) were back mutated with priority and the rest residues were gradually added in the later version. We designed 3 versions of back mutate VH (named as VH₁,VH₂ and VH₃) and 2 versions of back mutant VL (VL₁, VL₂), the amino acid sequences of which were shown in Fig. S2. VH₁ mutate 27G, 37V, 48M to the original murine residues, VH₂ further mutate 38R and 70I while VH3 mutate all the 7 residues. Similarly, VL₁ mutate 50K, 72F and VH₂ mutate all the 5 residues to the original murine one. The 3 mutate VH and 2 mutate VL were combined to make 6 humanized antibodies (H₁L₂, H₂L₁, H₃L₁, H₁L₂, H₂L₂ and H₃L₂).

Enzyme-linked immunosorbent assay (ELISA)

ELISA was performed to test antigen binding activity of H_CL_C or humanized antibodies, 1 µg/ml rhDLL4 was immobilized to 96-well plates at 4 $\,^{\circ}$ C overnight, and then incubated with a series concentrations of purified culture supernatant at 37 $\,^{\circ}$ C for 1 h. Supernatant of non-transfected cells was used as vehicle control. Plates were washed and incubated with HRP conjugated goat-anti-human IgG H+L as detecting antibody. Lastly, antibody bound to the plate was determined by monitoring the absorbance difference between 450 nm and 630 nm in BioTek Synergy 2 plate reader.

These 6 humanized antibodies were constructed and expressed in CHO-s cells. As shown in Fig. S3, the affinity of humanized antibodies were analyzed by ELISA. The binding affinity of the CDR grafted antibody HgLg decreased, but was recovered by back mutation (H_3L_2) . While the rest antibodies failed to recover the binding affinity and H_2L_1 or H_2L_2 even lost the binding activity.

	Murine (wild type)	Mutant	Canonical type	dStability(Kcal/mol)
VL	I4	L4	2, 3	-0.0128
	P47	L47	1, 2	-2.1287
	W48	L48	2	0.6853
	Y50	K50	1, 2, 3	3.1368
	Y72	F72	2, 3	1.2154
VH				
	Y27	G27	2	4.1383
	I37	V37	1, 2, 3	0.8707
	K38	R38	1, 2	0.7352
	I48	M48	2, 3	1.0759
	A68	V68	2	-1.6471
	L70	I70	2, 3	-0.9504
	G98	R98	2	-1.2529

Table S1. Antibody structure stability change upon mutation. Canonical type: 1 represents VH-VL interface core residues; 2 represents CDR loop foundation residues; 3 represents CDR loop interaction residues.

Regions	Templates	Identity or	Structure
	(PDB ID)	Similarity (%)	score
LFR	4KQ3. L	66.3	95.9
L-CDR1	3LS5. L	89.7	91.9
L-CDR2	1WC7. A	88.8	78.3
L-CDR3	4ETQ. B	83.7	94.4
HFR	4KQ3. H	90.5	95.9
H-CDR1	4OTX. I	89.3	97.0
H-CDR2	3ET9. FH	81.2	72.9
H-CDR3	3UPC. F	45.6	56.4

Table S2. Structure templates for H_3L_2 Fv homology modeling. The overall backbone integrity of each antibody subdomain was assessed by the Structure score, below 50 of which indicates possibilities of structural issues.

Fig S1. Epitope mapping of MMGZ01. A dodecapeptide phage display library was screened against MMGZ01. The consensus residues between the positive clones were KK---HF-H. Residues with 100 % identity are marked black, and residues with or over 75 % identity are marked purple.

Fig S2. Amino acid sequences alignment of back mutate antibodies. (a) VH and (b) VL. Canonical residues differed between MMGZ01 and the CDR grafted antibody were marked as red. * represents residues that were identical to the corresponding residues of MMGZ01.

Fig S3. Antigen binding capacity of back mutate antibodies analyzed by ELISA. The chimeric antibody named as H_CL_C was used as reference of binding affinity. (a) Binding curves of H_1L_1 , H_2L_1 and H_3L_1 . (b) Binding curves of H_1L_2 , H_2L_2 and H_3L_2 . Data are shown as mean \pm SD, n = 3.