
Supplementary Information

A Thermochromic Superhydrophobic Surface

Pietro Cataldi,^a Ilker S. Bayer,^a* Roberto Cingolani,^b* Sergio Marras,^c Ryad Chellali^d, Athanassia Athanassiou^a

^aSmart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
^bCentral Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
^cNanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
^dPattern Analysis and Computer Vision (PAVIS), Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy

Figure S1. Changes in the static water contact angle as a function of tape peel events by using a 3M tape with 820 N/m adhesion strength on steel. Two different superhydrophobic surfaces were tested containing 20wt% and 30wt% SiO₂ nanoparticles. None of the coatings could be completely removed at the end of 15 peel events indicating that the coating adhesion to aluminum is larger than 820N/m. However, the coating with 30wt% SiO₂ nanoparticles demonstrated lower water contact angles close to the generally accepted superhydrophobicity threshold (150°).

Video File: Water droplet impact on a thermochromic superhydrophobic surface. Room temperature drop bounces on the heated superhydrophobic surface. The zone where the droplet impacts changes color due to temperature difference between the droplet and the surface.