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1 Statistical model details

1.1 Definition of biweeks and analysis times

For a given year, every date is mapped to a particular biweek in that year. We define the first biweek

of every year as beginning on January 1st, at 00h00m00s and the last as ending on December 31st,

11h59m59s. Every year is defined to contain exactly 26 biweeks. To make predictions on the biweekly

scale, daily case counts are aggregated into their respective biweek. Counts for biweeks that have 15

days are standardized by multiplying the count by 14
15 and rounding to the nearest integer. The explicit

Julian calendar day to biweek mapping is given in Table A.

A generic biweek bk is defined as an interval [tk, tk+1) where tk is the time where the biweeks

begins (e.g. Jan 1, 00h00m00s) and tk+1 is the start of the next biweek. Every dataset is divided up

into N bi-weeks (b1 through bN ), each of either 14 or 15 days (see Table A).
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Table A: Map of Julian days to biweeks used in data aggregation. Columns show the date a biweek
starts and the duration for non-leap (“reg”) and leap years.

biweek reg yr datestart reg yr dur leap yr datestart leap yr dur

1 Jan 01 14 Jan 01 14
2 Jan 15 14 Jan 15 14
3 Jan 29 14 Jan 29 14
4 Feb 12 14 Feb 12 14
5 Feb 26 14 Feb 26 15
6 Mar 12 14 Mar 12 14
7 Mar 26 14 Mar 26 14
8 Apr 09 14 Apr 09 14
9 Apr 23 14 Apr 23 14

10 May 07 14 May 07 14
11 May 21 14 May 21 14
12 Jun 04 14 Jun 04 14
13 Jun 18 14 Jun 18 14
14 Jul 02 14 Jul 02 14
15 Jul 16 14 Jul 16 14
16 Jul 30 14 Jul 30 14
17 Aug 13 14 Aug 13 14
18 Aug 27 14 Aug 27 14
19 Sep 10 14 Sep 10 14
20 Sep 24 14 Sep 24 14
21 Oct 08 14 Oct 08 14
22 Oct 22 14 Oct 22 14
23 Nov 05 14 Nov 05 14
24 Nov 19 14 Nov 19 14
25 Dec 03 14 Dec 03 14
26 Dec 17 15 Dec 17 15

Every forecast made specifies the following dates: a “to-date” (tto), a “delivery-date” (tdel), and

an “analysis-date” (tan). The to-date specifies that the current forecast will only use cases whose

symptom onset date is equal to or less than tto. The delivery-date specifies that the current forecast

will only use cases that were delivered on or before tdel. The analysis-date specifies when a given

forecast was run.

To account for case reporting delays, our models specify a reporting lag l, in biweeks, which

represents the number of biweeks back into the past for which data will be considered partially reported.

In the forecasting models presented in this paper, these data are ignored. For example, if we received a

data delivery in the biweek bk = [tk, tk+1), then the forecast will assume that data for the past l whole

biweeks are systematically underreported and that biweek bk−l−1 and all prior biweeks are complete.

This process is documented in Figure A.

We chose the set of analysis dates as the first day of each biweek for which data had been delivered

in the previous biweek (Table B).
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Figure A: An example forecast timeline showing which cases are included relative to the delivery-dates
and to-dates. In this figure, l = 3.

1.2 Province data management

Summary data on all provinces are provided in Table C.

Since 1968, five provinces were split into multiple provinces, from Yasothon breaking off from Ubon

Ratchthani in 1972 to the foundation of Bueng Kan from Nong Khai in 2011 (see Table D for full list

of split provinces). New provinces are labeled as “children” of the “parent” province from which they

were formed. We used all available data for each child province - with the exception of Bueng Kan -

though several of these did not start reporting dengue data for years after formation. For the parent

provinces - with the exception of Nong Khai - we discarded all data before the first data year of their

last child province. Since Bueng Kan is such a new province, we grouped all of its counts together

with that of Nong Khai to keep one province rather than remove the provinces completely.

Since we observed that biweek 26 often appeared to have systematic underreporting even when all

cases had been reported, we linearly interpolated the counts for the most recent biweek 26 prior to

fitting any prediction model.

1.3 Model selection

Information on epidemic progression elsewhere in the country was taken into account by including

reported case counts at various lags and for provinces that showed high levels of correlation with

province i in the data used to fit the model. Each province considered itself as a possible province to

choose but was not forced to include itself if other provinces showed higher correlation at the specified

lag. We chose the number of top correlated provinces and lagged timepoints based on the combination

that minimized country-wide leave-one-year-out cross-validation error between 2000 and 2009. We

considered all possible combinations across a grid of 1 to 15 top correlated provinces and the following

combination of lag times {(1), (1,2), (1, 2, 3), (1, 2, 3, 4), (1, 2, 3, 4, 13), (1, 2, 3, 4, 13, 26) },
where, for example, (1, 2, 3) refers to a model that included observations from top correlated provinces

at lags of 1, 2, and 3 biweeks. Using the metric of relative mean absolute error with a reference model

that predicted the last observed count, this process resulted in choosing 3 provinces at a 1 biweek lag
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(a complete assessment of performance on fully observed data is in preparation). As shown in equation

(1) in the main manuscript, these data enter the model as ratios. For example, the covariate for the

lag-k biweek of province j for predicting a count at time t would be log
yt−k,j+1

yt−k−1,j+1 .

1.4 Methods for generating predictions

To generate multi-step predictions of future unobserved timepoints, we created stochastic realizations

of possible trajectories for each province. Specifically, our goal was to estimate the joint distribution

f(Yt∗+h|Yt∗) where t∗ is the last time for which data was assumed to be fully observed, h is the target

prediction horizon in biweeks, Yt∗ is a random vector of all province-specific counts at time t∗, and

Yt∗ is the set of all observed yt,i where t ≤ t∗ and for all i.

We approximated the predictive distribution for all provinces using sequential stochastic simulations

of the joint distribution of the case counts for each province. We created M independently evolving

sequential chains of predictions by drawing, at each prediction time point, from the province-specific

Poisson distribution with means given by equation (1) in the main manuscript. For example, if data

through time t∗ was used to fit the models for all locations, then a single simulated prediction consisted

of a simulated Markov chain of dependent observations for timepoints t∗+1, t∗+2, ..., t∗+H, across

all provinces, where H was the largest horizon considered. To make a prediction for province i at time

t∗ + h in the mth chain, we draw

ŷmt∗+h,i ∼ Poisson(λ̂mt∗+h,i · ŷmt∗+h−1,i)

where λ̂mt∗+h,i is computed directly by plugging in the observed and predicted data prior to t∗ + h to

the fitted model, and we use observed case data in the first step of prediction, i.e. ŷmt∗,i = yt∗,i for

all m. Due to the assumed interrelations between the provinces, we simulated counts for all provinces

at a single timepoint before moving on to the next timepoint. For a given prediction horizon h, this

process generates an empirical posterior predictive distribution for each province by evaluating the M

different predictions for yt∗+h,i. Prediction intervals are generated by taking quantiles (e.g., the 2.5%

and 97.5%) of this distribution.

1.5 Comparisons of real-time and full-data predictions

As described in the main manuscript, we compared predictions made with available data as if in real-

time to predictions made with the final, completely reported dataset. Supplemental Figure B show the

real-time and full-data predictions for a selected few provinces.

1.6 Considerations in making real-time, multi-step predictions

Statistical frameworks to create multi-step predictions of time-series data exist [1, 2], but have seen

limited use for real-time predictions in public health settings. Creating a statistical model to create

multi-step forecasts (i.e. not just predicting the ‘next’ value in a time-series, but a sequence of future

values at different time horizons) raises methodological considerations that are not present when just
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Figure B: Comparison between real-time forecasts (red lines and triangles) and full-data forecasts (black
lines and circles) for Bangkok. Fully observed case counts are shown as vertical bars. The graph is
faceted by analysis date, with each separate plot showing predictions made on a particular analysis
date. The first four rows represent predictions whose analysis date was in 2013.
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predicting a single time step forward. For example, one may use “recursive” methods to generate a

dependent trajectories of the time series or “direct” methods that use a model explicitly predict the

entire trajectory as independent observations [2]. Additionally, evaluation becomes more complex, as

the performance of the model at each prediction horizon must be evaluated separately. Research on

time-series prediction has examined the bias and variance in theoretical settings of different methods

for multi-step predictions [3], although little guidance exists on how best to implement multi-step

predictions in appled settings. Our current model uses a recursive method for generating predictions.

One critical and unique challenge in real-time forecasting efforts that are used to inform public

health decision-making is how to evaluate forecasts when the forecasts themselves are being used to

inform decision-making about interventions. For example, if a forecast is made that predicts higher

than usual incidence and an effective intervention is put in place that decreases transmission, it would

appear that the original forecast was wrong. This scenario represents a substantial public health victory

for forecasting: the forecasts were right and they enabled a timely intervention. However, it is difficult

to observe the forecasting victory here because it looks as though the forecast of high incidence was

incorrect. One way to address this challenge would be to create multi-scenario forecasts that take

into account different possible public health responses. This would be a crucial step both for being

able to appropriately assess the accuracy of forecasts when interventions are used and to evaluate the

effectiveness of interventions. Without including this feature in real-time predictions, a forecast made

pre-intervention may end up looking incorrect despite it being an important factor that drove action

being taken.

2 Province-level factors that influenced predictive performance

We ran several analyses to identify province-level characteristics that influenced local predictive perfor-

mance. Factors considered included the following province-specific measures:

• the total cases observed in 2014,

• the ratio between the number of cases reported in 2014 and the median annual cases,

• a measure of seasonality,

• residual variance once seasonality was accounted for,

• the fraction of cases with a reporting delay of greater than 3 months (6 biweeks), and

• the population density.

Unadjusted relationships between the log-scale relative MAE and each predictor of interest are shown

in Figure C. Seasonality was determined by fitting a Poisson generalized additive model with a cyclical

smooth spline on time-of-year to observed case data. The maximum magnitude of the seasonal effect

(standardized across all seasons) is used as a measure of strength of seasonality. Additionally, the

standard deviation of the residuals from this model is used as a measure of residual variability. Due to
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the limited number of observations relative to the number of predictors of interest, we do not present

the results from multivariable models.

Figure C: Relationships between possible factors influencing prediction accuracy on the population level.
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cases reported
delivery date analysis date new cumulative

2014-01-16 2014-01-29 24 0
2014-01-24 2014-01-29 156 1
2014-02-06 2014-02-12 328 2
2014-02-19 2014-02-26 808 4
2014-03-05 2014-03-12 483 6
2014-03-20 2014-03-26 306 7
2014-04-04 2014-04-09 366 8
2014-04-10 2014-04-23 2 8
2014-04-20 2014-04-23 290 9
2014-05-02 2014-05-07 274 10
2014-05-17 2014-05-21 291 11
2014-05-29 2014-06-04 415 13
2014-06-13 2014-06-18 576 15
2014-06-26 2014-07-02 2516 23
2014-07-11 2014-07-16 1314 27
2014-08-15 2014-08-27 2114 35
2014-08-18 2014-08-27 2089 42
2014-09-05 2014-09-10 1003 45
2014-09-18 2014-09-24 917 48
2014-09-30 2014-10-08 4552 64
2014-10-16 2014-10-22 1867 70
2014-10-28 2014-11-05 900 73
2014-11-13 2014-11-19 1091 77
2014-12-17 2015-01-01 920 80
2014-12-19 2015-01-01 3184 90
2014-12-26 2015-01-01 1127 94
2015-01-10 538 96
2015-01-24 436 97
2015-04-30 749 100

Table B: Dates of dengue data deliveries and analyses in 2014. For each delivery, the number of new
cases delivered and the cumulative percent of total cases for the year is also shown. Analyses were run
on the first day of each biweek only when new data was delivered in the previous biweek.
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id name pop’n median annual cases total 2014 cases % cases delivered ≥ 6 biweeks

TH01 Mae Hong Son 209,153 41 299 13
TH02 Chiang Mai 1,737,041 435 343 9
TH03 Chiang Rai 1,172,928 294 31 0
TH04 Nan 452,814 77 126 13
TH05 Lamphun 412,741 70 32 9
TH06 Lampang 743,143 318 82 12
TH07 Phrae 427,398 185 165 21
TH08 Tak 526,382 305 281 20
TH09 Sukhothai 629,707 251 178 12
TH10 Uttaradit 438,578 218 29 3
TH11 Kamphaeng Phet 797,391 381 477 22
TH12 Phitsanulok 912,827 433 91 10
TH13 Phichit 548,242 275 243 16
TH14 Phetchabun 940,076 521 248 10
TH15 Uthai Thani 297,493 149 116 9
TH16 Nakhon Sawan 992,749 735 432 12
TH17 Nong Khai 458,772 226 175 27
TH18 Loei 546,028 156 48 8
TH20 Sakon Nakhon 941,810 260 20 0
TH22 Khon Kaen 1,741,980 743 211 12
TH23 Kalasin 824,538 369 88 8
TH24 Maha Sarakham 827,639 408 161 7
TH25 Roi Et 1,084,985 783 150 8
TH26 Chaiyaphum 963,907 445 369 15
TH27 Nakhon Ratchasima 2,525,975 1,127 593 10
TH28 Buri Ram 1,274,921 908 468 15
TH29 Surin 1,122,900 567 198 19
TH30 Si Sa Ket 1,055,980 597 225 12
TH31 Narathiwat 670,002 115 1,076 16
TH32 Chai Nat 305,587 151 44 16
TH33 Sing Buri 199,982 92 11 9
TH34 Lop Buri 769,925 439 416 14
TH35 Ang Thong 254,292 148 102 19
TH36 Phra Nakhon Si Ayutthaya 870,671 420 344 12
TH37 Saraburi 717,054 316 447 10
TH38 Nonthaburi 1,334,083 379 397 15
TH39 Pathum Thani 1,327,147 219 328 13
TH40 Bangkok Metropolis 8,305,218 3,843 5,518 35
TH41 Phayao 417,380 192 40 22
TH42 Samut Prakan 1,828,694 544 703 18
TH43 Nakhon Nayok 246,868 107 82 12
TH44 Chachoengsao 715,603 421 306 8
TH46 Chon Buri 1,555,358 570 643 22
TH47 Rayong 821,072 433 714 21
TH48 Chanthaburi 485,611 319 666 20
TH49 Trat 247,876 104 75 15
TH50 Kanchanaburi 801,519 427 356 46
TH51 Suphan Buri 845,561 379 244 20
TH52 Ratchaburi 796,748 584 643 19
TH53 Nakhon Pathom 943,892 608 608 15
TH54 Samut Songkhram 185,564 116 79 6
TH55 Samut Sakhon 887,191 252 353 26
TH56 Phetchaburi 472,589 251 306 18
TH57 Prachuap Khiri Khan 467,466 240 183 16
TH58 Chumphon 467,801 173 184 21
TH59 Ranong 249,017 45 44 25
TH60 Surat Thani 1,009,351 353 58 16
TH61 Phangnga 258,535 89 133 27
TH62 Phuket 525,709 128 780 10
TH63 Krabi 362,203 169 1,052 14
TH64 Nakhon Si Thammarat 1,450,466 558 1,249 29
TH65 Trang 598,877 139 637 25
TH66 Phatthalung 480,976 125 336 8
TH67 Satun 274,863 26 106 24
TH68 Songkhla 1,481,021 568 1,607 6
TH69 Pattani 609,015 80 1,637 13
TH70 Yala 433,167 96 375 9
TH72 Yasothon 487,976 347 103 15
TH73 Nakhon Phanom 583,726 332 95 17
TH74 Prachin Buri 546,996 228 161 34
TH75 Ubon Ratchathani 1,746,790 583 237 11
TH76 Udon Thani 1,288,365 384 65 15
TH77 Amnat Charoen 283,732 100 41 17
TH78 Mukdahan 357,339 85 49 22
TH79 Nong Bua Lam Phu 485,974 78 34 6
TH80 Sa Kaeo 555,961 308 90 16

Table C: Summary data on all 77 provinces of Thailand.
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Table D: Split provinces

Province Type Family Founding Year First Data Year

Chiang Rai Parent Chiang Rai pre-1968 1968
Phayao Child Chiang Rai 1977 1978

Nong Khai Parent Nong Khai pre-1968 1969
Bueng Kan Child Nong Khai 2011 2011

Prachin Buri Parent Prachin Buri pre-1968 1968
Sa Kaeo Child Prachin Buri 1993 1999

Ubon Ratchathani Parent Ubon Ratchathani pre-1968 1968
Yasothon Child Ubon Ratchathani 1972 1972
Amnat Charoen Child Ubon Ratchathani 1993 1999

Udon Thani Parent Udon Thani pre-1968 1968
Nong Bua Lamphu Child Udon Thani 1993 1999

Nakhon Phanom Parent Nakhon Phanom pre-1968 1968
Mukdahan Child Udon Thani 1982 1999
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