
SUPPLEMENTARY INFORMATION 

SUPPLEMENTARY EXPERIMENTAL PROCEDURES  

RNA extraction and quantitative PCR 

Nuclear/cytoplasmic fractionation was performed as described (Harrow et al., 2012). RNA from nuclear 

and cytoplasmic fractions or total RNA form GSCs and patients’ tissues was extracted using TRIzol 

(Ambion). RNA from formalin fixed sections of mouse xenograft tumors was extracted with PureLink 

FFPE (Invitrogen) following the manufactures’ instructions. RNA was reverse-transcribed using iScript 

cDNA Synthesis Kit (BioRad) and gene expression analyzed by qPCR using Power SYBR Green PCR 

Master Mix (Applied Biosystems). List of primers used throughout the study: 
Primer name  Primer sequence  Primer name  Primer sequence 

18S For  AACTTTCGATGGTAGTCGCCG LYN For TTCCCTACCCAGGGAGAACT 

18S Rev  CCTTGGATGTGGTAGCCGTTT LYN Rev CTGCCTTTTCTTTCCAGCAC 

ADM For GGTCGGACTCTGGTGTCTTC MALAT1 For AGCAGACACACGTATGCGAA 

ADM Rev GCTTGCGCGACTATTCCTTG MALAT1 Rev GTGGTTCCCAATCCCCACAT 

BCL2A1 For AAATTGCCCCGGATGTGGAT MEG3 For GCAGGATCTGGCATAGAGGA 

BCL2A1 Rev ACAAAGCCATTTTCCCAGCC MEG3 Rev TTGGCTGATGCAAGGAGAG 

CAV2 For CCTGCCTAATGGTTCTGCCT MET For TAGCCAACCGAGAGACAAGC 

CAV2 Rev CTCAGTTGCAGGCTGACAGA MET Rev TGTGCTCCCACCACTAATAAAAG 

CD133 For GCAATCTCCCTGTTGGTGAT NDRG1 For GGCACCGTCCTTTCCTTTCT 

CD133 Rev CCAGTTTCCGACTCCTTTTG NDRG1 Rev GAGTACGCGGGGCTACAAA 

CD44 For AAGGTGGAGCAAACACAACC NDUFAF4 For GACACCCCTCTACCAACAGC 

CD44 Rev CTTCTGCCCACACCTTCTTC NDUFAF4 Rev ACCTGCAAGGAAGACACAGG 

DHX9 For GCCAATTTCTGGCCAAAGCA NEAT1 For GCTTTGCTACAAGGTGGGGA 

DHX9 Rev CGAGGCTCAATGGGGAGTTT NEAT1 Rev CACCCCTCCCTTTGGTTCTC 

DLEU2 For CGGGTACTTATCTCCGACCTC Nestin For CCCCGTCGGTCTCTTTTCTC 

DLEU2 Rev TCCAGGGAAGGATGTAGCTG Nestin Rev TCGTCTGACCCACTGAGGAT 

EPAS1 For GTCCCACCAGCTTCACTCTC NOTCH1 For TCACGCTGACGGAGTACAAG 

EPAS1 Rev GGCAAGTCTGCCAGGTAAGT NOTCH1 Rev GGCAGTGGCAGATGTAGGAG 

ERO1A For GGCTTCTGGTCAAGGGACAA OLIG2 For GTTCTCCCCTGAGGCTTTTC 

ERO1A Rev TGCTTGCATGTAGGCCAGATA OLIG2 Rev GGAAGATAGTCGTCGCAGCTT 

FOSL1 For GTCTTCACCTACCCCAGCAC PFKP For AAGTTCCTGGAGCACCTCTC 

FOSL1 Rev CTCACAAAGCGAGGAGGGTT PFKP Rev GTAGATACCCATGCGCACCA 

GAS5 For GGTATGGAGAGTCGGCTTGA POPDC3 For TGCACAACCTGGAAGCAAGA 

GAS5 Rev TGCATGCTTGCTTGTTGTGG POPDC3 Rev AGAAAACCCAACCCCAGCAA 

GPR160 For ACTTGCGCAAATGTCTCCGA PRNCR1 For TGCCCATCTCCTGATCAACC 

GPR160 Rev TGTCCTCTCCAGTGGGTCTT PRNCR1 Rev TCTGAAGTTGTTGCGGTCAGT 

HIF1A For TTCCTTCTCTTCTCCGCGTG RMRP For CACGTAGACATTCCCCGCTT 

HIF1A Rev TTTTCTTGTCGTTCGCGCC RMRP Rev CTGCCTGCGTAACTAGAGGG 

HIF1AAS2 For AAAGCTTGGGCAAATTATTCA SDC4 For TACTTCTCCGGAGCCCTACC 

HIF1AAS2 Rev TGAATGGGATGAGTGAAGCA SDC4 Rev AACTTCAGGGCCGATCATGG 

HMGA1 For CAGCTTCCTTCTGGGACTGG SLC2A1 For TGTGTATGCCACCATTGGCT 

HMGA1 Rev GTGTAGTGTGGTGGTGAGGG SLC2A1 Rev CTAGCGCGATGGTCATGAGT 

HMGA2 For GCCCTCTCCTAAGAGACCCA SOX2 For CCTGATTCCAGTTTGCCTCT 

HMGA2 Rev CTGCCTCTTGGCCGTTTTTC SOX2 Rev CAGCTCCGTCTCCATCATGT 

IGF2 For CGTCCCCTGATTGCTCTACC TAF9B For ATAGCAACCCCACAAACGGT 

IGF2 Rev CGGCAGTTTTGCTCACTTCC TAF9B Rev GGTGTGGACTGAGAAGGTGG 

IGF2BP2 For ACACAGACACAGAAACCGCC WT1 For ACTCTTGTACGGTCGGCATC 

IGF2BP2 Rev AACTGATGCCCGCTTAGCTT WT1 Rev TCTCACCAGTGTGCTTCCTG 

IGFBP3 For CGCCAGGAAATGCTAGTGAG WT1-AS For CCACCACCCCTCTACCTCTT 

IGFBP3 Rev AACTTGGGATCAGACACCCG WT1-AS Rev CCTACCCAGCCTCGATTTTT 

In vivo Magnetic Resonance Imaging 

Studies were performed using a 7.0T Bruker BioSpec USR (Bruker BioSpin Corp.) in the Small Animal 

Imaging Laboratory (SAIL) at the Brigham and Women’s Hospital. Isoflurane was used as anesthetic at a 



level of 1.5%, and heart and respiratory rates were monitored. Rapid acquisition with relaxation 

enhancement T2-weighted imaging was performed with the following parameters: echo time=8.8 ms, 

repetition time=6466 ms, field of view=2.5 cm x 2.5 cm, matrix size of 250 x 250, and a spatial resolution 

of 100 μm x 100 μm isotropic. The total scan time was 26 minutes and 43 seconds per animal. 3D 

reconstruction of animal brains was performed using Osirix Lite Version 7.0. 

Cell assays 

GSCs were plated in supplemented Neurobasal medium at the concentration of 40,000 cells/mL and 

incubated for 96 h. After incubation, cells were counted and analyzed for viability using the Muse Count 

& Viability Reagent on the Muse Cell Analyzer (Millipore) following the manufactures’ instructions. 

For spheroid formation GSCs were dissociated to single cells and plated at 500 cells/well in 96-well plate 

in 100 µl supplemented Neurobasal. Size of spheroids was quantified after 96 h using ImageJ. For limited 

dilution spheroid assay single cell suspension were plated in ultra-low attachment 96-well plates at 

different concentrations (from 1 to 500 cells per well) in 0.1ml of supplemented Neurobasal medium. 

Cultures were left undisturbed for 7 days. After incubation, spheres were imaged using a microscope 

Nikon eclipse Ti, percentage of wells not containing spheres for each cell concentration was calculated 

and plotted against the number of cells per well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SUPPLEMENTARY FIGURE LEGEND 

Figure S1. Supplementary to Figure 1.  

A. Gene signature distinguishes proneural (blue) from mesenchymal (red) GSCs. Gene sets that vary 

coherently between GSCs were validated by qPCR data and used for subtype classification by clustering. 

Non classified GSCs and normal human astrocytes (AST) (black) are also shown. 

B. GBM and GSC lncRNA profile distinguishes tumor (Tumor Tissue - TT) from normal tissue (matched 

Tissue Adjacent to brain Tumor - TAT) and proneural (blue) from mesenchymal (red) GSC subtypes. 

LncRNA sets that vary coherently between tissues (left) and GSCs (right) were identified by unsupervised 

clustering.  Normal human astrocytes (AST) (black) are also shown. 

C. Expression of selected lncRNAs in GSC validates the global profiling. Relative expression based on 

qPCR in proneural (blue) and mesenchymal (red) GSC is shown. Data shown as mean ±SD, * P value < 

0.05, ns – non-significant P value. 

 

Figure S2. Supplementary to Figure 2.  

A. Knockdown of HIF1A-AS2 reduces viability of mesenchymal GSCs.  Representative cell viability 

profiles are shown.  

B. Knockdown of HIF1A-AS2 reduces GSC proliferation and viability.  qPCR analysis (left) and cell 

number and percentage of dead cells (right) in mesenchymal (M) and proneural (P) GSC  are shown. Data 

shown as mean ±SD, * P value < 0.05, * P value < 0.01  

C. Knockdown of HIF1A-AS2 results in gene expression rearrangement. Expression of 730 cancer-

related genes in control and HIF1A-AS2 knockdown mesenchymal GSC (two single cell clones #1 and #2 

were analyzed) were analyzed by unsupervised clustering (top panel). The mesenchymal (M) and 

proneural (P) GSC-specific genes were analyzed with HIF1A-AS2 knockdown signature by supervised 

clustering (bottom panel).  

D. The gene expression analysis indicates diverse molecular modules deregulated in mesenchymal GSC 

upon HIF1A-AS2 knockdown and predict patient outcome. Genes significantly deregulated by HIF1A-

AS2 knockdown in M GSCs were analyzed by Gene Ontology enrichment in indicated subcategories  

E. Genes deregulated upon HIF1A-AS2 knockdown predict patient outcome. Survival analysis based on 

the impact of the prognostic index of multiple genes (See Supplementary Table 2) down-regulated by 

HIF1A-AS2 knockdown in mesenchymal (M) GSC is shown in full cohort and in classical (C), 

mesenchymal (M) and neural (N) subclasses. 

F.  Mesenchymal  and proneural GSC responds to hypoxia via up-regulation of HIF1α and EPAS1 

proteins. QPCR (left) and Western blot (right) analysis is shown. Data shown as mean ±SD. 

G. Effect of hypoxia on proliferation (left) and viability (right) of GSCs. Cell number and percentage of 

dead cells are shown. Proneural (P) GSC n=3, mesenchymal (M) GSC n=3. Data shown as mean ±SD, * 

P value < 0.05. 

H. HIF1A-AS2 is upregulated upon exposure to hypoxia in differentiated GBM cells. QPCR of GFAP 

(left) and HIF1A-AS2 (right) is shown. Data shown as mean ±SD. 

I. Knockdown of HIF1A-AS2 reduces proliferation (left) and viability (right) of differentiated GBM cells. 

Cell number and percentage of dead cells are shown. Data shown as mean ±SD, * P value < 0.05”.J. 

Hypoxia-dependent induction of endogenous HIF1A-AS2 overcomes the shRNA effect. QPCR analysis 

is shown. Data shown as mean ±SD. 

K. HIF1A-AS2 is localized predominantly in the nucleus. QPCR analysis of HIF1A-AS2, MALAT1 and 

GAPDH is shown. Data shown as mean ±SD. 

 

Figure S3. Supplementary to Figure 3.  

A. HIF1A-AS2 knockdown reduces tumor volume. Representative photographs of resected brains (left), 

consecutive MRI sections (middle) and 3D MRI reconstruction of brain tumor (right) 10 days post 

implantation are shown.   

 



Figure S4. Supplementary to Figure 4.  
A. HIF1A-AS2 interactome network regulate posttranscriptional regulation of gene expression and 

mRNA stabilization. HIF1A-AS2 partners were identified by pulldown/MS strategy. Networking was 

analyzed with STRING software (left) and Gene Ontology Biological processes (right) 

B. DHX9 and IGF2BP2 are specific partners of HIF1A-AS2. Analysis of UV-crosslinked α-DHX9 RIP 

(left) and α-IGF2BP2 RIP (right). QPCR analysis on selected proneural (blue), mesenchymal (red) or 

non-subtype specific (black) lncRNAs in mesenchymal GSCs is shown. Data shown as mean ±SD, ** P 

value < 0.01. 

C. Mesenchymal GSC overexpressed IGF2BP2 target genes correlate with mesenchymal subtype.  Genes 

that vary coherently between proneural and mesenchymal GSCs from IGF2BP2 targets signature (n=277) 

were retrieved from TCGA GBM dataset and identified by class (classical (C), mesenchymal (M) and 

proneural (P) neural (N) subclasses) (top) and clustering (bottom). 

D. HMGA1 and FOSL1 are targets of both HIF1A-AS2 interacting partners. Venn diagram depicting 

genes identified as IGF2BP targets and its expression in proneural (P) and mesenchymal (M) GSC (left)  

or its expression in HIF1A-AS2 and DHX9 knockdown (right). 

E. Expression of DHX9 and IGF2BP2 downstream genes is up-regulated in mesenchymal GSCs. QPCR 

analysis of selected genes in proneural (P) and mesenchymal (M) GSCs (left) and in HIF1A-AS2 

knockdown M GSCs (right) by qPCR is shown. Data shown as mean ±SD. 

F. Knockdown of HIF1A-AS2 in mesenchymal GSCs reduces levels of HMGA1 mRNA. QPCR analysis 

of selected genes in mesenchymal GSCs upon HIF1A-AS2 knockdown is shown. Expression is relative to 

control mesenchymal GSCs. Data shown as mean ±SD. 

G. HMGA1 is mesenchymal GSC-enriched factor. Western blot analysis of selected proteins in P and M 

GSCs is shown. 
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SUPPLEMENTARY TABLE LEGEND 

Table S1. Supplementary to Figure 1B. List of lncRNA transcripts used for Nanostring platform. (See 

Excel file)  

Table S2. Supplementary to Figure 2E. List of genes that vary coherently between control and HIF1A-

AS2 knockdown M GSC. (See Excel file) 

Table S3. Supplementary to Figure 4A. List of HIF1A-AS2 interacting proteins identified by mass 

spectrometry. (See Excel file) 
Table S4. Supplementary to Figure 4F. List of genes used to query Ivy GAP database 

Gene 

symbol 

Gene name Gene 

ID 

Chromosome 

PROM1 

(CD133) 

prominin 1 8842 4 

OLIG2 oligodendrocyte lineage transcription factor 2 10215 21 

NOTCH1 notch 1 4851 9 

SOX2 SRY (sex determining region Y)-box 2 6657 3 

NES nestin 10763 1 

CD44 CD44 molecule (Indian blood group) 960 11 

LYN v-yes-1 Yamaguchi sarcoma viral related oncogene homolog 4067 8 

BCL2A1 BCL2-related protein A1 597 15 

WT1 Wilms tumor 1 7490 11 

MET met proto-oncogene (hepatocyte growth factor receptor) 4233 7 

SDC4 syndecan 4 6385 20 

IGFBP3 insulin-like growth factor binding protein 3 3486 7 

ERO1L ERO1-like (S. cerevisiae) 30001 14 

PGK1 phosphoglycerate kinase 1 5230 X 

ADM adrenomedullin 133 11 

NDRG1 N-myc downstream regulated 1 10397 8 

VEGFA vascular endothelial growth factor A 7422 6 

PFKP phosphofructokinase, platelet 5214 10 

SLC2A1 solute carrier family 2 (facilitated glucose transporter), member 1 6513 1 

PDK1 pyruvate dehydrogenase kinase, isozyme 1 5163 2 

ITGA3 integrin, alpha 3  3675 17 

FOSL1 FOS-like antigen 1 8061 11 

HMGA1 high mobility group AT-hook 1 3159 6 

HMGA2 high mobility group AT-hook 2 8091 12 

KLF4 Kruppel-like factor 4 (gut) 9314 9 

FGF5 fibroblast growth factor 5 2250 4 

GADD45B growth arrest and DNA-damage-inducible, beta 4616 19 

RPS27A ribosomal protein S27a 6233 2 

COL27A1 collagen, type XXVII, alpha 1 85301 9 

IL12A interleukin 12A  3592 3 
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