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Supplementary Figure 1: Illustration of the graphene layer and its surrounding dielectrics.

Supplementary Note 1

Introducing graphene plasmons and their spinor-polarization coupling terms
We begin with the graphene Hamiltonian near the Dirac cone

ngaphene = hvgo -k ey

(¢ -0 ) @
using the same definitions as in the main text, with the Fermi velocity vg = 10°® m s~ and the
charge carrier momentum #K satisfying a conical dispersion relation E? = |vghK|2.

o is a 2D vector of Pauli matrices. The eigenstates are [1]

ikr 1 ikzz+ikyy

Y@ = (1) 3)

nye
7o) 77 = 5 le) 7
with the area S introduced for normalization purposes and the angle ¢ = <k = arctan(ky / kz).
The signn = 1 (n = —1) denotes the conduction (valence) band.
To add an electromagnetic interaction (describes either a photon or a plasmon) we substitute
hk — hk + q.A (4)
where we choose the gauge for which the scalar potential is zero. This way we can write A

directly from the in-plane electric field of the graphene plasmon A = —iE/w
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This approach of treating an “effective photon” (in our case a plasmon) by the electron-photon
QED interaction, derives from Ginzburg’s quantum description of the CE [2], which has also

been developed by many authors for different dispersion relations [3]

Next, we present the electric and magnetic fields that compose the graphene plasmon. This
determines the polarization in the interaction Hamiltonian, and also gives the normalization of a
single plasmon quantum state. Most interactions of graphene with an electromagnetic excitation
consider free space photons, which has a negligible momentum in the plane of the graphene, so
the interaction is typically fully described by a time harmonic term with no space dependence. In
contrast, the graphene plasmon has large momentum that cannot be neglected. Moreover, the
graphene plasmon has longitudinal polarization in the graphene plane, making the interaction
term different from conventional light-matter interaction scenarios involving an electron and a

photon.

The fields that compose the plasmon are obtained by matching boundary conditions of the
electromagnetic fields that satisfy the Maxwell’s equations both above and below the graphene

(denoted by a and b sides respectively, as illustrated in the Supplementary Fig.1):

Eab = p?Ei’b + (Zcos(B) +9 Sin(e))Eﬁ%b ®)
H*P = (§ cos(f) — 2 Sin(e))Hna'b (6)
E?P = [FNCle~iwt+iayy+iasz g =k x (7)
. a,b
b b 1q b _ g £0°
E?P = g2 ab HY® = iwE} ka‘rb (8)

€o 1s the vacuum permittivity, ef’b is the relative permittivity above (a) and below (b) the
graphene sheet. 1 denotes the polarization component that is perpendicular to the plane (X) and |l
denotes the in-plane polarization component(s) (y, z plane). k®P is the decay rate perpendicular
to the graphene sheet coming from the (imaginary part of the) wavevector in the X axis. The

wavevector constituents are:

qy = qsin(6) q, = q cos(8) )

a,b 2
w
B _ pab = 4 jqz -(3) & (10)

l c
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(for the geometry where a is above (x > 0) and b is below (x < 0) we have k? real and positive

while kP real and negative). The field normalization coefficient [FNC] is an arbitrary complex

coefficient according to the classical electromagnetic theory, but is given a fixed value below in

the process of the field second quantization used for the quantum formalism of plasmon emission.

* In contrast with the above, the other polarization mode leads to a different plasmonic

dispersion that does not have the same properties, and in particular does not have high

confinement (and high momentum), therefore its interaction is negligible compared to the above

polarization choice.

To determine the expression in the interaction Hamiltonian, we only need the in-plane

polarization component of the electric field on the graphene plane (x = 0), giving:

___[FNG)
A= =7

: e—iq-r+iwt

—iw

Therefore the interaction Hamiltonian has the spinor-polarization term o * q:
[FNC]
—lw

e~ lqr+iont

_ L AX=0 _ S
leasmon—interaction = (qeVr0O AII = (.Vr0 " q

We define the spinor-polarization term [SP] by the following:
¢Jlf.kf(a "Dk = [SP]eiki—kpT /g

The indices i and f denote initial and final charge carrier in the process.

For a transition inside the same band ny = n; (intraband) we get:

[SP] = teiler—ei)/2 [% cos (§(<pf + <pi)) + %sin (§(<pf + <pi))]

= +e'@r=?0/2 cos(6 — (@5 + 91)/2)

For a transition between the bands ng = —n; (interband) we get:
- itoe—o0/2 |4 qz .
[SP] = tieilor—wi/2 [;y cos (§(<pf + (Pi)) - ;Zsm (§(<pf + <pi))]

= +iel@=90/25in(0 — (¢ + ¢;)/2)

(11D

(12)

(13)

(14)

(15)
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Without loss of generality, we choose the incoming charge carrier along the z axis so that
k; = 2E;/(hvg) . The angles are then <«K; = ¢; =0 and <Kk;= ¢ = ¢ . This gives the
expressions we use in the main text:

|SP|? = cos?(0 — ¢/2) |SP|? = sin?(8 — ¢/2) (16)

Supplementary Note 2

The matrix elements and their normalization

The matrix elements describing the plasmon emission process (Fig.1 in the main text) is:

Mki—>kf+q = VfpQe fj dde lp‘r-ll-f,kf(a. ' Kﬁ=o)¢ni,ki (17)
N
quF TN i(ki—kf—q)r it
My, ke+q = =S ——[FNC][SP] || dydze''™i (18)

Next we find the normalization used in the quantization of the graphene plasmon field [FNC],
derived from the Poynting theorem for the energy carried by the field [3,4]. The energy stored in

the electromagnetic field is:
fdxdy jdeEIZ——(w €) (19)

We assume no dispersion in the dielectrics on both sides of the graphene sheet. To calculate the
energy we first have to consider the contribution of the graphene surface conductivity, because

the energy stored in the 2D surface can be significant:

g N €0ELV
s=srso+15=srso+1§5(x)=sreo—2 " 2S5(x) (20)

|
lossless surface
for the energy
normalization

Substituting:

1 1
U= S2 £ (w eoea)fdx[lE” |2 + |E2|? ]+52 e (w €0€r) fdx |E"b| + |ED |]
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EP|” + IElI2 21

g 1 0 (2 Zeoev)
2w 0w @ W

Where the parallel field component E = Ef(x = 0%) = EP(x = 0_), per the continuity relation,

while the perpendicular field component is not continuous and averages to zero on the surface.
Next, we apply an approximation that is typically used with graphene plasmons (the same
approximation used in the main text): k? ~ kP =~ q. This is a good approximation because of the
large confinement factor, or in other words, g » w/c (free space wavelength >> graphene

plasmon wavelength). It allows us to write:

1 0 r 1 0 2€)€,v

— 2¢_— 2= -2qx __ 2¢_— 2-97r'p
U = 260|FNC|*S 5 ——— (20 er)fdxe [FNCI2S 5~ <w -~ ) (22)
0

U = 2¢€y€ IFNCIZSZL— €€ IFNCIZSli(v w) (23)
0%r ZC[ 0%r w dw p

_ 2 10 _ vp 0q
U = €,¢,|FNC|2S [5 - 5%(%0))] = €& |FNC|2S 2 — (24)

q dw
The last step uses the following:

w2
waa)(p) w@w( ) q q*0w q qow (25
At last, comparing the energy to hw, we get the normalization coefficient |[FNC|?:
v, dq
&|FNC]2S2—=h 26

& |PNCI?S 220 = ho (26)

With the definition @ = €.w - v—p € " Vp Z—Z) (as we had in the main text), we can write:

g

hq
weyS

IFNC|? = w? (27)

Substituting [FNC] back to the matrix element we get:

 qeVF ’ hq o
Mk1—>kf+q eT m[SP]f dydzel(kl ke—q)Tgiot (28)
S

Supplementary Note 3

Solving for the graphene Cerenkov effect with plasmonic losses
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In this section we consider complex plasmonic momenta (taking losses into account) in the
matrix elements, which we substitute into a Fermi golden rule calculation to find the rate of
plasmon emission of the graphene CE.

The y, z integrals in the matrix element give sinc functions that will become delta functions or
Lorentzians when we take the normalization area S to infinity. To find the exact coefficient, we

write S as Ly L, so:

Ly/2 Ly/2
ff dde ei(ki_kf_q)'r = f dy f dz ei(ki—kf—q)'l‘
N ~Ly/2 —Lz/2
; Ly . Lz
= LyLZsmc > (qy + kfy) sinc > (ki; — q, — k¢z) (29)

The matrix element is modulo-squared hence we use the following delta function limit:
2

— 27-’:6(kiz — 4z — kfz) (30)

L,—00

L,

L
sinc <?Z (kiz —qz— kfz))
We consider losses as an imaginary part added to the plasmon wavevector [5], denoting q, =

drz + iq1, and gy = qry + iqpy. In this case the limit of infinite area can be shown to give a

Lorentzian.
|CIIz |/7T
6(kiy — q, — key) — (31
= 0 f (kiz —qrz — kfz)2 + |CIIZ|2
Recalling the Fermi’s golden rule (Eq.1 from the main text)
r=2" foo|M ”5(E; — ha(q) — Ex(kp) g _dk 32
S ki~ketq 1T RO T ERRD) om2 s 2n)2/s (32)
summing —oo
over spin
We substitute the Lorentzians and get the following
r ach v,(q)
g 2
= | ———=6(E; — hw + E.)|SP|
[o & vty )
||/ |1/
z : dqr,dqrydke,dkg, (33)

. (CIRy + kfy)z + |qu|2 (kiz —qRrz — kfz)z + |QIZ|2

Vg (Vp) is the group (phase) velocity of the graphene plasmom.
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The integrals over the plasmon momentum are changed to
w /vy

Vg

dqrydary = Uidedw =2’ 46dw (34)
g

The integrals over the momentum of the outgoing charge carrier are used to solve the delta

function over energy

|E; — hol d
(hop? ¥

which restricts the energy of the outgoing charge carrier to Ey, = |E; — Aw|. The absolute value

§(E; — ho + Ey,)dkg,dke, = (35)

is necessary because the charge carrier energies (incoming and outgoing) are defined relative to
the tip of the Dirac cone. Therefore while intraband transitions will have E; > Aw, interband

transitions can have E; < hw. In both cases we can substitute:

|E1 ho|
hvg

|E1 how|

ke, = 5 cos(g) ey = B sin(p) (36)

Eventually obtaining Eq.6 from the main text (defining ¥y (w) = qr(w)/q;(w)):

c E; cos?(8 — ¢/2) intraband transition
[g= —|— —~ 1| f d
.6 €. vy (w) lhw ¢ sin?(6 — ¢/2) interband transition

0
sin(6)
' (W) E . : 7
< va |m — 1| sin(¢p) + sin(H)) + Y@
_ |cos(6) /v (w)]
vp(w) | E; 1 vp(w) E i 2
e |m - |cos(<p) + cos(0) — o Fw + |cos(0) /y(w)|
Supplementary Note 4

The graphene Cerenkov effect in its lossless limit and compared to the conventional theory
We consider the limit case of low losses, since then further analytical simplifications can be

achieved. By taking the delta function limit of the Lorentzians Eq.1 translates into

3 ach vg(q)
r= f dzqm6(Ei — hw(q) * Ey,)ISP|? (38)
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i ha /vy (w)
ac nw /vy (W
rwzfde .

& v3(w)/vE 0 (Ei ~ho & B (6, w)) ISP? (39)

Changing the integration variable 6 to Ej, gives the following Jacobian

2 [—5——| (40)
hwv—isin(ﬁc)
which we substitute back to get:
1 hw
2acvp [ E}
= SP|? 41
@ = zv2(w) [sin(ep)| ¥ (1)

The delta function forces the conservation of energy Ey (0, w) = |E; — hw|, which gives the

modified Cerenkov angle:

E; — hw = tvph|Ky (42)
(E; — hw)? = (hvp)?[ki]* + |q]® — 2k; - q] (43)
(E; — hw)? = E? + (hva/vp)2 — 2Eihwvg/vy, cos(0¢) (44)
2
23 UVf
2Eihw —cos(0x) = (hw)? ((—) - 1) + 2Eihw (45)
Yp Yp
v hao [ (V)
F F
K D=1+—|[—) =1 4
= cos(6¢) + 2, ((vp> ) (46)
Therefore the equation for the Cerenkov angle in the quantum 2D CE (Eq.4 from the main text):
yo el Rl v
cos(f¢) = o ll 2E (1 2 47)

Notice that when taking h — 0 (or E; > hw), we get the well-known equation cos(8¢) = v, /v

for the conventional Cerenkov angle [3].

To find the total rate of plasmon emission we need to explicitly find the spinor-polarization term

|SP|? by substituting the angles of the plasmon (8¢) and of the outgoing charge carrier (¢). The

latter can be found from the delta functions on the momenta in the y axis 6 (qy + kfy):
sin(0) vg

Bl "

sin(p) = —

8
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or from the delta function on the momenta in the z axis §(k;, — q, — k¢,):

1 cos(8) v
cos(p) = _ <os®) ve (49)
B 5
Ei hw
We write |SP|? in the following way capturing both interband and intraband transitions:
1+ cos(26x —
ISP|? = — (2 c¢) (50)
which we can translate to the following form:
hw
i g 1-— 2E, (1 + = cos(@&)‘
ISP|2 = — (51)
2 1R
or further simplify to get the following:
v: 1 sin? (O
ISPI2 =3 a2 (52)
F

v | hw|1—v2/vF

Giving the equation for the rate of plasmon emission per unit frequency from a single hot carrier

in graphene (Eq.5)
hw
1-— 1 0¢
r- 2ac 2E; ( + COS( C)>‘ _ 2ac| sin(8) e
Y pRE, |51n(9(:)|  vpE |1 — 12 /vé 3)
Notice that in the limit of h — 0 (or E; > hw) we get the following
2ac 1 2ac 1
(54)

 vpé |sin(Bp)|  vé, ’il ~ 175/172’

which is the classical limit of the Cerenkov Effect for a free charge particle (relativistic or not)
moving outside graphene and parallel to it with velocity v (here there are no quantum corrections
hence the regular Cerenkov threshold v > Vp 18 required for the emission of plasmons). The

same expression can be derived from the Maxwell equations.
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