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Materials and Methods 
 

Sample collection, study populations and demographics 

 

Healthy subjects between the ages of 18 and 50 were recruited from the Greater Boston 

Area by comprehensive advertisement strategies. As an initial step, 696 subjects who 

self-reported as healthy with no autoimmune, neurologic, metabolic, or chronic infectious 

diseases consented to be a part of the PhenoGenetic study at the Brigham and Women’s 

Hospital, a living biobank of 1749 subjects who can be recalled over five years based on 

demographics or genotype. These subjects were then successfully recalled to be a part of 

the Immune Variation (ImmVar) project. The cohort specifically consists of 162 African 

American subjects of European and African ancestry (AA), 155 East Asian subjects of 

Chinese, Japanese, or Korean ancestry (EA), and 377 Caucasian subjects of European 

ancestry (EU). The median age of the subjects is 24. There are 414 females and 282 

males. The following demographic information was recorded for each participant: age, 

race, sex, smoking, weight, height, BMI, self-reported ethnicity, blood pressure, and 

menstrual cycle. 

 

PBMC isolation, cell sorting, and RNA preparation 

 

Over the course of 18 months, fresh blood samples from these 696 participants were 

collected following a rigorous, standardized set of procedures (SOP).  All participant 

clinic visits occurred between 7:30 AM and 8:30 AM to minimize circadian rhythm 

fluctuations. 15ml of blood was collected in Vacutainer tubes coated in EDTA and was 

used to isolate PBMCs by density gradient centrifugation on Ficoll-Hypaque.  PBMC 

isolation and processing began promptly at 8:30am in order to reduce processing 

variables. 15 ml of blood were diluted 2-fold with PBS/2mM EDTA (Gibco, pH=8.0) at 

room temperature (20°-25°C), and slowly layered with a pipette aid over 15ml of Ficoll-

Hypaque (GE Healthcare) solution in a 50ml conical tube. Samples were centrifuged for 

20 mins at 900g and 25°C with no brake. Upon centrifugation, the mononuclear cell layer 

at the interface was extracted, washed with 12ml PBS/2mM EDTA, and centrifuged for 4 

mins at 400 g. Remaining red blood cells were lysed with 1 ml of ACK lysis buffer for 90 

seconds at room temperature, washed and centrifuged for 4 mins at 400 g. PBMC 

processing time was strictly kept at 1.25 hour for all samples. For staining, cells were 

resuspended in ice-cold 100 µl staining media (90%DMEM/10% FBS) at a concentration 

of 10
7 

to 2x10
7
. Cells were stained with appropriate antibodies for 15 mins on ice: 

CD62L 605NC, CD25 PE, CD3 FITC, CD4 Pe Cy7, CD8 APC Cy7,CD16 APC, CD14 

PerCP Cy5.5, CD19 APC (all from eBioscience). After washing, cells were sorted on a 

Becton Dickinson Aria beginning at 10:00am, and with a total sort time for all the sample 



of less than 3 hours. Cell population of interest, CD14+CD16- and CD4+CD62L+, 

underwent a two-step sorting strategy in order to achieve cell purity >99%. After the first 

sort, cells were directly sorted into 500 µl of ice-cold Trizol, and stored at -80°C.   

For the cell samples sorted from frozen PBMCs, mononuclear cells were prepared as 

above, washed and resuspended in 1 ml 10% DMSO in FBS, and placed in a Corning 

Cryogenic vial. The tubes were placed in NalGene CryoFreezing container at -80°C for 

24-48 hours, and then moved into a liquid nitrogen tank for long-term storage. Frozen 

samples were then thawed in a 37°C water bath for 1 minute, washed in PBS/2mmEDTA 

for 4 minutes at 400 g, and then stained as above prior to sorting. Sort settings were 

essentially the same as for fresh cells, and cell viability remained good throughout the 

process, although the total cell yield was routinely 30% lower for sorts from frozen 

samples.  

 

Gene expression quality control, quantification, and normalization 

 

mRNAs from these cells were profiled on Affymetrix GeneChip Human Gene ST 1.0 

microarrays. Raw data CEL files were processed using the Robust Multichip Average 

(RMA) algorithm in Affymetrix PowerTools. Dynamic range (DR), the ratio between the 

highest and lowest signal values in a single data set, was the primary metric of quality for 

individual expression profiles. To avoid confounding by single outliers, the dynamic 

range (DR) was calculated for each data set by dividing the 95th by the 5th percentile. 

Samples with DR below 40 were noted as low quality and were excluded from 

association analysis. Of the 536 and 501 arrays profiled in CD4
+
 T-cells and Monocytes, 

499 and 485 in CD4
+
 and monocytes, respectively, passed the expression quality control. 

Of which, 479 and 457 in CD4
+ 

T cell and monocytes are unique samples. 

Of the 33,297 probesets of the ST 1.0 array, 6,049 were removed due to the following 

filters (i) all array features with a single nucleotide polymorphism (SNP) at minor allele 

frequency (MAF) greater than 0.1 in any of the 1000 Genomes populations were 

removed. We used a comprehensive compendium of common SNPs on the 1000 Genome 

Project (9) to remove 31,906 features (out of 764,885 distinct 25-mer oligonucleotide 

“features”) found in regions with SNPs or SNPs in LD (r
2
> 0.8) from our analysis to 

minimize any potential confounding effects.  (ii) All probesets with more than 4 features 

removed or with more than 25% of features removed were removed entirely. (iii) 4,468 

probesets that do not map to the human genome were removed. In addition, we removed 

a group of 572 probesets known to exhibit a high degree of technical variability, as 

determined by profiling in technical duplicates of a panel of 15 RNA samples from sorted 

blood CD4
+
 T-cells. Finally, a total of 2,778 potential cross-hybridization probesets, as 

provided by Affymetrix, were flagged and removed prior to the trans-eQTL association 

analysis. Finally, we included in our eQTL analyses only those probesets that mapped to 

a GENCODE v.12 gene (18), and we excluded probesets mapping to the X and Y 

chromosome. The resulting sets of 26,062 autosomal probesets corresponding to 19,114 

unique autosomal GENCODE v.12 annotated genes were analyzed for the association 

analyses.  

 

The data for each cohort were first internally normalized by dividing the expression 

values for each gene in individuals of that cohort by the mean expression value across the 



cohort, with the assumption that inter-batch differences on normalized data are much 

lower than those on raw expression values. These normalized values for the three cohorts 

were assembled and log2-transformed. 

 

To account for non-genetic factors such as batch effects, age, gender, technical artifacts 

in gene expression data, we used Principal Component Analysis (PCA) (19, 20) (fig. 

S19). Following (20), PCs were estimated separately from the gene expression matrix for 

each population and cell type. The optimal numbers of PCs for association analysis were 

determined based on the PC that resulted in maximum number of cis-eQTLs (fig. S20-

S21). This procedure identified 20, 10, and 14 PCs in EU, EA and AA monocytes and 20, 

12 and 12 PCs in EU, EA and AA T-cells. The number of cis-associations detected along 

with optimal number of PCs for each dataset is shown in fig. S20. We regressed out these 

PCs from the original gene expression levels, and used the residuals as phenotypes for all 

association analyses 

 

 

Genotyping and Imputation 

 

Each subject was genotyped using the Illumina Infinium Human OmniExpress Exome 

BeadChips, which includes genome-wide genotype data as well as genotypes for rare 

variants from 12,000 exomes as well as common coding variants from the whole genome. 

In total, 951,117 SNPs were genotyped, of which 704,808 SNPs are common variants 

(Minor Allele Frequency [MAF] > 0.01) and 246,229 SNPs are exomic variants. The 

genotype success rate was greater than or equal to 97%. We applied rigorous subject and 

SNP quality control (QC) that includes (1) gender misidentification (2) subject 

relatedness (3) Hardy-Weinberg Equilibrium testing (4) use concordance to infer SNP 

quality (5) genotype call rate (6) heterozygosity outlier (7) subject mismatches. In the 

European population, we excluded 1,987 SNPs with a call rate < 95%, 459 SNPs with 

Hardy-Weinberg equilibrium p-value < 10
-6

, and 63,781 SNPs with MAF < 1% from the 

704,808 common SNPs (a total of 66,461 SNPs excluded). In the African-American 

population, we excluded 2,161 SNPs with a call rate < 95%, 298 SNPs with Hardy-

Weinberg equilibrium p-value < 10
-6

, and 17,927 SNPs with MAF < 1% from the 

704,808 common SNPs (a total of 20,436 SNPs excluded). In the East-Asian population, 

we excluded 1,831 SNPs with a call rate < 95%, 213 SNPs with Hardy-Weinberg 

equilibrium p-value < 10
-6

, and 84,973 SNPs with MAF < 1% from the 704,808 common 

SNPs (a total of 87,064 SNPs excluded) (fig. S22-S24). 

 

All samples were tested for population stratification using the EIGENSTRAT v3.0 

software (21), which performs a principal components analysis (PCA) on SNP data. The 

PCA was performed on a subset of 100K SNPs selected from all genotyped SNPs with 

MAF > 0.05, omitting regions of high LD. Population outliers were identified by 

combining ImmVar genotypes with genotypes from HapMap data from the CEU, YRI, 

CBT, JPT and GIH populations. We used iterative outlier detection approach to remove 

16 ancestry outliers. After QC, 52 subjects across all three populations and approximately 

18,000 – 88,000 SNPs in each population were filtered out from our analysis (fig. S25). 



After genotype and expression QC, total number individuals analyzed are 461, of which 

401 have monocyte data and 407 have CD4+ T cell data, respectively (table S1).   

 

We used the BEAGLE software (version: 3.3.2) to impute the post-QC genotyped 

markers using reference Haplotype panels from the 1000 Genomes Project (The 1000 

Genomes Project Consortium Phase I Integrated Release Version 3) that contain a total of 

37.9 Million SNPs in 1,092 individuals with ancestry from West Africa, East Asia, and 

Europe. For subjects of European and East-Asian ancestry, we used haplotypes from 

Utah residents (CEPH) with Northern and Western European ancestry (CEU), and 

combined panels from Han Chinese in Beijing (CHB) and Japanese in Tokyo (JPT), 

respectively. For imputing genotypes from African-American subjects, we used a 

combined haplotype reference panel consisting of CEU and Yoruba in Ibadan, Nigeria 

(YRI). After genotype imputation, we filtered out SNPs with MAF < 0.01 and r
2
 < 0.4, 

which resulted in 7,760,136, 6,640,213, and 12,721,435 common variants in European, 

East Asian, and African-American subjects, respectively.  

 

Association mapping 

 

The primary eQTL analysis was done separately for each cell type and population. We 

performed association of SNP genotype  (coded as 0, 1, or 2) or imputed allele dosage 

(ranging from 0 to 2) with PCA adjusted expression residual phenotype (10-20 PCs 

depending on the population; fig. S20) and genetic ancestry PCs (1-2 PCs) using a non-

parametric Spearman rank correlation (SRC) as previously described (22). For the cis 

analysis, we considered only SNPs in a +/- 1 Mb window around transcription start site 

(TSS) of each gene. We used 1 Mb window around TSS because the longest known 

human enhancer is located approximately 1 Mb away from the TSS. For trans-eQTLs, 

we analyzed SNPs that are located ≥1 Mb from the TSS of a target gene, or the target 

gene is on a different chromosome.  

 

The nominal p-value for the test of association and Spearman’s rho are reported for each 

SNP-gene pair for each population and cell type combination. 

 

Multiple testing, permutations and FDR estimation for eQTL analysis 

 

Significance of the nominal p-values was determined by comparing the distribution of the 

most significant p-values generated by permuting residual expression phenotypes 10,000 

times independently for each gene as previously described (22-24). For each population 

in each cell type, we performed 10,000 permutations of expression phenotypes relative to 

genotypes. We keep the most significant SNP to gene association p-value from each 

permutation round. Based on the null p-value distribution, we take the most stringent p-

value for each gene and keep the genes that passed Benjamini and Hochberg False 

Discovery Rate (FDR) of 5%. 

 

To account for multiple testing for trans-association, we used a conservative Bonferroni-

corrected p-value of 3 × 10
−12

 to account for 17.9M SNPs x 19,114 genes independent 

tests. 



 

Meta-analysis of cis- and trans- eQTL associations 

 

For meta-analysis, we used METASOFT (12) to perform meta-analysis using a random 

effects (RE) model. The effect size and standard error for each SNP-gene pair for each 

dataset were used as input to METASOFT. Three separate meta-analysis were performed 

across the three population for each cell type: (1) Fixed effects (FE) model based on 

inverse-variance-weighted effect size; (2) random effect model (RE), a conventional 

random effects model based on inverse-variance-weighted effect size; (3) Random effect 

model (RE2): new random effects model optimized to detect associations under 

heterogeneity. The RE2 model statistics is reported here. 

 

To assess significance, we performed conditional permutation in a pooled (EA, EU, and 

AA) dataset. We performed 10,000 permutations for each gene by ensuring expression 

values from an individual of a given population were only assigned to another individual 

of the same population. As has been previously noted, conditional permutations masks 

inflated associations while revealing the relevant association signals (22-26). 

 

Proportion of sharing and specificity of associations 

 

Bayesian regression and hierarchical model. We used a Bayesian framework to jointly 

analyze data across cell types and population (10). The Bayesian statistical method 

integrates recently developed meta-analysis methods that allow for heterogeneity of 

effects among subgroups (i.e., cell types or population). The C++ package eQtlBma was 

used to run the Bayesian regression. We used “Step 3” tests for association in each 

subgroup separately and also in all subgroups jointly. The PCA adjusted residual 

phenotypes and the corresponding genotypes for each subgroup were used as input to 

eQtlBma. The settings used for the configuration files are: step 3, outss, outraw, qnorm, 

maf 0.01, bfs all, mvrl, nperm 10000, trick, and pbf all.  

 

To estimate the extent of cis-eQTL sharing among groups (i.e., cell types and 

populations), we used a hierarchical model that borrows information across genes to 

estimate weights associated with different types of heterogeneity (10). To estimate the 

proportion of sharing between the two cell types, we ran eQtlBma separately for each 

population with a total of three possible configurations (CD4
+ 

T-cells, CD14
+
CD16

-
 

Monocytes, and shared). To estimate the proportion of sharing between the populations, 

we ran eQtlBma separately for each cell type with total of seven possible configurations 

(EU, AA, EA, EU-AA, EU-EA, EA-AA, EU-AA-EU). The genome-wide raw Bayes 

Factors (BF) for each subgroup were used to run the hierarchical model. 

 

Proportion of true positives. To quantify eQTL sharing in a continuous way, we used the 

QVALUE software (R package qvalue 1.20.0) with the default settings (11). The 

QVALUE program takes a list of all the p-values and computes the proportion of eQTLs 

that are truly null (π0). The method assumes that p-values of nulls will be uniformly 

distributed among [0,1], while truly significant tend to be close to zero. The quantity π1 = 

1−π0 estimates the proportion of true positives. The proportion of sharing between two 



data sets (cell type or population) is reported as the proportion of π1 estimated from the p-

value distribution of eQTLs. 

 

Stepwise regression 

 

To determine whether there are independent cis-regulatory effects for each gene, we 

applied a stepwise regression model. For each gene that had a significant cis-eQTL at the 

permutation threshold of 0.01, we regressed out the effect on the expression levels of the 

effect of the most-significant SNP, then iteratively ran the Spearman Rank Correlation 

analysis on the remaining significant cis-eQTL SNPs using the resulting expression 

residuals (1). At each iteration, we retained the SNPs that were more significant than the 

gene’s permutation p-value. This iterative process was repeated until no SNPs were 

found to be more significant than the gene’s permutation p-value. 

 

GWAS Catalog 

 

We obtained data from published GWAS via the National Human Genome Research 

Institute (NHGRI) GWAS catalog available online at 

(http://www.genome.gov/gwastudies; April 2013 version). We used SNPs reported to be 

associated with complex traits with a p-value of at most 10
−8

. To compile a list of 

independent GWAS SNPs, we performed LD pruning using PLINK with the following 

parameters: window size in SNPs = 100, number of SNPs to shift the window at each 

step = 5. The most significant SNP per each LD block was kept. 

 

We manually curated GWAS SNPs for eleven autoimmune diseases including 

Ankylosing spondylitis (AS), Crohn’s disease (CD), Ulcerative colitis (UC), Celiac 

disease (CeD), Multiple sclerosis (MS), Type 1 diabetes (T1D), Rheumatoid arthritis 

(RA), Primary biliary cirrhosis (PBC), Systemic lupus erythematous (SLE), systemic 

sclerosis (SS) and Psoriasis (PS), and two neurodegenerative diseases, Alzheimer’s 

disease (AD) and Parkinson’s disease (PD). The manual curation of each GWAS SNP 

ensured that the reported SNPs were replicated and genome-wide significant in each 

respective GWAS.   

 

Relative Trait Concordance Score 

 

We used the Relative Trait Concordance (RTC) method to integrate QTL and GWAS 

data to detect disease-causing cis-regulatory effects as previously described in (15). 

 

GWAS – eQTL Enrichment analysis  

 

Trait-associated cis-eQTL enrichment relative to other SNPs. We performed simulations 

to test for an enrichment of cis-eQTLs among SNPs associated with complex traits 

relative to 10,000 SNP sets sampled at random from bins matched for minor allele 

frequency (MAF), number of LD partners (r
2
>0.8), and distance from transcription start 

site (TSS). 

 



Enrichment for cell type specificity for trait-associated cis-eQTLs. To assess the 

enrichment of disease-associated cis-eQTLs for cell type specificity, we selected 1,000 

SNP sets sampled at random from bins matched for MAF, number of LD partners 

(r
2
>0.8), distance from TSS and gene expression levels of the nearest cis-eQTL gene. For 

each random set of matched SNPs, we ran the Bayesian hierarchical model using the 

eQtlBma software. This generated a background distribution of proportion of cis-eQTLs 

that are CD4
+
 T-cell specific, CD14

+
CD16

-
 monocyte specific, and shared.  For each trait 

group, we compared the null distribution of proportion of cell-specificity to the observed 

proportion of cell-specificity.  

 

Graphics packages 

 

Graphs were generated using R packages and ggplot2. The regional association plots 

were generated with Locus Zoom (27). 

 

 

 

 

 

  



Supplementary Figures 
 

 

 
Figure S1: Differential gene expression between CD4+ T and Monocytes. Volcano 

plot showing differentially expressed genes between CD14
+
CD16

-
 monocytes and CD4

+
 

T-cells in all three human populations. The FDR-adjusted −log10(p-values) test the null 

hypothesis that there is no difference in mean expression levels between monocytes and 

T-cells for each gene. The p-values (y-axis) are plotted against the log2 fold changes (FC) 

in expression (x-axis). There are 740 genes (out of 19,114) with |FC|> 2 and FDR<10
-3

 

(in blue).  

  



 
Figure S2: Transcriptome variation among human populations. VST distribution for 

each pairwise comparison between the African-American (AA), East Asian (EA) and 

European-American subjects (EU) in the two cell types. The top 1% of differentially 

expressed genes (VST > 0.2) are listed for each pairwise combination. 
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Figure S3: Proportion of cis-eQTL genes observed in this study with evidence of 

replication in previously published eQTL studies. The significant genes with cis-

eQTLs were compared with seven publically available eQTL datasets (monocytes: Zeller 

et al. 2010 (28); Fairfax et al. 2012 (4); B-cells: Fairfax et al. 2012 (4); whole blood: 

Fehrmann et al. 2011 (29); lymphoblastoid cell lines (LCLs): Dixon et al. 2007 (30); 

Stranger et al. 2012 (1); peripheral blood mononuclear cells (PBMC): Raj et al. 2013 

(31)). The interpretations of these results need to be carefully considered since the 

analysis methods, expression platforms, significance decisions, cis distance, etc, are all 

different in the various studies. 



 
 

Figure S4: Direction of allelic effect of all significant cis-eQTLs. The direction of 

allelic effect (Spearman’s rho) for all shared cis-eQTLs at FDR 0.05 across pairs of 

populations and cell types.  

 

  



 

 

 
 

Figure S5: The direction of allelic effect (Spearman’s rho) for the most significant 

SNP per gene. Pairwise Spearman’s rho for shared cis-QTLs (top SNP per gene) across 

populations and cell types. When the top SNP per gene is shared across pairs of 

populations within the same cell type and the cis-eQTL is significant at FDR 0.05, we 

find that the allelic direction is 100% concordant, suggesting that the causal regulatory 

variation affects expression in the same direction across populations.  

  



 

 

 
Figure S6: The effect size of shared cis-eQTLs at FDR 0.05 across populations and 

cell types. The effect size is quantified by the median expression level fold-change 

differences between major homozygote and heterozygote genotype groups. These plots 

show the correlation between effect sizes for each pairwise combination of populations 

and cell-types. The pairwise Pearson’s correlation coefficients are shown on the lower 

left panel. 

  



 
Figure S7: The effect size of shared cis-eQTLs (most significant SNP per gene) at 

FDR 0.05. The effect size is quantified by the median expression level fold-change 

differences between major homozygote and heterozygote genotype groups. The pairwise 

Pearson’s correlation coefficients are shown on the lower left panel. 

 

 

  



 
Figure S8: Number of cis-eQTL genes with independent cis-eQTL effects in the 

three populations. Up to 17% of genes with cis-eQTLs have multiple independent 

effects in the two cell-types. 

 

 

  



 
Figure S9: Independent cis-regulatory effects at CLECL1 locus. Example of a cis-

eQTL with two independent effects at CLECL1 locus. Left Panel: Primary effect is 

rs1990533  (P= 3.42 x 10
-35

); Middle panel: Conditioning on the top SNP (rs1990533) 

revealed a secondary effect (rs10743823; P= 5.06 x 10
-23

); Right Panel: No additional 

effects are observed after conditioning on the two independent effects (rs1990533 and 

rs10743823).   



 
Figure S10: Regional association plot for a monocyte-specific cis-eQTL shared 

across the three populations. Left panel: Association signal at the PTK2B locus in EU 

(top), EA (middle) and AA subjects (bottom). Right panel: Cross population meta-

analysis substantially narrows down the number candidate functional variants in the 

region. With meta-analysis of the three populations, the number of significant variants 

distills to just two SNPs (rs28834970 Pmeta-monocytes=7.59 x 10
-49

; rs17057043 Pmeta-

monocytes=1.40 x 10
-47

; EU r
2
=0.93), one of which is an Alzheimer’s disease GWAS index 

SNP (rs28834970).  

  



 
 

Figure S11: Circos plots for significant trans-eQTLs in monocytes. The outermost rim 

shows a Manhattan plot for cis-eQTLs (top SNP per gene in meta-analysis) in monocytes 

and the second (inner) rim shows significant trans eQTLs (PMETA < 3 x10
-12

). The lines  

(colored by chromosomes) connect regulatory SNP (shown as cis-gene if significant or 

the closest gene) and their trans-regulated genes. 

 

 

  



 
Figure S12: Circos plots for significant trans-eQTLs in CD4

+
 T-cells. The outermost 

rim shows a Manhattan plot for cis-eQTLs (top SNP per gene in meta-analysis) in CD4+ 

T-cells and the second (inner) rim shows significant trans eQTLs (PMETA < 3 x10
-12

). The 

lines  (colored by chromosomes) connect regulatory SNP (shown as cis-gene if 

significant or the closest gene) and their trans-regulated genes. 

 

  



 
Figure S13.  Relative enrichment of CD4+ T cell cis-eQTLs compared to Monocytes 

cis-eQTLs in regulatory marks derived in the two cell types. Twenty genomic features 

(regulatory marks) were identified from ENCODE and Epigenome Roadmap that 

matched the cell types studied here (Monocyte or a CD4+ T cell cell type) (listed in the 

table below).  Note that only DNAase  hypersensitivity data was available  for CD4+ T 

cell.  For each of these genomic features, the relative enrichment of CD4+ T cell -specific 

versus Mono-specific cis-eQTLs was quantified by computing the Relative Risk (

). Error bars mark the 99.7% CI (to account for multiple testing; 20 

features tested). 

 



 
Figure S14: An example of discordant cis-eQTL (CD52-rs10159433). The opposite 

allelic effects are replicated across the three populations.  



 

 

  

 
 

Figure S15: Inflammatory disease associated GWAS SNPs are more likely to be 

cis-eQTLs than randomly matched sets of SNPs. Among the 425 SNPs associated 

with at least one of eleven inflammatory diseases (NIH GWAS catalog, April 2013; 

LD-pruned to r
2 

>0.4), we find that 143 have significant cis-eQTL effects on 182 genes 

in monocytes and/or T-cells. Permuting 10,000 SNP sets sampled at random from bins 

matched for minor allele frequency (MAF), number of LD partners (r
2
>0.8), and 

distance from transcription start site (TSS), we find that the p-value of this enrichment 

is <1 x 10
-4

. 

 

 



 
 

Figure S16: eQTL association signal for Alzheimer’s disease associated SNPs in 

monocytes and T-cells. Shown here are cis-eQTL –log10(P-value) of all AD GWAS 

SNPs. The AD susceptibility SNPs have significant cis-eQTL effects only in monocytes. 

 

 

 

 

 

  



 
Figure S17: Enrichment of cis-eQTLs in Alzheimer’s disease GWAS. Left: 

Distribution of cis-eQTL p-values for AD GWAS SNPs p < 10
-4

  (Naj et al. 2010) in 

Monocytes. Right: Distribution of cis-eQTL p-values for AD GWAS SNPs p < 10
-4

 in T-

cells. Storey’s Π1 is listed in each figure. Π1 is higher in monocytes compared to T-cells, 

suggesting that when considering non-significant GWAS P 10 < 4 (SNPs below GWAS 

threshold of 5 x 10-8) we observe over-representation of monocyte specific cis-eQTLs.   



 

 

 

 

 
 

 

Figure S18: Comparison of Monocytes (x-axis) versus CD4+ T-cells (y-axis) 

expression medians. Log2 expression medians were compared across the cell types for 

(A) Alzheimer’s disease eQTL-genes (B) Parkinson’s disease eQTL-genes. With the 

exception of AD-associated cis-eQTL gene CD33 (expression medians= 11.5 in 

Monocytes, 6.2 in T-cells), and PD-associated cis-eQTL gene LRRK2 (expression 

medians= 10.65 in Monocytes, 3.73 in T-cells), the correlation between log2 expression 

levels in monocytes and T-cells was very high (r
2
 = 0.80 and p < 10

-4
 for AD cis-eQTL 

genes; r
2
 =0.71, p<10

-2
 for PD cis-eQTL genes), suggesting that expression level 

differences between cells are not the primary reasons for observed monocyte-specific 

eQTL discovery. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

Principal Components (# of factors) 

 

 

Figure S19: Principal component analysis (PCA) of known non-genetic factors 

affecting gene expression levels. Shown here is a heatmap of Pearson’s r for each 

eigenvalues associated with each component or factors. As expected, batch effects, 

technical artifacts, age and gender has significant effect on gene expression. 



 
Figure S20: Principal component analysis corrects expression data for non-genetic 

factors. To account for non-genetic factors such as batch effects, age, gender, technical 

artifacts in gene expression data, we used Principal Component Analysis (PCA) as in 

(4). PCs were estimated separately from the gene expression matrix for each population 

and cell-type. For association analysis, we used the number of PCs that maximized the 

number of significant cis-eQTLs at nominal significance thresholds of p-value<10
-5

 and 

p-value<10
-7

. This procedure identified 20, 10, and 14 PCs in EU, EA, and AA 

monocytes and 20, 12, and 12 PCs in EU, EA, and AA T-cells (optimal number of PCs 

are shown as purple triangle in each plot). These factors were regressed out of the gene 

expression data before running the association tests. 
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Figure S21: PCA covariate analysis improves replication of cis-eQTLs. Shown here 

are proportions of EU monocyte cis-eQTLs replicated in the Fairfax et al. 2012 (18) in 

different p-value threshold. The improvement of replication rate for cis-eQTLs using PC-

adjusted data has been previously shown in Stranger et al. 2012 (14). 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Figure S22: European-American genotyping quality control. See methods for a 

complete description of our quality control procedures. 

 

  



 

 
Figure S23: African-American genotyping quality control. See methods for a 

complete description of our quality control procedures. 

 

  



 
Figure S24: East Asian genotyping quality control.  See methods for a complete 

description of our quality control procedures. 

 

 

  



 
 

Figure S25: Principal component analysis (PCA) of genotypes to identify population 

outliers and correct for population stratification. EIGENSTRAT analysis (5) was 

performed on the (a) EU, (B) AA, and (C) EA cohorts using a subset of 100,000 SNPs 

randomly selected from all LD-pruned (r
2
<0.1 at a window size of 100bp and step of 1 

SNP) genotyped SNPs with MAF > 0.05. Population outliers were identified by 

combining ImmVar genotypes with HapMap Phase III genotypes from the CEU, YRI, 

CBT, JPT and GIH populations. After excluding an admixed cluster with East Asian and 

European ancestry, we used an iterative outlier detection approach, smartpca with a 

standard deviation of 6, to remove an additional 16 ancestry outliers.  
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Supplementary Tables 

 

See individual tab-delimited text files for Tables S4-S9, S11-S14, S16-S17 and S19. 

 

Table S1: Demographic characteristics of subjects used in this study. The healthy 

subjects were drawn from the PhenoGenetic Project at Brigham & Women’s Hospital, 

Boston, MA. Total number individuals analyzed in this study are 461, of which 401 have 

monocyte data and 407 have CD4+ T cell data, respectively.   

 

 

# Post-QC 

Subjects Gender Median Age Median BMI 

Monocytes         

African-American (AA) 112 M: 59 F: 53 35 27.1 

European-American (EU) 211 M:91 F:120  26 25 

East Asian (EA) 78 M: 24 F: 54 25 23.5 

     CD4+ T-cells         

African-American (AA) 112 M:55 F: 57 35 27.5 

European-American (EU) 213 M: 91 F: 122 26 25 

East Asian (EA) 82 M: 25 F: 57 24 23.2 

 

 

 

Table S2: Highly differentiated genes (VST  > 0.2; top 1% of all VST scores) with respect 

to expression in monocytes between human population pairs. 

 

 

Monocytes 

 
Vst 

 

 

EU-AA EU-EA AA-EA 

UTS2 0.033 0.550 0.433 

FLNB 0.081 0.328 0.122 

SPTBN1 0.014 0.219 0.303 

SMAGP 0.253 0.260 0.002 

EMP1 0.345 0.171 0.072 

TTC39C 0.352 0.271 0.008 

PSPH 0.325 0.248 0.004 

SPATA20 0.127 0.091 0.345 

PPIL3 0.190 0.096 0.366 

F2RL1 0.096 0.071 0.345 

LRRC6 0.385 0.096 0.182 

RFX2 0.297 0.044 0.139 

LMNA 0.460 0.009 0.430 

P2RX5 0.408 0.018 0.331 

PRH1 0.081 0.078 0.328 

SIGLEC14 0.042 0.257 0.118 



GATM 0.006 0.248 0.285 

LILRA3 0.071 0.368 0.488 

 

Table S3: Highly differentiated genes (VST  > 0.2; top 1% of all VST scores) with respect 

to expression in CD4+ T-cell between human population pairs. 

 

CD4+ T Vst 

 
EU-AA EU-EA AA-EA 

UTS2 0.043 0.506 0.324 

CRIP2 0.104 0.078 0.278 

NR1D1 0.060 0.166 0.043 

C11orf21 0.015 0.173 0.103 

VIM 0.170 0.005 0.217 

TRPM2 0.197 0.006 0.146 

TMEM14C 0.170 0.000 0.184 

RPL36AL 0.004 0.219 0.292 

PTCH1 0.160 0.018 0.304 

PSPH 0.285 0.209 0.012 

HOXB2 0.169 0.029 0.302 

HEBP2 0.214 0.005 0.144 

GPR137B 0.104 0.086 0.316 

AFAP1 0.035 0.241 0.188 

CCDC144A 0.095 0.245 0.081 

FHIT 0.048 0.342 0.190 

PPFIBP2 0.006 0.264 0.237 

GSTM4 0.028 0.122 0.247 

 

 

Table S4-S6: Significant cis-eQTLs at FDR 0.05 in CD4
+
T-cells of European-American, 

East Asian and African-American subjects. All significant SNPs (within 1MB of TSS of 

a gene), SNP chromosome, gene chromosome, physical position of each SNP, TSS of 

each gene (largest transcript), distance from SNP to TSS, Spearman’s rho, -log10 (P-

value) and P-value are reported. 

 

Table S7-S9: Significant cis-eQTLs at FDR 0.05 in monocytes of European-American, 

East Asian and African-American subjects. All significant SNPs (within 1MB of TSS of 

a gene), SNP chromosome, gene chromosome, physical position of each SNP, TSS of 

each gene (largest transcript), distance from SNP to TSS, Spearman’s rho, -log10 (P-

value) and P-value are reported. 

 

 

 

 

 



 

Table S10: The proportion of true positives estimated from enrichment of low p-values 

(π1) (13) between pairs of human population. We observe a high degree of pairwise 

population sharing of cis-eQTLs (70%-90%). 

 

Reference Secondary Monocytes (π1) CD4
+
 T-cells (π1) 

EU AA 0.70 0.73 

 

EA 0.74 0.72 

AA EU 0.93 0.91 

 

EA 0.86 0.84 

EA EU 0.89 0.84 

 

AA 0.76 0.71 

 

 

  



Table S11: Meta-analysis cis-eQTLs at FDR 0.05 in Monocytes. The best cis-SNP 

associated with each gene expression is reported, including effect size estimates, standard 

error of the effect size and P-values. 

 

Table S12: Meta-analysis cis-eQTLs at FDR 0.05 in CD4
+
 T-cells. The best cis-SNP 

associated with each gene expression is reported, including effect size estimates, standard 

error of the effect size and P-values. 

 

Table S13: Significant trans-eQTLs in monocytes from meta-analysis. All SNP-gene 

pairs at Bonferroni corrected P-value is reported, including effect size estimates, standard 

error of the effect size and P-values. 

 

Table S14: Significant trans-eQTLs in CD4+T from meta-analysis. All SNP-gene pairs 

at Bonferroni corrected P-value is reported, including effect size estimates, standard error 

of the effect size and P-values. 

 

Table S15: The proportion of true positives estimated from enrichment of low p-values 

(π1) (13) between the cell types. 

 

  

1 

Reference Secondary EU AA EA 

Monocytes T-cells 0.69 0.68 0.62 

 

 

Table S16: GWAS SNPs with significant cis-regulatory effects in monocytes. GWAS 

index SNP, effect size estimates (β), standard error of the effect size, meta-analysis P-

value and disease/trait. 

 

Table S17: GWAS SNPs with significant cis-regulatory effects in CD4+ T-cells. GWAS 

index SNP, effect size estimates (β), standard error of the effect size, meta-analysis P-

value and disease/trait. 

 

 

 



Table S18: Eleven Autoimmune diseases analyzed in this study. Listed here are total number of GWAS 

SNPS, number of SNP-gene, SNP and genes with cis-eQTL effects at meta-analysis FDR 0.05. 

 

Disease # of GWAS SNPs 

# of SNP-

gene(s) 

(eQTL) 

# of GWAS 

SNPs 

(eQTL) 

# of Genes 

(eQTL) 

Ankylosing spondylitis (AS) 16 17 10 14 

Crohn’s disease (CD) 90 54 29 52 

Ulcerative colitis (UC) 58 34 19 34 

Celiac disease (CeD) 80 15 13 13 

Multiple sclerosis (MS) 83 22 20 22 

Type 1 diabetes (T1D) 53 30 17 29 

Rheumatoid arthritis (RA) 70 22 17 22 

Primary biliary cirrhosis (PBC) 19 5 5 5 

Systemic lupus erythematosus (SLE) 27 12 7 12 

Systemic sclerosis (SS) 18 5 4 5 

Psoriasis (PS) 54 25 15 22 

Total 568 241 156 230 

Total (LD-pruned, top SNP per LD-block, n.r.)  425 

 

143 164 

n.r: Non-redundant.  

 

Table S19: Autoimmune disease-associated SNPs with significant cis-regulatory effects. GWAS index 

SNP, best proxy SNP (LD: r
2
 > 0.8), effect size estimates (β), standard error of the effect size, meta-analysis 

P-value, disease, and cell type. 
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