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METHODS 
 
Tensor Model and Tractography 

Quality assurance of the acquired data was conducted to detect artifacts and outliers, 

followed by DWI de-noising using Slicer36 and brain extraction using FSL26. Tensors were fitted 

to the DWI data using multivariate linear fitting37 by in-house software. The WM fiber pathways 

were generated by the standard DTI tractography method (FACT) as implemented by 

TrackVis25, with default parameters and by seeding from the entire WM region. In order to 

calculate the connectivity profiles of fibers, we used the probtrackx utility of the FSL software26, 

again with default parameters. 

The proposed methodology requires two steps to be performed for each participant, namely 

connectivity analysis and identification of the WM tracts. The automated identification of the 

entire set of WM tracts takes only a few minutes to run on a PC. However, generation of the 

connectivity profiles of fibers using the probabilistic tractography may take several hours based 

on the currently available implementations (FSL software26). Thus, further improvements should 

be considered to speed up the entire process, possibly by employing a faster probabilistic 

tractography method. 

 

Methodological Details 

Here, we present the proposed tract extraction framework by first describing the 

representation of fibers. Then, we demonstrate how a fiber bundle atlas can be constructed based 

on the Mixture of Multinomials (MMN) clustering model. Finally, an adaptive MMN is 

introduced which incorporates the generated atlas as a prior for the clustering of a new subject, 

so as to automatically establish correspondence between bundles of different subjects.  

A similar approach was proposed before for healthy cases, using the Mixture of Gaussians 

Model (MGM).18,19 The main technical difference between this work and the previous one is the 

way fiber bundles are represented in the model. Previously, fiber bundles were represented by 

Gaussian distributions, each parameterized by a mean vector and covariance matrix. MGM 

model poses several difficulties when the variation of bundles increases due to the distortion of 

white matter fibers by edema and mass effect. Specifically, the possible singularity of the 
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covariance matrix due to high dimensionality (95 in our case) hinders successful atlas generation, 

and thereby automated extraction of bundles in a test subject. Thus, here we implement a more 

stable model based on MMN that is not affected by dimensionality, unlike MGM. In MMN, each 

fiber bundle is represented by a multinomial distribution, encoding the probabilities that fibers 

tend to connect gray matter regions. 

The connectivity profile of a fiber is defined as a collection of connectivity profile of voxels 

along the fiber.18 Given a parcellation of the brain into 𝐾 cortical regions {𝐺!}, the 𝑀 

dimensional vector 𝒖 𝑥   for a voxel 𝑥 consists of connection probabilities, 

𝒖 𝑥 ≡ [  𝑓𝑟𝑒𝑞 𝐺! 𝑥)  , 𝑓𝑟𝑒𝑞 𝐺! 𝑥)  ,… , 𝑓𝑟𝑒𝑞 𝐺! 𝑥)  ], each corresponding to a connection to a 

specific region 𝐺! ie, the number of fibers passing through the voxel 𝑥 and connecting to region 

𝐺!. Then, a fiber is represented by a matrix with the vectors 𝒖(𝑥) as its rows or columns.  

Instead of working directly with matrices, we average over the voxels along a fiber to obtain 

a compact representation. Such an approach eliminates any need to define a metric for matrices 

of varying sizes due to different number of voxels of fibers. Finally, each fiber is represented by 

a single vector 𝒇 ≡ [  𝑓!  , 𝑓!  ,… , 𝑓!], where 𝑓! is calculated by averaging frequencies, 

𝑓𝑟𝑒𝑞 𝐺! 𝑥), over voxels along the fiber.18  

One important issue with fiber clustering is the fact that correspondence might not be easy to 

establish between the resulting fiber bundles of different subjects when they are clustered 

individually. To assure the correspondence among subjects, we assume that each subject is an 

independent observation from an underlying common bundle model that is characterized by a 

fiber bundle atlas.19 The atlas can be constructed by clustering fibers of a single or multiple 

training subjects. When using multiple subjects, their fibers can be combined easily since the 

proposed representation of fibers is invariant to spatial image coordinates.  

We use MMN model for clustering, which has been used for document clustering in the past. 

Each fiber is assumed to be drawn from a multinomial distribution,  𝒇 ∼ 𝑀𝑁 𝜷 . The probability 

mass function of a multinomial distribution is 𝑝 𝒇|𝜷 = !!
!!!  …  !!!

𝛽!
!! …   𝛽!

!!, where 𝑛 = 𝑓!!
! . 

Each element 𝛽! ≥ 0 gives the probability of being connected to a region 𝐺!, where 𝛽!!
! = 1. 

Fibers of the whole brain are assumed to be drawn from a mixture of 𝑀  multinomial 

distributions, with the final likelihood of 𝑁 fibers is 𝑝(𝑭|𝝀,𝚩) = 𝜆!!
!

!
! 𝑝 𝒇! 𝜷!), where 𝜆! is 

the weight of 𝑗!! multinomial distribution. Given a set of fibers, the parameters 𝝀 and 𝚩 can be 
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inferred by using the Expectation Maximization method. In the expectation step, we estimate the 

membership possibility 𝛾!
! of the fiber 𝑖 to the 𝑗!! cluster by 

𝛾!
! = ! 𝒇! 𝜷!)

!!!
!   ! 𝒇! 𝜷𝒗)

 .     (1) 

 

Then in the maximization step, we estimate the unknown parameters as  

𝛽!" =
!!
!!

!   !!"
!!
!!

!   !!
 ;   𝑧! = 𝑓!"!

!  ,     (2) 

𝜆! =
!!
!!

!
!

 .             (3) 

With a random initial guess on parameters, these two steps are repeated until convergence. 

Finally, the atlas is characterized by the defined mixture model, with each multinomial 

distribution corresponding to a fiber bundle. The resulting clusters are visually inspected by an 

expert to label them with white matter (WM) structures that they belong to. 

Once the atlas is generated, it is used as a prior model for clustering fibers of a new subject. 

The adaptive clustering incorporates the generated atlas as a set of Dirichlet priors for the 

parameter set of the new MMN that is run for a test subject. For each multinomial distribution in 

the new model, we define a Dirichlet prior, 𝐷𝑖𝑟(𝜶!) over the parameter 𝜷!, where 𝜶!, is 

calculated by scaling the corresponding parameter 𝜷! of the atlas, 𝜶! = 𝑐𝜷!. Under these 

settings, the Maximum a Posteriori (MAP) estimate of the parameter 𝜷, given an observation 

(fiber) 𝒇 is  

𝛽! =
!!!  !!!  !
!! (!!!!)!

!
  .                 (4) 

Then, for clustering new subjects using the adaptive clustering scheme, the maximization 

step (2) is modified as 

𝛽!" =
!!
!!

!   !!"!  !!"!  !

!!
!!

!   !!!  !!
 ;   𝑧! = 𝑓!"!

!    ;   𝛼! = 𝛼!" − 1!
!  .   (5) 

In above formulation, the atlas introduces some pseudo counts for each cortical region. This 

means that one can adjust the compliance of a new subject with the atlas by changing the 

magnitudes of elements of 𝜶!while keeping their proportions fixed.	
  	
  


