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Supplementary Figure 2: Comparison to other algorithms. Recon diversity vs. other esti-

mates showing fits to additional gold standard repertoires plotted as for Figure 2. (a)-(c) Com-

parisons of sample diversity (top) to Recon diversity (bottom) plotted as in Figure 2a for (a) a 

steep exponential clone size distribution (b) a bimodal distribution in which the overall distribu-

tion contains a population of small clones and a population 31 times as large and (c) a bimodal 

distribution in which the overall distribution contains a population of small clones and a popula-

tion 20 times as large. (d)-(g) Comparison of species richness estimates by Recon (middle) and 

CE (right) shown as in Figure 2b for an example additional gold standard overall distributions 

(left) for (d) a steep exponential clone-size distribution, (e) a shallow exponential clone-size dis-

tribution, (f) a bimodal distribution in which the overall distribution contains a population of small 

clones and a population 31 times as large, and (g) a bimodal distribution in which the overall 

distribution contains a population of small clones and a population 20 times as large. 
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Supplementary Figure 3: Recon vs. CE, NP, and WL on noisy distributions. Each pair of 

cumulative distributions show accuracy (left) and speed (right) for 100 realizations of noise on 

the different distribution types described in Fig. 2. 
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Supplementary Figure 4 
 

 

Supplementary Figure 4: Scanning. Probability densities of the ratio of estimated missing 

species/true missing species demonstrating the benefit of using additional starting points. Fits 

using, in each round of fitting, 9 (red), 20 (yellow), 56 (green), 72 (pink) and 110 (blue) combina-

tions of starting weights and means (yellow) show that the set of 56 starting points used in the 

main study result in a sharper peak of the probability distribution function (pdf) near 1.0, and di-

minished trapping in local minima away from 1.0. Pdfs are plotted using Gaussian kernel density 

estimates over 800 samples from gold-standard distributions (see main text).  

Fig. S3
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Supplementary Methods 

Detailed description of the Recon algorithm 

Overview. The problem is, given the observation of the clone size distribution in a sample, to 

reconstruct the number of clones of each size in the parent or overall population from which a 

sample was taken (e.g. memory B cells in the peripheral blood). 

By clone size we mean the number of cells that make up a clone. A clone made up of a single 

cell has clone size 1, while a clone made up of a million cells has clone size one million. 

By the clone size distribution we mean the number of clones of each size (Fig. 1a). For the 

sample we use the notation ni, where i indexes the clone size and ni is the number of clones of 

that size. Thus n1 is the number of clones represented in the sample by a single cell, n2 the 

number of clones represented by 2 cells, and so forth. The number of clones that are present in 

the parent distribution but missing from the sample is represented by n0, as they are represent-

ed by 0 cells in the sample. These are the missing species. 

Experimentally observed clone size distributions are described by a sampling distribution from 

the parent population. The overall strategy of the Recon algorithm is to find a maximum-

likelihood estimate (MLE) for parameters of a model describing the sampling distribution. The 

form of the model has an immediate interpretation in terms of the clone size distribution of the 

parent population. 

Recon is based on a mixed-Poisson model for the contribution of each clone in the parent popu-

lation to the sample: 
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𝑝! = 𝑤!   𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑖;   𝑚!
!

=    𝑤!
𝑚!exp −𝑚!

𝑖!
!

 

where wj are weights and mj are Poisson parameters. The weights wj give the proportion of 

clones in the parent population with clone size j. 

The parameters mj give the mean number of cells a clone of size j contributes to a sample and 

are referred to as means below. They correspond to clone sizes in the parent population: 

Clone  size  𝑗  in  parent  =  number  of  cells  in  parent  population  ×  𝑚!/  sample  size 

The parameters therefore give a complete description of the clone-size distribution in the parent 

population. 

If there are k different sizes in the parent population, so that the index j ranges from 1 to k, then 

there are a total of 2k-1 independent parameters, consisting of k independent sizes mj and k-1 

independent weights wj, which sum to 1. 

Assuming that the sample comes from a well mixed parent population, such as blood, this gives 

rise to a sampling distribution: 

  𝑃 𝑛!, 𝑛!, 𝑛!… = (𝑛total!/𝑛!! 𝑛!! 𝑛!!… )×(𝑝!
!!𝑝!

!!𝑝!
!! … )    (1) 

Where ntotal is the sum of all ni. 

The Recon algorithm addresses three fundamental problems in the search for parameters which 

maximize the likelihood (1) given the data ni. 
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First is the need to determine the number of different clone sizes, k. This is addressed by start-

ing with a homogeneous population in which all clones are the same size and refining the de-

scription of the population by adding clone sizes (incrementing k by 1) until no better fit can be 

obtained. A better fit must both (i) improve the fit by an amount that is larger than expected vari-

ation from sampling noise and (ii) improve the corrected Akaike Information Criterion (AICc). 

This loop is described in Steps 2, 7 and 8 below. 

Second is that the likelihood is a non-linear function of the parameters and has local minima, 

whereas a global minimum is desired. In practice, for some fits, the AICc allows 20 or more pa-

rameters; searching such a high dimensional space requires a careful strategy to find a global 

minimum. To handle this problem, in Recon each step of the fit is run many times (nine in our 

implementation) from different starting points. These multiple different starting points often result 

in finding multiple local minima, from which the global minimum is selected. This loop is de-

scribed in Steps 3 and 6 below. 

Third, the likelihood of the data can be calculated directly from the 2k-1 parameters of the 

mixed-Poisson distribution model given only the number of unseen species, n0. Thus, the num-

ber of missing species must be jointly modeled as an additional parameter. 

In order to handle this problem an expectation maximization (EM) approach (see references in 

main text) is used in which an expected value of n0 is obtained from the remaining parameters 

and parameters are then refitted until self consistent values of parameters and of n0 are ob-

tained. This loop is described in Steps 4 and 5 below. 

These three nested loops are shown in the flowchart in Supplementary Figure 1. 
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Step 1: Separate large from small clones. To simplify our calculations of n0, the first step 

splits the observed clone size distribution into large clones and small clones. Our implementa-

tion uses a threshold of 30 cells. 

Consider repeated sampling of the parent distribution. Any clone in the parent population that is 

large enough to contribute 30 cells to a sample will essentially always be represented in the 

sample; i.e., it will never contribute to the number of missing clones, n0. Furthermore, the sam-

pling error on such large clones will be relatively small, and the size of the clone in the parent 

population will scale linearly with the number of clones in the sample. 

The main work of reconstruction must then be applied to the remaining small clones, whose 

contribution to the observed sample is less than 30 cells, and which correspond to clones in the 

parent population that are small enough to include clones that will contribute no cells to the 

sample and thus affect n0. The remaining reconstruction steps are applied only to these small 

clones. 

Step 2: Determine mean observed clone size. The mean size of all observed clones contrib-

uting to the fit (i.e. clones contributing less than 30 cells) is calculated. This is used to set the 

scale for initial guesses of clone sizes in step 3. 

The initial parameters for the fit are set to empty lists of weights and means. This is recorded as 

the current best fit. 

Step 3: Add a clone size to the parent distribution. Next, the algorithm adds a new distinct 

clone size to the parent population, in such a way that the new distribution maximizes the log 

likelihood. Because there are multiple maxima in the likelihood, this fitting (Steps 3-5) will be 

repeated for each of many starting points for the new clone size added to the same current best 
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fit  in an attempt to find the best possible improvement. We used nine starting points in our im-

plementation. 

Except on the first iteration of the fit, the weight of the new clone size is selected from the list of 

starting weights (Supplementary Table 1). On the first iteration of the fit the newly added clone 

size is the only clone size, so the weight is 1.0. The mean for the new population is calculated 

by selecting a starting scale factor (Supplementary Table 2) and multiplying by the mean size of 

the small clones. 

Supplementary Table 1: Starting 
weights  

Supplementary Table 2: Starting 
scale factors 

 

0.05  0.05  

0.128  0.225  

0.207  0.4  

0.286  0.575  

0.364  0.75  

0.443  0.925  

0.521  1.1  

0.6    
 

The number of missing species is updated as  

𝑛! = 𝑛!"#/(1 − 𝑝!) 

where nobs is the number of small clones observed in the sample (i.e. the sum of ni for 0<i<30).  

 

Step 4: First EM step. Given the estimate of n0, Recon maximizes log P, where P is given by 

Eq. (1) above: 

𝑃 𝑛!, 𝑛!, 𝑛!… = (𝑛total!/𝑛!! 𝑛!! 𝑛!!… )×(𝑝!
!!𝑝!

!!𝑝!
!! … ) 

The ni for i>0 are the observed number of clones represented by i cells in the sample, ntotal is the 

sum of all ni including n0, and the pi are the probabilities of a randomly selected clone giving rise 
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to exactly ni cells in the sample, as calculated from the mixed-Poisson model. In our implemen-

tation this is carried out using the L-BFGS-B minimization method from the scipy.optimize li-

brary. 

Step 5: Second EM step. A new value for n0 is estimated according to: 

𝑛! = 𝑛!"#/(1 − 𝑝!) 

. 

This new value of n0 is used to find maximum likelihood values for the parameters.  

If the newly estimated value of n0 is equal to the old value of n0 then there has been no im-

provement, and so EM for the corresponding starting point is completed. 

If instead the newly estimated value of n0 differs from the old value of n0 then Step 4 is repeated 

using the new estimate and starting from the parameter values given by the fit for the old n0 es-

timate. This ensures that the end result of EM is a set of parameters that maximize likelihood 

and produce a self-consistent estimate for n0. 

The result is added to a list of possible best fits. As shown in Supplementary Figure 1, the algo-

rithm returns to Step 4 until all starting points have been tried and the list of possible best fits 

contains nine entries. Note that at this point the current best fit is not yet updated.  

6: Compare the multiple minima that arise from the different starting points. After all nine 

fits, each starting from different initial parameters, are complete, the MLE from among these 

nine fits is selected. 

The likelihood minimized in Step 4 treats n0 as data, and maximizes likelihood given that data. 

However, solutions from different starting points will arrive at differing self-consistent values of 

n0. In order to compare these solutions n0 must be treated as a parameter rather than as data. 
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Treating n0 as data we use Eq. (1) above. For practical purposes, since the n do not depend on 

the parameters, we maximize 

log(𝑝!
!!𝑝!

!!𝑝!
!! … ) = 𝑛! log 𝑝!

!

!!!

 

Because the pi are known functions of the mixed-Poisson model parameters this is a straight-

forward procedure. 

In contrast, treating n0 as a parameter we have the likelihood to be maximized: 

𝑃! 𝑛!, 𝑛!, 𝑛!,… 𝑛!) =
𝑛obs!

𝑛!! 𝑛!! 𝑛!!…
×(𝑝!!

!!𝑝!!
!!𝑝!!

!! … ) 

Here the p’i are not equal to pi, (as can be seen e.g. by considering normalization) and depend 

on n0. It is not straightforward to calculate the p’i from the mixed-Poisson model parameters. 

In order to calculate P’ in terms of the mixed-Poisson model parameters we write log P’ in terms 

of log P: 

𝑃 𝑛!, 𝑛!, 𝑛!… =
𝑛total!

𝑛!! 𝑛!"#!
  𝑝!
!!   (1 − 𝑝!)!obs   

𝑛obs!
𝑛!! 𝑛!! 𝑛!!…

× 𝑝!!
!!𝑝!!

!!𝑝!!
!! …

=
𝑛total!

𝑛!! 𝑛!"#!
  𝑝!
!!    1 − 𝑝! !obs   𝑃′ 

Then 

log𝑃 = log
𝑛total!

𝑛!! 𝑛!"#!
+ 𝑛! log 𝑝! + 𝑛obs log 1 − 𝑝! + log𝑃′ 

so  

log𝑃′ = log𝑃 − log !total!
!!!!!"#!

− 𝑛! log 𝑝! − 𝑛obs log 1 − 𝑝! .         (2) 
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Taking the log of Eq. (1) we can write 

log𝑃 = log
𝑛total!

𝑛!! 𝑛!! 𝑛!!…
+ 𝑛! log 𝑝! + log 𝑝!

!!𝑝!
!!𝑝!

!! … . 

Substituting this expression for log P into Eq. (2) we find: 

log𝑃′ = log
𝑛obs!

𝑛!! 𝑛!! 𝑛!!…
− 𝑛obs log 1 − 𝑝! + log(𝑝!

!!𝑝!
!!𝑝!

!! … ) 

The first term on the right does not depend on parameters, so in order to maximize P’ we select 

the fit giving the maximum value of: 

log(𝑝!
!!𝑝!

!!𝑝!
!! … ) − 𝑛obs log 1 − 𝑝! . 

Because this is written in terms of the pi  it can be evaluated in terms of the mixed-Poisson 

model parameters, so it is straightforward to maximize. Note that directly comparing the log like-

lihoods treating n0 as data between fits that have different values of n0 is in practice misleading, 

and leads to a severe bias against large values of n0.  

The 2 fits with the highest log likelihoods are passed to Step 7 

Step 7: Fit using smaller initial mean 

If the best fit from Step 6 (i.e. the fit with the highest log likelihood) started from the smallest ini-

tial mean, then the starting weights and means that lead to the best fit are taken and the small-

est mean is halved in value. These starting weights and means are then fit using Steps 4 and 5 

of the algorithm. 

The log likelihood of the resulting fit is computed as in Step 6. 
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If the best fit passed from Step 6 did not start from the smallest initial mean, then proceed di-

rectly to Step 8. 

Step 8: Fit average of best starting points 

The starting weights that led to the two best fits are then averaged together to produce the best 

average starting weights. The starting means that led to the two best fits are averaged together 

to produce the best average starting means.  The best average starting weights and means are 

then fit using Steps 4 and 5 of the algorithm. 

The  log likelihood of the resulting fit is computed as in Step 6. 

The resulting 57 or 58 fits ordered from highest to lowest log likelihood is passed to Step 8 as 

the list of candidate best fits. 

Step 9: Check sampling noise and minimum clone size. If an estimate of the number of cells 

in the parent population is available then it is possible to set a minimum size for clones in the 

parent population—namely 1 cell. However, in general such estimates may not be available, 

and the Recon algorithm does not rely on such information. 

If there is no restriction on the minimum clone size then the algorithm can produce a perfect fit 

to n1 in the observed clones by fitting a large number of clones, each of which contributes an 

unrealistically small fraction of a clone to the observed distribution. It is therefore necessary to 

introduce a minimum mean clone size.  

The expected number of cells contributed to n1 by the clones with the smallest m parameter in 

the candidate best fit is compared against the expected noise in n1 arising from the remaining 

clones. In our implementation, the noise threshold on the remaining clones is calculated as 

three times the standard deviation from Poisson sampling.  
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If the contribution from the smallest clones in the candidate best fit with the highest log likeli-

hood is larger than this noise threshold then it is passed to Step 10. 

Otherwise, it is removed from the list of candidate best fits and the next candidate best fit is 

tested until a fit is found for which the contribution from the smallest clones is larger than the 

noise threshold. This fit is then passed to Step 10. 

Step 10: Test for improvement of the AICc. The AICc is defined as 

AICc = 2𝑞 − 2 ln𝑃! + 2𝑞 𝑞 + 1 /(𝑁 − 𝑞 − 1) 

Where q = 2k-1 is the number of parameters and N is the number of observations. N is taken as 

the number of distinct clone sizes that being fitted (plus the two nearest observations of zero 

clones, if applicable), which in the case of Recon is limited by the number of small clone sizes, 

i.e. ≤29 in our implementation. 

The new AICc of the new candidate best fit is compared against the AICc of the current best fit. 

Note that in this step the candidate best fit has two more parameters (one weight and one popu-

lation size) than the current best fit. This is what necessitates the use of the AICc. (In previous 

steps, comparisons were made only between fits with the sample number of parameters, so a 

simple log likelihood comparison sufficed.) 

If the candidate best fit is not an improvement then the algorithm exits with the current best fit as 

its final result. 

Otherwise the algorithm records the candidate best fit as the new current best fit and returns to 

Step 3 to search for a further improvement with additional parameters. 

Upper bound on species-richness estimates 
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Any reconstruction of missing species using a small sample from a large population suffers from 

a fundamental limitation. Species that are too rare to have an appreciable chance of appearing 

in the sample cannot be estimated based upon the sample. As shown by Mao and Lindsay, this 

results in upper confidence intervals for the missing species that are formally infinite.  

As discussed, Recon addresses this problem by only estimating those species that are large 

enough to have an appreciable chance of influencing the sample distribution in a meaningful 

way. (Note that while mixing distributions are often approximated as continuous, in reality they 

are discrete, so smallest fitted population will often be practically meaningful.) In many cases 

this estimate will be of interest. 

But this still leaves the estimate for all species unbounded. The number of individuals in a popu-

lation is of course an upper bound for the number of species. In many cases of interest, such as 

analysis of immune repertoires, it is relatively easy to obtain reasonable estimates of the total 

number of individuals. For example, an estimate of total cells can be obtained by scaling a cell 

count against total tissue or blood volume, e.g., 1010 B cells in the body. 

Below we show how the Recon fit can be combined with an estimate of the number of all indi-

viduals in a population to get a sharper upper bound on the number of all species. 

Recon produces an overall clone-size distribution. The smallest clone size in this distribution is 

described by two parameters: the fraction of all clones that are of this size, wmin, and a mean 

number of cells that it contributes to the sample, mmin. Clone sizes smaller than this contribute a 

mean of zero cells to the sample; however, it is possible that there are smaller clones in the 

parent population, clones so small that they both do not contribute to the sample and are invisi-

ble to our algorithm. Recon’s estimate of the number of missing clones would not count such 

clones because it is not necessary to assume that they exist in order to obtain the observed 

sample clone-size distribution. However, if they were to exist, they would result in an undercount 
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of the species richness in the parent. The goal in this section is to bound this potential under-

count. One can then test its plausibility, as described in the main text. 

The maximum undercount Umax, and therefore the desired upper bound, is obtained for the case 

that all the cells in clones smaller than mmin are actually singlets. How many would that be? The 

answer is given by 

Umax = RwminmminN/S 

where R is (Recon’s upper bound of) the overall species richness estimate, N is the total num-

ber of cells in the overall repertoire, and S is the sample size. Note the ratio S/N is the fraction 

of cells in the overall population that are sampled; scaling mmin by S/N (yielding mmin*N/S) thus 

gives the smallest clone size in the overall repertoire that Recon can distinguish from singlets. 

Error bars on R and uncertainty in N contribute to uncertainty in the upper bound. Because gen-

erally N > R, upper bounds are larger than Recon’s estimates. We note, however, that in our 

experimental datasets (see main text) comparison of upper-bound estimates to the error ex-

pected given the coverage (S/Umax) excludes Umax as a plausible estimate, given the observed R 

(Fig. 4d). 

An example of a limiting case will illustrate how the formula for Umax works. Suppose an organ-

ism contains N = 1010 B cells, and further suppose that every one of these is a distinct clone, so 

that each clone in the parent is made up of 1 cell. If a sample of S = 106 cells is taken, then the 

observed clone size distribution will consist of 106 singletons, i.e. n1 = 1,000,000 and remaining 

ni = 0. The best that Recon could do here would be to take a single population (that is w =1.0) 

and note that the mean contribution, m, of each clone in the overall repertoire must be less than 

10-3.  
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The value of m comes from the fact that no clone is observed twice, so that  (10-3)2 * S < 1.  

Note that in fact the true mean contribution of each clone to the sample is 10-4. Taking m = 10-3 

will result in a severe undercount, but is all that can be said with confidence given the sample 

size. 

The unseen species estimated by Recon will be given by  

𝑛! =
𝑛!"#
1 − 𝑝!

. 

In this example 𝑛!"# = S = 106. Recon’s estimate of p0 will be given by 1-p>0, where p>0 is the 

chance that a clone contributes to the sample. Therefore the estimate of 1- p0 will be p>0 = 10-3. 

Again, the true value of p0 is much greater, but this is the best estimate possible given the sam-

ple. This results in an estimate 

𝑛! =
10!

10!!
=   10! 

The estimate of the species richness R is then S + n0, which is approximately 109. In this ex-

treme case, Recon therefore underestimates the true species richness by a factor of 10. 

However, the formula for Umax is able to recover the true population. Since Recon fits only a sin-

gle weight and mean, wmin = w = 1.0 and mmin = m = 10-3. Then 

𝑈!"# =   
10!  ×  1.0  ×  10!!  ×  10!"

10!
=   10!". 

As expected, in this case Recon adds no further constraint. If every individual in the sample is 

from a different species then the only sensible upper bound for the number of species is N. 
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Now consider a case in which S = 106 cells are again sampled, but now the observed distribu-

tion has n1 = 900,000, n2 = 35,640, n3 = 6,667, n4 = 1,500, n5 = 400, n6 = 100, n7 = 10, n8 = 5, n9 

= 1 and remaining ni = 0..  

In this case the sample contains 944,323 clones. Recon fits 19,919,406 missing species for a 

total richness of 20,863,729 detectable clones. The wmin of the fit is 0.252 and the mmin is 0.041. 

The upper bound is now: 

𝑈!"# =   
2.09  ×  10!  ×  0.252  ×  0.041  ×  10!"

10!
=   2.16  ×  10!. 

The upper bound of N can therefore be usefully reduced by a factor of almost 5.  

Power calculations for species richness 

To obtain the minimum number of cells suggested to power an experiment detecting a specified 

difference, we required a number of cells sufficient to separate the expected sample means by 

at least one error bar, where the error bar is calculated as described in the main text. 

If experimentally reconstructed missing species from multiple identical samples with identical 

true overall diversity are taken to be normally distributed, then our calculation corresponds to a 

t-test at p=0.05 using our error bar as an estimate of the 3 times the standard deviation of this 

distribution. 

Further comparisons and non-identifiability 

It has been observed that very similar models (reconstructions) of overall populations may nev-

ertheless yield very different estimates of overall species richness1. To illustrate the point, Link1 

fit seven different models (A-G) to a data set for which the true overall species richness, N, is 
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unknown, with results shown in the following table (Table 3 of Ref. 1; ranges correspond to 95% 

profile likelihood [PLI] intervals for A-G and error bars for Recon): 

model Estimate of N Est. error 𝜒! df 
A 2,571 (2,554-2,589) 0.143 250,000 13 
B 2,776 (2,730-2,827) 0.075 206 11 
C 2,930 (2,840-3,025) 0.023 4.36 9 
D 2,992 (2,867->10,000) 0.002 0.21 7 
E 3,111 (3,018-3,218) 0.037 2.40 12 

 F* 3,320 (3,174-3,477) 0.107 0.94 12 
G 3,494 (3,308-3,730) 0.165 2.71 12 

CE 2,932 (2,855-
3,026) 

0.023 — — 

Recon 3,014 (2,709-3,513) 0.005 0.65 9 
 

*Estimate based on correction of a typo in Ref. 1 

Link notes that models A and B fit the data poorly, but the remaining models all fit well while 

yielding contradictory inferences about N. Notably, Model G fits this particular data set “extraor-

dinary well,” but on further investigation of synthetic data sets of this sort he finds that the lower 

95% PLI of this model typically overestimates the true value of N 1.  

Taken together, Link argues that these examples, particularly the fact that the 95% PLIs do not 

all overlap, confirm the “empirical observation” of Cormack that “many different forms can be 

found to fit the truncated distribution, while giving rise to vastly different estimates for the zero-

frequency class.” 

We produced a Recon fit to Link’s data set (in the table above; CE is calculated for comparison). 

The resulting estimate falls between the low and the high estimates of Link’s well fitting models. 

The range reported by Recon is wider than the typical 95% profile likelihood estimates while 

providing useful information in excluding the bad fits A and B and the probable overestimate 

from model G. We conclude that the single Recon fit provides a reasonable summary of the es-

timates that would be made on investigation of these seven independent models. 
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To what extent do these examples show “substantially different inferences” or “vastly different 

estimates” of N? It could be argued that they show fairly similar estimates. However, this can 

question only be answered by reference to the practical purpose for which the estimate is made. 

For some applications Recon’s error-bar range of 2,709 to 3,513 will be a “vast” or “substantial” 

difference. We argue that for applications in immune repertoire sequencing and many others 

ranges of this sort are not vast—they provide practical, useful information. Furthermore, the ex-

ample brought forward by Link1 illustrates that the error ranges reported by Recon effectively 

account for non-identifiability of N due to model mis-specification. 
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