
	
  

	
  

Supplementary Figure 1. Schematic representation of BAC recombineering 
and meganuclease transgenesis pipeline 
Flowchart for generating transgenic lines with DeltaD copy-number variation. A commercially 
available BAC clone (clone ID: CH1073-241D9) containing the zebrafish deltaD genomic locus was 
first tagged with venus-yfp and then subcloned into a p15A ori vector within the region flanked by 2 I-
SceI meganuclease sites. The subcloned 14 Kb deltaD-venus construct including approximately 5 Kb 
of 5’ upstream genomic DNA was microinjected into zebrafish aei-/- embryos using an I-SceI 
meganuclease-mediated approach. Potential founders carrying various transgene copies in single 
insertion loci were screened by whole-mount ISH for the presence of yfp mRNA and morphologically 
rescued somite boundaries. Blue pentagon, I-SceI site; green box, venus coding region; red triangle, 
FRT site; purple box, kanamycin-resistance gene.  



	
  

	
  

Supplementary Figure 2. Phase profiles of her1 expression pattern revealed 
by wavelength versus position in the PSM 
The position of wavelength was registered to the posterior end of PSM as 0 and negative value is 
toward the anterior. The bar charts at the bottom of each panel are mean her1-L with 5th and 95th 
percentiles as the error bars, and the corresponding values (mean ± s.d.) are indicated in front of the 
bar charts. 1st λ, distance between 1st and 2nd her1 peaks; 2nd λ, distance between 2nd and 3rd her1 
peaks; 3rd and 4th λ, etc. Mean number of gene expression peaks (avg. peak #, values in mean ± s.d.) 
per embryo for the two conditions are given in the upper right corner of each panel.  



	
  

	
  

Supplementary Figure 3. An increased Doppler contribution due to a changed 
wave pattern can increase the segmentation rate  
(A) Kymograph representation of waves moving across the wildtype PSM (WT). Gray lines indicate 
the motion of the wave peaks. Due to the dynamic change of the wavelength in the vicinity of the 
anterior end, a smaller number of waves arrives at a fixed position near the anterior end (green 
numbers) than is emitted at the posterior time during the same time interval (gray numbers). Due to 
the Doppler effect caused by the anterior end moving into the waves, a larger number of waves arrives 
at the anterior end (blue numbers). (B) Compared to A, the wavelength in the anterior is shorter 
giving rise to a stronger Doppler effect, leading to a larger number of waves arriving at the anterior 
end (blue numbers). For simplicity, we here show a scenario where all other contributions remain 
unchanged (gray and green numbers). 



	
  

	
  
 

Supplementary Figure 4. Time-periodic wave patterns in the “segmentation 
clock” with altered coupling strength and coupling time delays 
(A) Schematic depiction of the zebrafish embryo. The dashed black curve shows the embryonic body 
axis, x = 0 marks the posterior tip, x = x marks the anterior end of the PSM. (B) Shape of the 
frequency profile ω(x). Panels A and B adapted from 1. Oscillators are coupled with coupling strength 
ε and coupling delay τ. (C–F) Examples of time-periodic wave patterns for different coupling 
strengths and coupling delays: (C) ε = 0.07 min-1, τ = 20.75 min; (D) ε = 0.09 min-1, τ = 17 min; (E) ε 
= 0.07 min-1, τ = 26 min; (F) ε = 0.04 min-1, τ = 20.75 min. The other parameters are ω0 = 0.2205 min-

1, μ = 0.249 cd min-1, x = 39 cd, and σ = 27 cd, where ‘cd’ denotes cell diameters 2.  The colored 
symbols to the right of the pattern indicate the location of the parameter set in Supplementary Fig. 5D. 
See Supplementary Note 1 for details.  
  



	
  

	
  

Supplementary Figure 5. Stability, frequency and wavelength of time-periodic 
wave patterns 
Properties of time-periodic wave patterns as a function of the coupling delay τ and the coupling 
strength ε. (A) Regions where the wave pattern is stable (green), unstable (red) and where more than 
one solution for the wave pattern exists (dark gray). (B) Collective frequency Ω (blue), determined by 
Eq. (S14) in Supplementary Note 1, in the regions with a single stable solution. Other regions as in A. 
(C) Number of waves K (brown), Eq. (S17), in the regions with a single stable solution. Other regions 
as in A. (D) The wavelength of the pattern at the anterior end (cyan), Eq. (S16). Other regions as in A. 
Dots indicate parameter values for which the corresponding wave pattern is shown in Supplementary 
Fig. 4. The blue dot marks the wildtype parameters from 2 (ε = 0.07 min-1, τ = 20.75 min) and the 
green square marks a parameter set that yields a shorter anterior wavelength as observed in Damascus 
(ε = 0.09 min-1, τ = 17 min). Green triangle ε = 0.07 min-1, τ = 26 min; red diamond ε = 0.04 min-1, τ 
= 20.75 min. The other parameters are ω0 = 0.2205 min-1, μ = 0.249 cd min-1, x = 39 cd, and σ = 27 
cd, where ‘cd’ denotes cell diameters 26. See Supplementary Note 1 for details. 
 
 



	
  

 
Supplementary Table 1. Inferred segmentation periods from Doppler effect 
 

Somite Stage Relative Wavelength 
(λ/λ) Inferred Doppler contribution Inferred Period 

(min) 

4 1.15 ± 0.07 0.0103 ± 0.0007 23.9 ± 0.7 

8 1.28 ± 0.07 0.0114 ± 0.0007 23.2 ± 0.6 

12 1.33 ± 0.07 0.0118 ± 0.0007 23.0 ± 0.6 

16 1.22 ± 0.08 0.0109 ± 0.0007 23.5 ± 0.7 

20 1.32 ± 0.09 0.0118 ± 0.0009 23.0 ± 0.7 

Average 1.26 ± 0.03 0.0112 ± 0.0003 23.3 ± 0.3 

 
Relative wavelength, inferred Doppler contribution and inferred Period is mean ± s.e.m., where the errors are obtained by 
Gaussian error propagation using the error of the wavelength ratio and the error of the wildtype period. The segmentation 
period measured by timelapse microscopy in wildtype and Damascus was 24.7 ± 0.02 min and 23.1 ± 0.07, mean ± 
s.e.m. (Fig. 2D).  

 

 

Supplementary Table 2. Primers for recombineering 

Primer name Primer sequence (5’-3’) PCR conditions 

Tagging Fwd 
 
 
Tagging Rev 

ATTTAGATATCTGAATGCTAAACTAACGTTTTGTTTCCTCGTTTCAGGTGAG
CTCAGGAGGTAGCGG 

TGGAGTAAAACCTCCTGTAGAACAAGATGAGCTACAGCTCTGTTGTGGCGG
GCAGATCGTCAGTCAG 

98ºC – 5’ (initial), 
98ºC – 10’’ 
68ºC – 15’’ 
72ºC – 30’’ (30x), 
72ºC – 10’ (final) 

Subcloning Fwd 
 

Subcloning Rev 

ATGTAAAAATGGCTTGCCGTATTTTTTTGAAAAATACAATAATAAGTGTGT
GTGTTGCAACGAACAGG 

AGAACGACGCGCCGGAACAGGAAGTAAACGCAACATTGTAAACACCAGCG
CGCCAACCCAGCTTTCT 

98ºC – 5’ (initial), 
98ºC – 10’’ 
68ºC – 15’’ 
72ºC – 30’’ (30x), 
72ºC – 10’ (final) 

Colony PCR Fwd 

Colony PCR Rev 
AAGTCCAAAACCTTTCCTTT 

TCTGGTTTGAGCAGCATTAC 
98ºC – 5’ (initial), 
98ºC – 10’’ 
52ºC – 10’’ 
72ºC – 20’’ (40x), 
72ºC – 10’ (final) 

Sequencing 1 GCCTGGACACTGCCCTGTAT Tm = 62ºC 

Sequencing 2 GATTACGCGCAGACCAAAAC Tm = 60ºC 

Sequencing 3 = Subcloning Fwd Tm = 52ºC 

Sequencing 4 = Subcloning Rev Tm = 55ºC 

 

All primers were synthesized by biomers.net. For the primers longer than 50 bp, HPLC purification was chose. Underlined, homology arm. 

	
  



	
  

	
  

Supplementary Table 3. Primers for real-time PCR 

Primer name Primer sequence (5’-3’) Size (bp) PCR efficiency 

deltaD Q1 Fwd 

deltaD Q1 Rev 
ACCGACTCCACTGATGACCT 

CCTCGCCTACTGTTAGATGC 169 1.998 

deltaD Q2 Fwd 

deltaD Q2 Rev 
TAAGGAGTCAGGATGTGGGTAT 

GATGTGAATGGCTTGAGGTG 198 1.902 

deltaC Q2 Fwd 

deltaC Q2 Rev 
CACATAATACAGGGCGGAACA 

TTGGAAACCCACGCTAACC 190 2.017 

deltaC Q3 Fwd 

deltaC Q3 Rev 
TCTCCCTATCCTTTCTAAACAGC 

GTTCTCCTCACTACAGCCAGAC 54 1.920 

venus Q2 Fwd 

venus Q2 Rev 
GTCCAGGAGCGCACCATCTT 

TGCCGTTCTTCTGCTTGTCG 205 2.019 

venus Q4 Fwd 

venus Q4 Rev 
GAGGGCGATGCCACCTACGG 

AGCTCGATGCGGTTCACCAG 275 1.804 

venus Q6 Fwd 

venus Q6 Rev 
AAACGGCCACAAGTTCAGCG 

CCAGGGTGGTCACGAGGGTG 128 1.869 

 

PCR efficiency is the fold change of product concentration from one PCR cycle to next PCR cycle. All primers were synthesized by 
biomers.net. 

	
  

 



Supplementary Note 1:
Changes in the wavelength can alter the segmentation rate

Here we illustrate how a change in the wavelength can increase the segmentation rate by enhancing
the Doppler effect that occurs due to PSM shortening over time.3 The wave pattern is described
by a one-dimensional phase field �.x; t/, which indicates the local state of oscillation at time t and
position x as measured from the posterior tip along the body axis, see Fig. S4A.1 The position of
the anterior end is given by x D Nx.t/. As the PSM shortens over time, Nx continously decreases over
time. The phase at the anterior end is given by �A.t/ D �. Nx.t/; t/ and the segmentation rate R,
which is proportional to the anterior frequency, can be expressed as1, 3

R D
1

2�

d�A

dt
D P CW CD ; (1)

where the frequency P at the posterior tip x D 0, the dynamic wavelength contribution W and the
Doppler contribution D are given by

P D
1

2�

@�

@t

ˇ̌̌̌
xD0

; W D
1

2�

@�

@t

ˇ̌̌̌
xD Nx

� P ; D D
u

�
: (2)

Here, u D d Nx=dt is the shortening speed of the PSM and � is the wavelength of the pattern at the
anterior end, given by

� D
2�

@�=@x

ˇ̌̌̌
xD Nx

: (3)

We now assess how the segmentation rate R is affected if the wavelength of the wave pattern is
altered. If � describes a reference wave pattern (e.g., wildtype), then a correspondingly altered wave
pattern (e.g., Damascus) can be expressed as

Q�.x; t/ D �.x; t/C �.x; t/ ; (4)

where � describes the differences in the pattern that may depend on time. To illustrate the effects
of a changed wave pattern in a simple example, we here consider a time-independent change of the
wavelength, � D �.x/. In this case, since @ Q�=@t D @�=@t , both the posterior frequency contribution
P as well as the dynamic wavelength contribution W are unaffected by such a change in the wave
pattern. However, the corresponding wavelength at the anterior end is changed as

Q� D
2�

@ Q�=@x

ˇ̌̌̌
xD Nx.t/

D
2�

@�=@x C d�=dx

ˇ̌̌̌
xD Nx.t/

: (5)

Given that the shortening speed u of the PSM is the same, Eq. (2) implies that the Doppler contribu-
tion QD D u= Q� for the changed wave pattern can be expressed in terms of the Doppler contribution
D of the reference wave pattern as

QD D
�

Q�
D : (6)

Using Eqs. (3) and (5), the ratio of wavelengths can explicitly be given as

�

Q�
D 1C

.d�=dx/

.@�=@x/

ˇ̌̌̌
xD Nx

: (7)

Moreover, the segmentation rate QR resulting from the change in the pattern is given by

QR D P CW C QD D RC . QD �D/ : (8)



Supplementary Note 2:
Estimating the relative magnitude of the Doppler effect

In Ref. 3, quantified wave patterns from the transgenic live reporter zebrafish line ‘Looping’ have
been used to generate an average experimental phase map �.x; t/ from 18 embryos. We use this
phase map to determine the average contribution of the Doppler effect to the oscillation frequency
at the anterior end,

q D
1

T

Z T

0

D.t/

R.t/
dt : (9)

Here, D and R are the Doppler contribution and the anterior frequency (which coincides with the
segmentation rate) as defined in Eqs. (1) and (2), and T D 500min is the duration over which the
average phase map has been determined. Using the functional form for �.x; t/ and the parameters
provided in Ref. 3, we obtain q ' 0:22.

Supplementary Note 3:
Effects of coupling strength and coupling delays on the
wave pattern

In the previous sections, we have shown that an altered wave pattern can lead to a different segmen-
tation rate but we have not addressed how such an alteration of the wave pattern can arise in the first
place. Here we illustrate how changes in the strength and the delay of intercellular communication
can give rise to changes in the wave pattern. For simplicity, we consider a scenario in which the
PSM has a constant length throughout segmentation. Even though this is not the case in vivo, where
the PSM continuously changes its length during segmentation, this scenario enables illustration of
the effects of coupling on the overall shape of the wave pattern in a simple setting.

Continuum theory of coupled oscillators with coupling delays
To describe the dynamics of the phase field �.x; t/ introduced in the previous section, we use a
continuum theory of coupled phase oscillators that takes into account delays in intercellular commu-
nication.2 The phase dynamics is given by

@�

@t
D ! C " sin.�� � �/ �

"�2

2
sin.�� � �/

�
@��

@x

�2

C
"�2

2
cos.�� � �/

@2��

@x2
; (10)

where �� .x; t/ D �.x; t � �/ is the time-delayed phase variable with � being the coupling delay,
!.x; t/ is a position-dependent frequency profile, " is the coupling strength, and � is the ‘lattice
spacing’, which corresponds to the typical cell diameter. In our simplified model, body axis elonga-
tion proceeds with a constant velocity v. We transition into a comoving reference frame, in which
x D 0 marks the posterior tip of the PSM and the x-axis points in anterior direction, see Fig. S4A.
The position x D Nx marks the position of the anterior end of the PSM. In this reference frame, the
phase field is given by '.x; t/ D �.x � vt; t/. The dynamics for ' is given by�

@

@t
C v

@

@x

�
'.x; t/ D !.x/C " sin

�
'.x � v�; t � �/ � '.x; t/

�
C O.�2/ ; (11)



where we have neglected higher order corrections in the lattice spacing � . Following Refs. 2 and 4,
we employ a frequency profile of the form

!.x/ D

8<:!0

1 � e.x� Nx/=�

1 � e� Nx=�
0 � x � Nx

0 x > Nx

; (12)

where Nx is the length of the PSM and � is a length scale that determines the shape of the frequency
profile, see Fig. S4B. Such a frequency profile describes a gradual slowdown of oscillations across
the PSM in anterior direction, which leads to the generation of waves in anterior direction.1, 2, 4–6

Time-periodic wave patterns
For a constant PSM length, this system attains a state with a time-periodic wave pattern,2

'.x; t/ D �t C  .x/ ; (13)

whose recurrence period T D 2�=� coincides with the period of segmentation. The time-independent
phase profile  describes the spatial distribution of the waves along the PSM. The collective fre-
quency of the pattern is determined by the equation2

� D !0 � " sin�� : (14)

This implicit equation does not possess a closed solution in�. Depending on the value of � , Eq. (14)
can have multiple solutions corresponding to different collective states with different frequencies.
The phase profile  is determined by the equation

�C v
d 
dx

D !.x/C " sin
�
 .x � v�/ �  .x/ ���

�
(15)

with boundary condition  .x/j�v�<x<0 D 0.2 From Eq. (15), it can be seen that both the coupling
strength " as well as the coupling delay � determine the shape of the phase profile and thus the wave
pattern.

The wave pattern can be characterized by its local wavelength and the total number of waves in
the PSM. Here we focus on the wavelength at the anterior end x D Nx, which is experimentally
evaluated in this study, see Fig. 3B in the main text and Fig. S2. The total spatial extension ƒ of the
anteriormost wave in the direction of wave propagation is determined by the relation

 . Nx/ �  . Nx �ƒ/ D 2� : (16)

If the wavelength �, defined by Eq. (3), does not vary strongly over the length ƒ, both quantities
coincide as can be seen from expanding Eq. (16) to first order in ƒ.

The number K of waves that simultaneously travel across the PSM is given by

K D
 .0/ �  . Nx/

2�
: (17)

Stability of the pattern
Not all solutions for wave patterns are robust under small perturbations of the phase field. For certain
configurations of the phase field, small perturbations exponentially grow and drive the system into a



different dynamical state. Such unstable wave patterns can immediately be ruled out as biologically
irrelevant.

A full stability analysis for general solutions of the nonlinear delay equation (11) is a formidable
task. However, for a given set of parameters and a specific solution � for the collective frequency,
an indication of whether the corresponding pattern is stable or not can be obtained by considering
the case of a flat phase profile,  .x/ D 0, which is a solution for a flat frequency profile !.x/ D !0.
In this case, linear stability analysis of Eq. (15) reveals that the solution is stable if and only if 
 > 0,
where


 D " cos�� : (18)

This condition is derived in the paragraph below. The frequency profile (12) exhibits a roughly
flat region in the vicinity of the posterior tip x D 0 (the tailbud region) for which the thus derived
stability criterion approximately holds.

Linear stability analysis. We perform a standard linear stability analysis of the system defined
by Eq. (11) for the homogeneous state '.x; t/ D �t . For the phase field, we make the ansatz
'.x; t/ D �t C �.x; t/, where � is a small perturbation. Substituting this ansatz in Eq. (11) and
expanding to first order in � yields the governing equation for the perturbation,
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.x; t/C v

@�

@x
.x; t/ D 


�
�.x � v�; t � �/ � �.x; t/

�
C O.�2/ ; (19)

where 
 has been defined in Eq. (18). To proceed, we express the perturbation in terms of its spatial
Fourier transform,

�.x; t/ D

Z
dk
2�

e�ikx
O�.k; t/ : (20)

Using this relation in Eq. (19) and dropping all terms of order �2 and higher yields

@ O�

@t
.k; t/ � ikv O�.k; t/ D 


�
eikv�

O�.k; t � �/ � O�.k; t/
�
: (21)

Note that this equation now only contains derivatives and delayed arguments in t . To obtain the
characteristic equation, we make the exponential ansatz O�.k; t/ D e�k t , where the perturbation
response rate �k depends on the wavenumber k. This yields

�k � ikv D 
eikv� e��k�
� 
 : (22)

The homogeneous solution '.x; t/ D �t is stable if all solutions �k to Eq. (22) satisfy Re�k < 0

for all k. Defining N�k D �k � ikv, we can express Eq. (22) in the simpler form


 D e
N�k� . N�k C 
/ : (23)

Note that Re N�k D Re�k . For equations of the type Eq. (23) it has been shown that Re N�k < 0 if
and only if 
 > 0.7

Numerical results
Fig. S5A shows the stability of the time-perodic state as a function of the coupling delay � and the
coupling strength ", indicating unstable regions in red (
 < 0), stable regions in green (
 > 0), and
multistable regions in dark gray (multiple solutions of Eq. (14) in �). The chosen set of parameters



has been used earlier to describe segmentation in zebrafish.2 We consider as biologically relevant
only such parameter regions that enable a single stable solution (green regions in Fig. S5A), which
corresponds to a robust pattern forming system.8 Fig. S5B shows the collective frequency � of the
time-perodic state, determined by Eq. (14), in regions where there exists a unique solution. Both
the coupling strength and the coupling delay regulate the collective frequency. Fig. S5C shows the
number of waves K of the wave pattern in the PSM, Eq. (17). Fig. S5D shows the length ƒ of the
anteriormost wave of the pattern at the anterior end of the PSM, Eq. (16). The anterior wavelength
exhibits a non-monotonic depedence on both the coupling strength and the coupling delay. Fig. S5D
illustrates the wave patterns for selected points in parameter space. Differences in the wavelength
and the number of waves are clearly visible. The blue dot marks the wildtype parameters from Ref. 2
(see also Fig. S4C). The green square marks a wave pattern that follows the same trend as the wave
pattern observed in Damascus with a shorter anterior wavelength and a larger total number of waves
in the PSM (see also Fig. S4D).

Altogether, these results demonstrate that changes in coupling strength and coupling delays can alter
the tissue-level wave pattern observed in the PSM. In particular, it can lead to changes in the anterior
wavelength and the number of waves as observed in Damascus.
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