

Supplementary Figure 1 | XRD pattern of as-synthesized bare V-based hydroxide and bare Fe-based hydroxide. The bare V-based hydroxide shows very low crystallinity and the XRD of bare Fe-based hydroxide indicates it is β -FeOOH.

Supplementary Figure 2 | SEM, TEM and AFM of LDHs. (a) SEM images of assynthesized pure α -Ni(OH)₂ spheres, (b) Ni_{0.75}V_{0.25}-LDH and (c) Ni_{0.75}Fe_{0.25}-LDH; (d) TEM (e) AFM and (f) height profile of Ni_{0.75}Fe_{0.25}-LDH.

Supplementary Figure 3 | SEM and TEM of V- and Fe-based hydroxides. (a) SEM and (b)TEM images of as-synthesized bare V-based hydroxide; (c) SEM and (d)TEM images of bare Fe-based hydroxide (β -FeOOH).

Supplementary Figure 4 | **Catalytic properties of LDHs.** (a) LSV curves of NiFe-LDHs and (b) NiV-LDHs with different Ni contents; (c) Current density and (d) TOF at 350 mV overpotential of NiFe-LDHs and NiV-LDHs with different Ni contents; (e) Overpotential required for 10 mA cm⁻² current density of NiFe-LDHs and NiV-LDHs with different Ni contents. All the data were collected without ohmic-drop correction.

Supplementary Figure 5 | EDS. (upper) EDS of $Ni_{0.75}Fe_{0.25}$ -LDH; (bottom) EDS of $Ni_{0.75}V_{0.25}$ -LDH.

Supplementary Figure 6 | Reproducibility of water oxidation of LDH catalysts. (upper) Reproducibility of Ni_{0.75}Fe_{0.25}-LDH; (bottom) Reproducibility of Ni_{0.75}V_{0.25}-LDH. Every experiment was repeated 3 times.

Supplementary Figure 7 | LSV curves with ohmic-drop correction of Ni_{0.75}Fe_{0.25}-LDH and Ni_{0.75}V_{0.25}-LDH. The resistance used here is around 10 Ω .

Supplementary Figure 8 | O_2 evolution. The experimental and theoretical O_2 evolution amount by Ni_{0.75}V_{0.25}-LDH at a constant oxidative current of 1 mA. All the error bars represent the standard deviations of three replicate measurements.

Supplementary Figure 9 | LSV curves of bare Ni foam and Ni_{0.75}V_{0.25}-LDH on Ni foam. The catalyst loading amount is 0.25 mg cm^{-2} .

Supplementary Table 1 | Comparison of LDH catalysts for water oxidation. All the

LDH catalysts loaded on glassy carbon	Electrolyte	Current density (mA cm ⁻²) at η=350 mV	Mass activity (A g ⁻¹) at η =350 mV	References
NiV	1 M KOH	~ 27	~ 190	This work
NiV^{*}	1 M KOH	~ 57	~ 400	This work
NiFe*	1 M KOH	~ 11	~ 154	1
NiFe [*] (exfoliated)	1 M KOH	~ 17	~ 68	2
NiFe*	1 M KOH	~ 17	~ 85	3
NiFe*	0.1 M KOH	~ 10 (η=300 mV)	-	4
NiCo*	1 M KOH	~ 3.2	~ 44.8	1
NiCo double hydroxide nanocage*	1 M KOH	~ 10	~ 49	5
NiCo (exfoliated) ^a	1 M KOH	~ 5.8	-	6
ZnCo nanosheet	0.1 M KOH	~ 1.3	-	7
ZnCo nanoparticle	0.1 M KOH	~ 0	~ 0	7
ZnCo	0.1 M KOH	<1	<3.5	8
ZnCo ^b	0.1 M KOH	~ 0	~ 0	9
CoCo*	1 M KOH	~ 2.2	~ 30.8	1
CoCo * (exfoliated)	1 M KOH	~ 11	~ 154	1
CoMn*	1 M KOH	~ 43	~ 301	10
IrO ₂ *	1 M KOH	~ 16	~ 112	10
[*] Ohmic-drop correction, ^a loaded on carbon paper, ^b loaded on Ni foil				

LDHs were loaded on GC electrode unless noted otherwise.

Supplementary references

- 1. Song, F. & Hu, X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. *Nat. Commun.* **5**, 4477 (2014).
- 2. Ma, W. et al. A Superlattice of Alternately Stacked Ni–Fe Hydroxide Nanosheets and Graphene for Efficient Splitting of Water. *ACS Nano* **9**, 1977-1984 (2015).
- 3. Gong, M. et al. An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. J. Am. Chem. Soc. 135, 8452-8455 (2013).
- Louie, M.W. & Bell, A.T. An Investigation of Thin-Film Ni–Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen. J. Am. Chem. Soc. 135, 12329-12337 (2013).
- Nai, J. et al. Efficient Electrocatalytic Water Oxidation by Using Amorphous Ni-Co Double Hydroxides Nanocages. *Adv. Energy. Mater.* 5, doi: 0.1002/aenm.201401880 (2015).
- Liang, H. et al. Hydrothermal Continuous Flow Synthesis and Exfoliation of NiCo Layered Double Hydroxide Nanosheets for Enhanced Oxygen Evolution Catalysis. *Nano Lett.* 15, 1421-1427 (2015).
- Qiao, C. et al. One-step synthesis of zinc–cobalt layered double hydroxide (Zn–Co-LDH) nanosheets for high-efficiency oxygen evolution reaction. *J. Mater. Chem. A* 3, 6878-6883 (2015).
- Zou, X., Goswami, A. & Asefa, T. Efficient Noble Metal-Free (Electro)Catalysis of Water and Alcohol Oxidations by Zinc–Cobalt Layered Double Hydroxide. J. Am. Chem. Soc. 135, 17242-17245 (2013).
- Li, Y., Zhang, L., Xiang, X., Yan, D. & Li, F. Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation. *J. Mater. Chem. A* 2, 13250-13258 (2014).

 Song, F. & Hu, X. Ultrathin Cobalt–Manganese Layered Double Hydroxide Is an Efficient Oxygen Evolution Catalyst. J. Am. Chem. Soc. 136, 16481-16484 (2014).