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Supplementary Figure S1. XRD patterns of the fault-zone materials. a, Plate-boundary fault 
of the Japan Trench. b, Megasplay fault of the Nankai Trough. Sm, smectite; Ill, illite; Mus, 
muscovite; Chl, chlorite; Kao, kaolinite; Q, quartz; Pl, plagioclase; Cal, calcite; cps, counts per 
second. 
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Supplementary Figure S2. Frictional behaviours of the fault-zone materials. a, Plate-
boundary fault of the Japan Trench. b, Megasplay fault of the Nankai Trough. Experimental 
parameters were set to an equivalent slip velocity45 of 0.01 m s−1, normal stresses of 0.5–2.5 MPa, 
and slip displacements of 1–3 m. The steady state (ss) of the friction was confirmed at each 
normal stress to determine the friction coefficient. At the end of run HVR3869 sample leakage 
occurred, so an additional run (HVR3905) was performed. 



 4 

 
Supplementary Figure S3. Changes of shear stress normalized by the initial value with slip 
at all depths. a, Plate-boundary fault of the Japan Trench. b, Megasplay fault of the Nankai 
Trough under hydrostatic initial Pf condition. c, Megasplay fault of the Nankai Trough under 
overpressured initial Pf condition. 
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Supplementary Figure S4. Curve fitting for dynamic rupture modelling. An example from 
the Japan Trench plate-boundary fault at 1 km depth (dip, 15°). Strength excess = yield shear 
stress – initial shear stress, and stress drop = initial shear stress – dynamic frictional stress. Dc, 
Critical slip distance. 
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Supplementary Figure S5. Model parameters for dynamic rupture propagation. a, Normal 
stress. b, Initial shear stress. c, Yield shear stress. d, Dynamic frictional stress. e, Strength excess. 
f, Stress drop. g, Critical slip distance (Dc). Earthquake nucleation was started at 11 km depth by 
prescribing a local reduction of yield stress (c and e). Pink shading shows the region where 
thermal pressurization occurred in our modelling. The dashed curves show the parameters for the 
simulations using the overpressured initial Pf condition at the Nankai Trough. Depth does not 
correspond to the distance from the trench along dip. 
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Supplementary Figure S6. Time evolution of slip as a function of depth. a, Plate-boundary 
fault (dip 15˚) in the Japan Trench at hydrostatic initial Pf condition. b, Plate-boundary fault (dip 
15˚) in the Nankai Trough at hydrostatic initial Pf condition. c, Plate-boundary fault (dip 15˚) in 
the Nankai Trough at overpressured initial Pf condition. Depth does not correspond to the 
distance from the trench along dip. 
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Supplementary Figure S7. Time evolution of slip as a function of depth. a, Plate-boundary 
fault (dip 9˚) in the Japan Trench at hydrostatic initial Pf condition. b, Megasplay fault (dip 20˚) 
in the Nankai Trough at hydrostatic initial Pf condition. c, Megasplay fault (dip 20˚) in the 
Nankai Trough at overpressured initial Pf condition. d, Décollement (dip 7˚) at the Nankai 
Trough at hydrostatic initial Pf condition. e, Décollement (dip 7˚) at the Nankai Trough at 
hydrostatic initial Pf condition.
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Supplementary Figure S8. Frequency spectra of slip rate. a, Ideal plate interface with 15° dip 
in the Japan Trench. b, Plate-boundary fault in the Japan Trench. c, Ideal plate interface with 15° 
dip in the Nankai Trough. d, Megasplay fault at the Nankai Trough. e, Décollement at the Nankai 
Trough. The dashed curves show the results of simulations using the overpressured initial Pf 
condition. 
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Supplementary Figure S9. Spatio-temporal distribution of near-trench earthquake slip for 
different S ratios. a–c, Slip rate as a function of time at representative depths (2, 5 and 8 km) 
along ideal plate-boundary fault with 15° dip in the Japan Trench for various S ratios (a, 1.4, b, 
0.8 and c, 2.0). d–f, Accumulation of slip with time at each depth and S ratio. g–i, Slip rate as a 
function of time at representative depths (2, 5 and 8 km) along ideal plate-boundary fault with 
15° dip in the Nankai Trough for various S ratios (g, 1.4, h, 0.8 and i, 2.0). j–l, Accumulation of 
slip with time at each depth and S ratio. The dashed curves show the results of simulations using 
the overpressured initial Pf condition. 
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Supplementary Figure S10. Thermal pressurization modelling with a fast slip rate and a 
thin slip zone under hydrostatic initial Pf condition. a, b, Contributions of the diffusion, 
thermal, and dehydration terms of equation (1) to the pressurization of interstitial fluid (Pf) at the 
centre of the slip zone for a slip rate of 3 m s–1 at 5 km depth. The dashed lines show the results 
for a slip rate of 1 m s–1 (Fig. 2). c, d, Changes of shear stress averaged within the slip zone of the 
plate-boundary fault of the Japan Trench (left) and of the megasplay fault of the Nankai Trough 
(right). Dc, critical slip distance; τd, dynamic frictional stress. e, f, Contribution to the 
pressurization of interstitial fluid at the centre of a slip zone with a thickness of 5 mm at 5 km 
depth. The dashed lines show the results for a slip zone with a thickness of 10 mm (Fig. 2). g, h, 
Changes of shear stress averaged within the slip zone. Other parameters used in the TP modelling 
were set to the same values as those used in the modelling with a 1 m s–1 slip rate and a slip zone 
thickness of 10 mm, described in the main text. 
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Supplementary Table S1. Original data sheet for the mineral assemblage output by the 
RockJock program 
 

Selected minerals 

J-FAST 
Scaly clay 

(821.71–821.73 
m) 

[17R1, 21–23 
cm] 

J-FAST 
Scaly clay 

(822.04–822.06 
m) 

[17R1, 54–56 
cm] 

J-FAST 
Scaly clay 

(822.34–822.35 
m) 

[17R1, 84–85 
cm] 

J-FAST 
Scaly clay 

(822.50–822.51 
m) 

[17R1, 100–101 
cm] 

J-FAST 
Scaly 
clay 

[Average] 

NanTroSEIZE 
Dark gouge 

(271.13–271.14 
m) 

[28R2, 22–23 cm] 

NanTroSEIZE 
Scaly clay 
(271.40–

271.42 m) 
[28R2, 49–51 

cm] 

Quartz 11.3 13.7 9.0 8.7 10.7 24.8 20.7 

Kspar (ordered microcline) 0.0 0.6 0.0 0.0 0.1 0.0 0.0 

Kspar (intermediate microcline) 1.9 0.8 0.0 0.0 0.7 1.7 2.4 

Kspar (sanidine) 1.4 0.0 3.1 4.0 2.1 0.0 0.6 

Kspar (orthoclase) 4.3 6.7 6.1 5.1 5.5 3.2 3.8 

Kspar (anorthoclase) 0.0 0.2 0.1 0.4 0.2 0.2 0.0 

Plagioclase (albite, var. 
cleavelandite) 6.6 5.9 3.5 3.0 4.7 9.1 9.9 

Plagioclase (oligoclase; NC) 0.0 0.0 0.1 0.0 0.0 3.4 0.0 

Plagioclase (oligoclase; Norway) 0.6 0.0 2.0 0.1 0.7 0.2 3.3 

Plagioclase (andesine) 2.7 2.9 0.0 0.2 1.5 1.9 1.5 

Plagioclase (labradorite) 0.0 0.0 0.8 2.1 0.7 0.0 0.0 

Plagioclase (bytownite) 1.8 1.9 0.8 1.3 1.4 3.5 3.8 

Plagioclase (anorthite) 1.2 1.2 0.0 0.6 0.8 0.0 0.0 

Calcite 0.0 0.0 0.0 0.0 0.0 4.6 4.2 

Dolomite 0.0 0.0 0.0 0.0 0.0 0.0 0.3 

Ankerite 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Magnesite 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Siderite 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Halite 0.0 0.0 0.0 0.0 0.0 0.7 0.5 

Pyrite 0.3 0.1 0.1 0.2 0.2 0.6 0.8 

Gypsum 0.0 0.1 0.1 0.0 0.1 0.0 0.0 

Magnetite 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

Hematite 0.0 0.1 0.0 0.0 0.0 0.0 0.0 

Goethite 0.0 0.0 0.6 0.2 0.2 0.0 0.0 

Maghemite 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Total non-clay minerals 31.9 34.1 26.3 26.0 29.6 53.9 51.8 

Kaolinite (disordered) 0.0 1.3 3.6 4.0 2.3 4.4 3.1 

Kaolinite (ordered) 2.4 2.4 0.0 0.0 1.2 0.1 0.0 

Smectite (Na-Kinney 
montmorillonite) 8.1 2.4 11.7 10.1 8.1 0.0 10.4 

Smectite (Ca-Kinney 
montmorillonite) 26.7 26.6 17.2 19.6 22.5 10.8 0.0 

Smectite (Saponite) 9.4 7.2 2.9 6.1 6.4 0.6 2.1 

Illite (1Md) 0.0 0.0 0.8 0.0 0.2 2.7 8.7 

Illite (1M; R>3; 95%I) 0.0 0.9 5.7 6.2 3.2 12.8 1.1 

Illite (R>1, 70-80%I) 3.2 3.4 16.2 16.1 9.7 0.5 0.0 

Illite (1M; RM30) 1.5 4.8 1.5 0.1 2.0 0.2 2.4 

Chlorite (CCa-2) 1.2 1.1 0.0 0.4 0.7 3.9 2.0 

Chlorite (CMM) 0.0 0.0 1.0 1.4 0.6 0.8 0.1 

Chlorite (Fe-rich; Tusc) 0.0 0.0 0.0 0.6 0.2 0.9 6.7 

Chlorite (Mg; Luzenac) 0.4 0.0 0.3 0.0 0.2 0.8 2.0 

Muscovite (2M1) 15.2 15.7 12.9 9.5 13.3 7.6 9.6 

Total clay minerals 68.1 65.9 73.7 74.0 70.4 46.1 48.2 
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Supplementary Table S2. Parameters used in the thermal pressurization modelling 
 Japan Trench Nankai Trough 

Parameters  Unit Remark/ 
Reference  Unit Remark/ 

Reference 
Physical propeties       

Density of solid matrix 
  in slip zone 2.46 g cm-3  2.41 g cm-3  

Density of fluid 1.00 g cm-3  1.00 g cm-3  
Bulk density of host rock 2.60 g cm-3  2.60 g cm-3  
Compressibility of fluid 4.30 × 10-10 Pa-1 ref. 111 4.30 × 10-10 Pa-1 ref. 111 

Friction coefficient (µ) 0.17   0.37   
Environmental conditions       

Normalized pore- 
 pressure ratio hydrostatic  ref. 17 hydrostatic or 0.8  ref. 18 

Geothermal gradient 26.3 °C km-1 ref. 112 37.4 °C km-1 ref. 113 
Temperature at seafloor 3.4 °C  2.9 °C  

Thickness of slip zone (w) 0.01 m  0.01 m  
Slip velocity 1.0 m s-1  1.0 m s-1  

Hydraulic properties       
Initial porosity 93.037 ×Pe0

-0.37725  
Pe0, initial effective 

pressure (Pa) 3.1612 ×Pe0
-0.12476  

Pe0, initial effective pressure 
(Pa) 

Porosity-Pe equation porosity = b × Pe
c  

Pe , effective 
pressure (Pa) porosity = b × Pe

c  Pe , effective pressure (Pa) 

Constant b φ0/Pe0
c  φ0, initial porosity φ0/Pe0

c   
Constant c -0.1541   -0.27623   

Initial permeability 2.6239 × 10-22 × 
exp(14.926 × φ0) 

m2  
0.00047799 × Pe0

-

2.0562 m2  

Permeability-Pe equation 2.6239 × 10-22 × 
exp(14.926 × φ) m2 φ = b × Pe

c d × Pe
e m2  

Constant d -   k0/Pe0
e  k0, initial permeability 

Constant e -   -0.02473   
Viscosity of fluid 2.414 × 10-5 × 

10(247.8/(T + 133)) Pa s ref. 114 2.414 × 10-5 × 
10(247.8/(T + 133)) Pa s ref. 114 

Thermal properties       
Specific heat capacity of 

  solid matrix 1.00 J g-1 K-1  0.85 J g-1 K-1  

Specific heat capacity of 
  fluid 4.20 J g-1 K-1  4.20 J g-1 K-1  

Thermal diffusivity of 
  solid matrix 6.0 × 10-7 m2 s-1 ref. 115 6.0 × 10-7 m2 s-1 ref. 115 

Thermal diffusivity of 
  fluid 1.7 × 10-7 m2 s-1  1.7 × 10-7 m2 s-1  

Coefficient of thermal 
  expansion of solid matrix 2.20 × 10-5 K-1 ref. 116 for quartz 2.20 × 10-5 K-1 ref. 116 for quartz 

Coefficient of thermal 
  expansion of fluid 5.00 × 10-4 K-1 ref. 111 5.00 × 10-4 K-1 ref. 111 

Chemical kinetics       
Ap_1st 4.27 × 104 s-1  3.47 × 10-1 s-1  
Ea_1st 52.1 kJ mol-1  27.7 kJ mol-1  

Kinetic function of 1st- 
  step dehydration F3   D3   

Enthalpy of 1st-step 
  dehydration 30.2 J g-1  16.9 J g-1  

Weight loss of 1st-step 
  dehydration 3.10 weight %  1.66 weight %  

Volume loss of 1st-step 
  dehydration 0.987   0.993   

Ap_2st 6.46 × 104 s-1  4.47 × 102 s-1  
Ea_2st 114.0 kJ mol-1  80.7 kJ mol-1  

Kinetic function of 2nd- 
  step dehydration An (n=0.5)   F3   

Enthalpy of 2nd-step 
  dehydration 195.5 J g-1  152.2 J g-1  

Weight loss of 2nd-step 
  dehydration 4.30 weight %  5.80 weight %  

Volume loss of 2nd-step 
  dehydration 0.982   0.976   

*Normalised pore pressure ratio = (pore pressure - hydrostatic pressure) / (confining pressure - hydrostatic pressure) 

  Ap; pre-exponential term; Ea, activation energy; An, n-dimensional nucleation; F3, third-order reaction
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Supplementary Table S3. Parameters used with the slip-weakening friction law at each 
depth under hydrostatic initial Pf condition 
 

Location Depth (km) Initial shear stress 
(MPa) 

Yield shear stress 
(MPa) 

Dynamic frictional 
stress (MPa) 

Critical slip distance 
(m) 

Correlation 
coefficient 

Japan Trench 1 1.098 2.667 0.265 3.949 0.996 

 2 2.197 5.335 0.289 1.861 0.993 

 3 3.295 8.003 0.297 1.153 0.991 

 4 4.394 10.670 0.295 0.800 0.990 

 5 5.492 13.338 0.290 0.589 0.990 

 6 6.590 16.005 0.292 0.449 0.990 

 7 7.689 18.673 0.286 0.351 0.990 

 8 8.787 21.340 0.276 0.277 0.990 

 9 9.885 24.007 0.268 0.221 0.990 

 10 10.984 26.675 0.267 0.176 0.990 

Nankai Trough 1 2.416 5.806 0.623 0.963 0.933 

 2 4.833 11.612 0.524 0.545 0.936 

 3 7.249 17.417 0.494 0.380 0.944 

 4 9.666 23.223 0.471 0.296 0.952 

 5 12.082 29.029 0.455 0.247 0.956 

 6 14.499 34.835 0.433 0.214 0.963 

 7 16.915 40.640 0.417 0.190 0.949 

 8 19.332 46.446 0.402 0.172 0.953 

 9 21.748 52.252 0.381 0.159 0.956 

 10 24.164 58.057 0.361 0.148 0.960 
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Supplementary Table S4. Parameters used with the slip-weakening friction law at each 
depth under overpressured initial Pf condition  
 

Location Depth (km) Initial shear stress 
(MPa) 

Yield shear stress 
(MPa) 

Dynamic frictional 
stress (MPa) 

Critical slip distance 
(m) 

Correlation 
coefficient 

Nankai Trough 1 0.483 1.161 0.182 3.145 0.975 

 2 0.967 2.322 0.375 2.380 0.960 

 3 1.450 3.484 0.607 1.572 0.929 

 4 1.933 4.645 0.558 1.269 0.930 

 5 2.416 5.806 0.514 1.050 0.931 

 6 2.900 6.967 0.476 0.889 0.932 

 7 3.383 8.128 0.443 0.766 0.933 

 8 3.866 9.289 0.414 0.671 0.934 

 9 4.350 10.450 0.388 0.596 0.935 

 10 4.833 11.611 0.365 0.535 0.937 
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