Supporting Information

Dye Sensitized Core/ Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications

Xiang $Wu^{\dagger,\sharp\diamond}$, Yuanwei Zhang^{$\dagger\diamond$}, Kendra Takle^{$\\diamond}, Osman Bilsel^{\dagger}, Zhanjun Li^{\dagger},

Hyungseok Lee^{\dagger}, *Zijiao Zhang*^{\pm}, *Dongsheng Li*[#], *Wei Fan*^{\pm}, *Chunying Duan*^{\ddagger}, *Emory M*.

Chan^{*I*}, *Carlos Lois*[§], *Yang Xiang*[§], *Gang Han*^{*†}

[†] Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States.

[§] Neurobiology Department, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States.

[‡] State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116012, People's Republic of China.

^{II} The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

^{*±*} Department of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China.

[#] Materials Sciences, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States

[±] Chemical Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003, United States

Spectroscopic and Transmission Electron Microscopy

Figure S1. TEM images (left) and their corresponding size distributions (right) of (a) β -NaYF₄:20%Yb, 2%Er with the size 20.3 ± 1.6 nm, (b) β -NaYF₄:20%Yb, 2%Er@ β -NaYF₄ with the size 24.9 ±1.5 nm, (c) β -NaYF₄:20%Yb, 2%Er@ β -NaYF₄ with the size 30.2 ± 1.5 nm, (d) β -NaYF₄:20%Yb, 2%Er@ β -NaYF₄ with the size 35.5 ± 1.2 nm, (e) β -NaYF₄:20%Yb, 2%Er@ β -NaYF₄ with the size 40.4 ±1.1 nm, (f) β -NaYF₄:20%Yb, 2%Er@ β -NaYF₄ with the size 45.6 ±1.5 nm. Scale bar: 100 nm.

Figure S2. XRD patterns of (a) β -NaYF₄:20%Yb, 2%Er with the size 20.3 ± 1.6 nm, (b) β -NaYF₄:20%Yb, 2%Er@ β -NaYF₄ with the size 24.9 ±1.5 nm, (c) β -NaYF₄:20%Yb, 2%Er@ β -NaYF₄ with the size 30.2 ± 1.5 nm, (d) β -NaYF₄:20%Yb, 2%Er@ β -NaYF₄ with the size 35.5 ± 1.2 nm, (e) β -NaYF₄:20%Yb, 2%Er@ β -NaYF₄ with the size 40.4 ±1.1 nm, (f) β -NaYF₄:20%Yb, 2%Er@ β -NaYF₄ with the size 45.6 ±1.5 nm. The standard card of β -NaYF₄ (JCPDS: 16-0334) was given as a reference (bottom).

Figure S3. TEM images (left) and their corresponding size distributions (right) of (a) β -NaYF₄:20%Yb, 2%Er@ β -NaYF₄: 10%Yb with the size 35.9 ±1.4 nm, (b) β -NaYF₄:20%Yb, 2%Er@ β -NaYF₄: 30%Yb with the size 36.4 ±1.2 nm, (c) β -NaYF₄:20%Yb, 2%Er@ β -NaYF₄: 50%Yb UCNPs with the size 35.7 ±1.6 nm. Scale bar: 100 nm.

Figure S4. XRD patterns of (a) β -NaYF₄:20%Yb, 2%Er@ β -NaYF₄: 10%Yb with the size 35.9 ±1.4 nm, (b) β -NaYF₄:20%Yb, 2%Er@ β -NaYF₄: 30%Yb with the size 36.4 ±1.2 nm, (c) β -NaYF₄:20%Yb, 2%Er@ β -NaYF₄: 50%Yb UCNPs with the size 35.7 ±1.6 nm. The standard card of β -NaYF₄ (JCPDS: 16-0334) was given as a reference (bottom).

Figure S5. TEM images (left) and the corresponding size distribution (right) of β -NaYF₄:30%Yb, 2%Er with the size 20.9 ±1.4 nm. Scale bar: 100 nm.

Figure S6. XRD pattern of β -NaYF₄:30%Yb, 2%Er with the size 20.9 ±1.4 nm. The standard card of β -NaYF₄ (JCPDS: 16-0334) was given as a reference (bottom).

Figure S7. TEM images (left) and their corresponding size distributions (right) of (a) β -NaYF₄: 20%Yb with the size 21.0 ±1.1 nm, (b) β -NaYF₄: 20%Yb@ β -NaYF₄:10%Yb with the size 36.2 ±1.4 nm. Scale bar: 100 nm.

Figure S8. Emission intensity integrated in the range 500–700 nm of β -NaYF₄: 20%Yb, 2%Er NPs (0.1 μ mol/L) as a function of increasing of IR-806 concentrations (0, 2, 4, 6, 25, 50, 100 μ mol/L) (excited by 2 W/cm² 800 nm, c.w. lasers).

Figure S9. Emission spectrum of IR-806 sensitized β -NaYF₄:20%Yb, 2%Er@ NaYF₄:10%Yb and IR-806 sensitized β -NaYF₄:30%Yb, 2%Er (red line) UCNPs excited by 2 W/cm² 800 nm, c.w. lasers.

Figure S10. The emission spectrum of IR-806-sensitized β -NaYF₄: 20%Yb, 2%Er@ β -NaYF₄: 10%Yb (black line) and IR-806/ β -NaYF₄: 20%Yb@ β -NaYF₄: 10%Yb (No Er Emitter) (blue line). Both samples were measured under 2 W/cm² 800 nm c.w. laser excitation.

Figure S11. The emission spectrum of IR-806-sentized core/Yb³⁺-shell UCNPs with different Yb³⁺ doping ratios. All of the samples were under 2 W/cm² 800nm continuous wave laser excitation.

Figure S12. The emission spectra of IR-806-sentized core/Yb³⁺-shell UCNPs under 2 W/cm² 800 nm continuous wave laser excitation (red line) and the emission spectra of core/Yb³⁺-shell UCNPs only under 2 W/cm² 980 nm continuous wave laser excitation (black line).

Figure S13. Emission spectrum of IR-806 (Final conc: 6 μ mol/L in DCM) (left). The right depicts indicate that upon increasing concentration of β -NaYF₄: 20%Yb, 2%Er@ NaYF₄:10%Yb by adding NPs volume from 0 ml to 1 ml, (Final conc. 0, 0.02, 0.04, 0.06, 0.08, 0.1 μ mol/L) the fluorescence intensity of IR-806 gradually decreased, suggesting the energy transfer occurs from IR-806 dye to the UCNPs. All of the samples were excited at 750 nm.

Figure S14. FT-IR spectrum of as-synthesized ~35 nm β-NaYF₄:20%Yb,2%Er/β-NaYF₄, 10%Yb UCNP with OA ligand coating, and IR806 dye and IR dye sensitized β-NaYF₄:20%Yb,2%Er/β-NaYF₄, 10%Yb UCNP. The peaks at 1710 and 1635 cm⁻¹ of as-synthesized UCNPs are attributed to the resonance of the carboxyl groups while 2926 and 2852 cm⁻¹ are attributed to the resonance of unsaturated OA ligands. After the partial ligand replacing by IR-806, the OA unsaturated peaks at 2926 and 2852 cm⁻¹ remain, however, the peaks belong to carbonyl vibration are shifted to 1717 and 1548 cm⁻¹, which clearly show the binding of IR-806 to the UCNPs.

Figure S15. Overlaid Spectrum of the ReaChR light response curve (black curve) and an IR-806 dye sensitized β -NaYF₄:20%Yb,2%Er/ β -NaYF₄, 10%Yb core/Yb³⁺-shell UCNPs emission spectra under 800 nm continuous wave laser excitation. (blue curve)

Figure S16. The upconversion emission intensity at 542 nm of micelle encapsulated dye-sensitized β -NaYF₄:20%Yb,2%Er/ β -NaYF₄, 10%Yb core/Yb³⁺-shell UCNPs (0.1 μ M) under continuous 800 nm CW (2 W/cm²) irradiation .

Figure S17. The upconversion emission at 542 nm of dye-sensitized β -NaYF₄:20%Yb,2%Er/ β -NaYF₄, 10%Yb core/Yb³⁺-shell UCNPs PMMA film soaked in PBS over the course of three hours. (2 W/cm² 800 nm CW laser).

Figure S18. HR-TEMs of β -NaYF₄:20%Yb,2%Er (core, left) and β -NaYF₄:20%Yb,2%Er@ β -NaYF₄:10%Yb (core/Yb³⁺-shell, right).

Figure S19. DLS data of micelle encapsulated dye-sensitized core/Yb³⁺-shell UCNPs in water (black line) and PBS buffer (red line).

Figure S20. Overlaid image of a mouse with a subcutaneous injection of micelle encapsulated dye-sensitized core/Yb³⁺-shell β -NaYF₄:20%Yb,2%Er@ β -NaYF₄:10%Yb UCNPs (50 µL, concentration 10 mg/mL), excitation wavelength 800 nm CW laser (1.0 W/cm²), and corresponding *in vivo* emission spectrum is in the inset.