S1 Text. Supplementary material for the manuscript
“On the accuracy of genomic selection”

1. Proof of the main result

In what follows, the quantities X and Q are supposed to be known. In other
words, all the results will be conditional on X and Q. Recall that 0 is fixed,
and also that g n+1 a0d Ty q41 are considered random.

Using the causal model, we have
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Besides, since Tpgn+1 and @nogy+1 are centered, we have
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Let us now focus on the terms present at the denominator, that is to say

Var (Yo ppn+1) and Var (YnTRNH)- By definition,

Var (Vyppnt1) = 0 + 02 where 02 = 0'Var (qnopy+1) 0 - (2)

Besides, we have the relationship
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To begin with, let us compute the quantity E (Var (YnTRN_H | fL’nTRN-i-l))- We

have
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where ||| is the L? norm. As a result,
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On the other hand, the second term in formula (3) is
Var (]E (YnTRNH | wnTRN+1)) = Var (a:LLTRN_HX'V_lQO)
=0'Q'V ' X Var (T pn+1) X'VIQO

where Var (€n,qy+1) 18 the covariance matrix of size p x p. Then,
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To conclude, according to formulae (1), (2), (4), the accuracy prr satisfies
the following expression
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Note that the formula can be rewritten:
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2. A new proxy (QTLs in perfect LD with some markers)
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Let us assume that we have the relationship
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Let us consider the different terms present in the general formula (5). First, we
have
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Besides, since
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Then, the accuracy becomes,
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To conclude, since -§ = JW’ we obtain the final result
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3. Link with the previous work of Daetwyler et al. [2008]

Estimators computed from Ridge Regression are equal to OLS estimators if
A is set to zero (see for instance Fan and Lv [2008]). So, by setting A = 0, we
obtain the prediction
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Having replaced the terms X’V =1 by (Q'Q) Q' and Ty px+1 DY Gnrpn+1
in our general formula (5), the accuracy becomes
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To finish, we use that (proof given in next section)
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so the phenotypic accuracy and the genotypic accuracy are the following
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In Daetwyler et al. [2008], the authors consider the case 02 + 02 = 1. As a
result,
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Besides, they use the approximation o2 ~ 1. Using this approximation in (6)
and simplifying by h, we obtain

— p= where 1 = nrry/C .
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We can notice that this expression of p is the same as the one presented in
formula (1) of Daetwyler et al. [2008]. In the same way, the expression for p is
the same as the one given at the end of Appendix A of Visscher et al. (2010),
except that the focus was on the quantity p?.

Later, in their paper, Daetwyler et al. [2008] relaxed the assumption 02 ~ 1,
and studied another approximation: o2 ~ (1 — h?) + h?(1 — j?). Using this new
approximation in formula (6), we obtain
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which is the same quantity as presented in formula (1) of Appendix S1 of
Daetwyler et al. [2008].
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Recall that Daetwyler et al. [2008] suppose that the matrix (Q'Q)~*

diagonal and then,
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Let dy, ..., do denote the quantities such as
(Q,Q)jJ - dj (-7 =1, ’O) .

Let gnoxn+1,; denote the genotype of the TST individual at the jth QTL. We
have the relationship
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Since the QTLs are assumed to be in linkage equilibrium, we have

V] 7é j/> E(anRN+1aj anRNJrl,j’) =0.



Recall that computations are conditional on Q. As a consequence,

c-1
E(2Y 3 frmtly Gromctly 2 (QigQig) | _

d; dj

j=1 j'=j+1

& (|

Finally, the authors use the approximation, d; ~ noryE ((QnTRNJ)Q) suit-

Then,
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able when n,py is large. Besides, they assume that the TST and TRN samples
come from the same population. In this context, Q1 ;,..., @nran.js Inran+1,5
are i.i.d. variables, and we have the relationship
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As a result,
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It concludes the proof.
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