Coding Exon-Structure Aware Realigner (CESAR) utilizes genome alignments for accurate comparative gene annotation

Virag Sharma^{1,2}, Anas Elghafari^{1,2,3} and Michael Hiller^{1,2*}

¹Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany ²Max Planck Institute for the Physics of Complex Systems, Dresden, Germany ³Technical University, Dresden, Germany

*To whom correspondence should be addressed: hiller@mpi-cbg.de

Supplementary Material

The Supplementary Material contains

- Figures S1 S23
- Tables S1 S5

Supplementary Figure S1: Projecting the coordinates of aligned exons in a genome alignment does not identify the correct splice sites for both cases shown in Figure 1C main text.

(A) TransMap [1-3] annotation of the human *DDX4* gene in the cow genome. The acceptor splice site of cow *DDX4* is shifted by 9 bp upstream (cow RefSeq annotation). TransMap shows a non-consensus AC acceptor.

(B) TransMap annotation of the human *MLPH* gene in the mouse genome. The donor site is shifted by 9 bp downstream (mouse RefSeq and GENCODE annotation). TransMap shows a non-consensus AT donor.

- 1. Zhu J, Sanborn JZ, Diekhans M, Lowe CB, Pringle TH, Haussler D: **Comparative genomics search** for losses of long-established genes on the human lineage. *PLoS Comput Biol* 2007, **3**:e247.
- 2. Stanke M, Diekhans M, Baertsch R, Haussler D: Using native and syntenically mapped cDNA alignments to improve de novo gene finding. *Bioinformatics* 2008, **24:**637-644.
- Kuhn RM, Karolchik D, Zweig AS, Wang T, Smith KE, Rosenbloom KR, Rhead B, Raney BJ, Pohl A, Pheasant M, et al: The UCSC Genome Browser Database: update 2009. Nucleic Acids Res 2009, 37:D755-761.

Supplementary Figure S2: Distances of splice site shifts.

Histogram of the distance between the human splice site and the shifted splice site is shown. The data are 360 exons where a splice site shift happened in the mouse, rat, dog or cow genome according to their RefSeq annotation.

A true alignment

GACGTTAGGAAGGCAGAGGAGGAGCTGGGTGAGCTGGAGGCTAAGCT GACGTTAGGAAAGCAGAG---GAGCTGGGTGAGGTGGAGGCTAAGCT

reported alignment

GACGTTAGGAAGGCAGAGGAGGAGCTGGGTGAGCTGGAGGCTAAGCT GACGTTAGGAAAGCA---GAGGAGCTGGGTGAGGTGGAGGCTAAGCT

B true alignment

ACCTGGAGAATGCACTTTTGATCAAGATGAATGTGCGTTTACACAGG ACCTGGAGAATGCACTTTTGATCAAGAG---TGTGCATTTACACAGG

reported alignment

ACCTGGAGAATGCACTTTTGATCAAGATGAATGTGCGTTTACACAGG ACCTGGAGAATGCACTTTTGATCAA---GAGTGTGCATTTACACAGG

C true alignment

GGAAGTAGGAGCTGAACAGACAGACTTTCTGCGAGGGCCATTAGAG GGAAGTAGGAGCTGAA----CTT---CGAGCGCCATTAGAG

reported alignment

GGAAGTAGGAGCTGAACAGACAGACTTTCTGCGAGGGCCATTAGAG GGAAGTAGGAGCTGAA----CTTCGAGCGCCATTAGAG

Supplementary Figure S3: Alignment ambiguities and difficulties in locating the exact position of insertion/deletions.

(A) There are 3 equivalent ways of placing the deleted GAG.

(B) Two equivalent ways of placing the 3 bp deletion. Both GAT or GAA in the reference can align to GAG in the query. (A) and (B) are regarded as "nearly identical" in Figure 4 main text and Supplementary Figures S4-S8.

(C) A 9 bp and a nearby 3 bp deletion in the true alignment are reported as a single 12 bp deletion. This alignment is regarded as "splice sites correct" in Supplementary Figures S4-S8 if the splice sites are correctly identified.

Intact exons (no frameshift, identical splice sites)

Supplementary Figure S4: Detailed breakdown of differences between the reported and true alignment for intact exons. Intact exons are defined as exons with identical splice sites and without any frameshift. "Nearly identical" alignments are alignments that are either identical to the true alignment or differ from the true alignments only in the position of an indel that we allow to be shifted by at most 6 bases up- or downstream. "Splice sites correct" are alignments where both splice sites are correctly aligned and the correct number of frameshifts (0 here) is reported but indel positions are shifted by more than 6 bp or a different number of indels is reported.

Supplementary Figure S5: Detailed breakdown of differences between the reported and true alignment for exons from the "no-frameshift" dataset. This dataset mimics the numerous cases of two nearby compensating frameshifts that we observed in genome alignments. Given that a single frameshift inactivates an exon, an alternative alignment with no frameshifts but a few codon substitutions is more plausible. In this dataset, we introduced two compensating frameshifts result affect only 2 to 4 codons in an otherwise intact exon, we regard them as spurious and an aligner that is aware of the reading frame should not report any frameshift. The true alignment is therefore the alignment that does not have any frameshift.

Supplementary Figure S6: Detailed breakdown of differences between the reported and true alignment for exons that have two real compensating frameshifts.

This dataset tests if methods report frameshifts that most likely did occur in evolution. In this dataset, we introduced two compensating frameshifting indels that are separated by a large distance (30 to 45 bp). The true alignment has exactly two frameshifts.

Supplementary Figure S7: Detailed breakdown of differences between the reported and true alignment for exons that have exactly one frameshift.

This dataset represents exons that are really inactivated by a frameshift and the true alignment has exactly one frameshift. This dataset also tests if methods avoid frameshifts by any means, which would result in incorrectly inferring exon conservation for exons that are not conserved.

Supplementary Figure S8: Detailed breakdown of differences between the reported and true alignment for exons where splice site shifts occurred.

In this dataset, one splice site was shifted by a distance obtained by sampling from the distribution of real splice site shifts. The true alignment here has no frameshift and the shifted splice site is aligned to the original splice site.

A hg19: chr17:72,527,497-72,527,586

human-mouse alignment with two compensating frameshifting indels

	alee angini			•p•				•••••		•						
CAAGCCA	GAGCTCAC	GGCAGAA	CTTCC	AGAGT	GCAT	CTGG	GATO	CTGC	CATTTGCC	CACTGG	TTGC	AGATC-	AGGC	GGACG	AGGAGC	CGGGAAGG
CGAGTCAG	CTGAGATC-	ICCAGGO	CTTTG	GGTAT	CCCG	CTGA	GATT	FTGG	GATTTGC	IGCTGG	CTGT	TCATC	AGGA	GTGCA	GCAAAG	TGGGAAGG

alignment without frameshifting indels

0		0								
CAAGCCA	-GAGCTCAGG	CAGAACTTC	CAGAGTGC.	ATCTGGGA	TCTGCAT	TTGCCACTGGT	TGCAGATCAGGC	GGACGA	GGAGC	CGGGAAGG
CGAGTCAGC	TGAGATCTCC	AGGGCTTTG	GTATCCC	GCTGAGAT	TTGGATT	TGCTGCTGGCT	GTTCATCAAGGA	GTGCAG	CAAAG	TGGGAAGG

B hg19: chr11:76,751,532-76,751,619

human-mouse alignment with three compensating frameshifting deletions

alignment without frameshifting deletions but a 3 base pair deletion

Supplementary Figure S9: Examples of real compensating frameshifts.

Two (A) and three (B) frameshifts compensate each other and restore the original reading frame. Note that the sequence similarity is substantially lower without these frameshifts, strongly suggesting that these frameshifts did happen in evolution. The frameshifted part is shown in blue, the frameshifts are shown in red.

Supplementary Figure S10: Relative position of frameshifts in the mouse coding sequence after realigning with CESAR.

The histogram shows the relative position of 567 frameshifts that we detect in 149,331 realigned exons in mouse.

Supplementary Figure S11: Non-conserved exon in mouse NEDD4.

(A) Human genome browser: CESAR reports a frameshift in the highlighted exon in mouse.

(B) Mouse RefSeq, UCSC, Ensembl and MGC gene annotations and several mRNAs and ESTs show that this exon does not exist in mouse. Grey dashed lines indicate orthologous exons.

Supplementary Figure S12: Non-conserved exon in mouse SCML2.

(A) Human genome browser: CESAR reports a frameshift in the highlighted exon in mouse.

(B) Mouse RefSeq, UCSC and Ensembl gene annotations and mRNAs/ESTs show that this exon does not exist in mouse.

Grey dashed lines indicate orthologous exons.

Supplementary Figure S13: Non-conserved exon in mouse SH2D4A.

(A) Human genome browser: CESAR reports an 11 bp frameshift in the highlighted exon in mouse.

(B) Mouse RefSeq, UCSC and Ensembl gene annotations and mRNAs/ESTs show that this exon does not exist in mouse.

Grey dashed lines indicate orthologous exons.

Supplementary Figure S14: Non-conserved exon in mouse CCDC15.

(A) Human genome browser: CESAR reports both frameshifts and a splice site mutation in the highlighted exon in mouse.

(B) Mouse RefSeq, UCSC and Ensembl gene annotations and mRNAs show that this exon does not exist in mouse.

Grey dashed lines indicate orthologous exons.

4	Scale Trubases chr7: 70,228,165 70,228,170 70,228,175 70 > T C A G C Basic Gene Anr AUTS2 O P A P O Basic Gene Anr	1,228,1801 70,228,1851 70,228,1901 70,228,1951 C T C A G G T G C A G A G G C C A C C C A notation Set from GENCODE Version 19	A
chr5 -	AUTS2 L O P A P O AUTS2 L O P A P O UCSC Genes (RefSec AUTS2 L O P A P O AUTS2 L O P A P O Gaps 2 Multiz Multiz Multiz Multiz O P A P Q Human L O P A P Q Multiz 120350 Q P A P Q C P	P Q R P P q, GehBank, tRNAs & Comparative Genomics) P Q R P P Alignments of 100 Vertebrates 3 P Q V Q R P P Alignments of 100 Vertebrates 3	
B	T G C A G C T G C T G C C C G C T G C T C A Basic Gene Annotation Set from ENCOL	110 bases 110 bases Scale 1476,700 1131,476,695 I131,476,690 A G T G C A C	
	Ensembl Gene Predictio	ns - archive 75 - Teb2014 ENSMU ENSMU ENSMU ENSMU ENSMU ENSMU ENSMU ENSMU	JST0000161 JST0000162 JST0000182 JST0000160 JST0000161 JST0000187 JST00000182 JST00000159
	BefSeg	Genes	
	Q P A P L	R C S G H P Auts2 Irom GenBank Irom Ge	478 158 021 072 536
С	Q P A P L Mouse mRNAs T G C A G C T G C C G C T G C T G C T G C T G C T G C T G C T G C T C C T C T C T G C T C C T T C <	R C S G H P Auts2 from GenBank A G T G C A G C C C C C A C C C A C C C A C	478 158 021 072 536
С	G A P L Mouse mRNAs T G C A P L Mouse mRNAs T G C A C C C C Mouse mRNAs T G C A G C C T G C A G C T C T G C A G C C T C T G C A G C C T C T G C A G C C T C C T C	R C S G H P Auts2 A G T G C A G C A G C C C A G C C C A G C<	478 158 021 072 536

Supplementary Figure S15: Assembly error in AUTS2.

(A) The human genome browser shows a 1 bp frameshifting deletion in *AUTS2* in mouse, visible in the multiple genome alignment and the pairwise alignment chain. (B) This 1 bp deletion is an assembly error in mouse. In the mouse genome browser, the GENCODE and Ensembl gene annotation show a 2 bp codon, which misses the single base. All four mRNAs that align to this locus have the base that is missing in the reference genome (orange tick mark). The RefSeq gene annotation is not aware of this assembly error and translates *AUTS2* in a different reading frame that leads to a premature stop codon at the end of this exon. (C) All seven aligning Sanger sequencing reads from the NCBI trace archive have the missing base. The screenshot shows two aligning reads.

Supplementary Figure S16: Assembly error in *IF130*.

(A) The human genome browser shows a 1 bp insertion (orange tick mark) in an exon of *IFI30* in mouse.

(B) Mouse genome browser: This insertion is an assembly error as the annotated reading frame simply ignores this insertion and all aligning mRNAs and ESTs do not have this extra base.

(C) All 11 Sanger reads from the NCBI trace archive that align to this region do not have the extra base. The screenshot shows two aligning reads.

Supplementary Figure S17: Splice site shift in mouse NOXA1.

(A) The genome alignment of this orthologous mouse exon has a frameshifting 1 bp deletion. Our re-alignment reports a slightly different alignment without the frameshift but with a TA acceptor site.

(B) The mouse genome browser show that the splice site has shifted by 30 bp upstream and is relatively weak (AAG) with a short polypyrimidine tract. The long distance and weak splice site explain why CESAR was not able to align this splice site.

Supplementary Figure S18: Splice site shift in mouse SPATC1.

(A) The human genome browser shows that this 540 bp exon of *SPATC1* has a splice site mutation in mouse. The mouse exon corresponds to the downstream part highlighted in light blue.

(B) Mouse genome browser shows that mouse has a considerably shorter 111 bp exon. That means the acceptor site that has shifted by 429 bp. The long distance explains why CESAR was not able to align this splice site.

Supplementary Figure S19: Start codon shift in mouse NRIP2.

(A) The human genome browser (hg19) shows that GENCODE/RefSeq annotation of the first coding exon of *NRIP2*.

(B) The GENCODE/RefSeq annotations in the mouse show that a downstream ATG codon is used as the start codon in mouse (mm10). Compared to human, the N-terminus of Nrip2 in mouse is 51 amino acids shorter.

A	hg19 20 bases 137,475,830 137,475,820 137,475,810 137,475,780 137,475,790 137,475,780 137,475,770 А А А А G A A A A G G C T C A G T C T G G A A G G G G A G A C C T G T T T C T A A C	Scale :chr5 C>										
	RefSeq Genes											
	K R K G S S S L E G E P A N P V D D G K P V F 🎦	BRD8										
	Basic Gene Annotation Set from GENCODE Version 19											
	K R K G S S S L E G E P A N P V D D G K P V F 📥	BRD8										
	Multiz Alignments of 100 Vertebrates realigned with CESAR (UCSC canonical gene set)	Gaps										
	AAAAGAAAAGGCTCAAGTAGTCTGGAAGGAGAACCAGCTAACCCAGTGGATGATGGAAAACCTGTTTTCTAAC	C human										
	AAAAGGAAGGACTTGAGTAGTCTGGAA <mark>TGA</mark> GTGCCAGCTAATGTGGTGGATGAAAAGGGGGACTTTGTTAGC	C mouse										
	longer reading frame in human											
В	mm10 50 bases	Scale										
_	34,580,260 34,580,250 34,580,240 34,580,230 34,580,220 34,580,210 34,580,200 34,580,190 34,580,180 34,580,170	:chr18										
		4933408B17Rik										
	Basic Gene Annotation Set from ENCODE/GENCODE Version M7 (Ensembl 82)											
		4933408B17Rik										

Supplementary Figure S20: Stop codon shift in mouse *BRD8*.

(A) The human genome browser shows the last coding exon of *BRD8*. The alignment shows a stop codon mutation in mouse (GGA \rightarrow TGA).

(B) The mouse genome browser shows the position of the annotated stop codon. Compared to human, the mouse Brd8 C-terminus is 14 amino acids shorter.

А	hg19													
110,906,450) 110,906,440	110,906,430	110,906,420	110,906,410	110,906,400	110,906,390 :chr1								
ATCTCCTCTCTT	CAGTTTCCTTTT	TTTTTGTACCA	TTGGCCGAA	AGATGGAAAA	ACAGTCTGAC	CTGAAAGAA>								
		Ref	Seq Genes											
Y L L S	S V S F			<u>H W K</u>	NSLI	SLC16A4								
				DGK		SLC16A4								
Y L L S	S V S F			R W K	N S L I	SLOTOA4								
Y L L S	S V S F			R W K	N S L I	SLOTOA4								
f L L S		F F V F	L A E	Norsion 10		02010/11								
V I I S I				R W K	NSIT	SLC16A4								
Y I I S I	S V S F	FFVP		B W K	N S I T	* SLC16A4								
Y I I S I	S V S F			B W K	N S I T	SLC16A4								
	QFPF	FLYF	I W P K	DGK	T V *	SLC16A4								
Y L L S	S V S F	F F V P	L A E	R W K	N S L T	* SLC16A4								
	Multiz Alignments	of 100 Vertebrates rea	aligned with CESAR	(UCSC canonical g	ene set)									
	, i i i i i i i i i i i i i i i i i i i			4		Gaps								
ATCTCCTCTCT	CAGTTTCCTTTT	TTTTTGTACCA	TTGGCCGAA	AGATGGAAAA	ACAGTCTGAC	CTGAAAGAA human								
ATATCCTCTCTT	CAGTTTCCCTTT	TTTTTGTACCA	ACTGGCTGAA	AGATGGAAAA	ACAGTCTGAC	CTTCTGAGG mouse								
				fr	ameshifting 4	bp insertion								
D				1	-	-								
D	50 bag			, "	mm10									
obr2: 107.011	E10107 011 E00107 011	500/107 011 540/107	011 550 107 011 56	0107 011 E70107	211 500 107 211 500	107 211 600 107 211 610								
	,510 107,511,520 107,511,	,550[107,511,540[107	BefSed Gene	000007,311,370007,3	511,560[107,511,590	107,311,000[107,311,010]								
Sic16a4 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	››››››››››››››››››››››››››››››››››››››	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>		, <u>,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	›››››									
	Basi	c Gene Annotation Se	t from ENCODE/GE	NCODE Version M	7 (Ensembl 82)									
SIc16a4 I L S					T I I I I I									
	SVSLFFV	PLAERV	wĸĸĸœŝ	5 D L L H I	I I K *									
	SVSLFFV	PLAERV	N K H K Q S I	5 D L L R I	J									

translated in a different reading frame

Supplementary Figure S21: Real frameshift in the last coding exon of SLC16A4.

(A) The human genome browser shows the last coding exon of *SLC16A4*. The alignment shows a frameshift in mouse (a 4 bp insertion – highlighted in gray).

(B) The mouse genome browser shows that the C-terminus of Slc16a4 is translated in a different frame. The dashed line shows the position of the frameshift.

А	Scale	9						20 b	ases⊢							hg	19						
	chr12	:	6,500,02	20 6,5	00,025	6,500,	030 6	,500,03	35 6,50	0,040	6,500,	045 6	,500,05	6,50	00,055	6,500	,060 6	6,500,0	65 6,5	00,070	6,500,	075	
	>	saaa	JAAG	GCI	IGG	CAC	CTA	GCG	GAG	ACA	GAG	CAC RefSeo	i Genes	GGI S	GCC	ACA		ICI	AAC	AGG	GGC	CCA	AGG
	LTBF	R G	K	А	W	Н	L	А	E	Т	E	Н	С	G	A	Т	Р	S	N	R	G	Р	R
	LTBF	R G	K	А	W	Н	L	Α	E	Т	Е	Н	С	G	А	T	Р	S	N	R	G	Р	R
			Basic Gene Annotation Set from GENCODE Version 19																				
	LTBF	R G	K	Α	W	Н	L	Α	E	Т	E	H	C	G	Α		P	S	N	R	G	P	R
	LTBF	R G	K	A	W	н	L	A	E	Т	E	H	С	G	A	T	Р	S	N	R	G	Р	R
	LTBF	R G	K	A	W	Н	L	A	E	Т	E	Н	С	G	A	Т	Р	S	N	R	G	Р	R
	Multiz Alignments of 100 Vertebrates realigned with CESAR (UCSC canonical gene set)																						
	Gap	8		ССТ	тос	C A C	<u>ст</u>	~ ~ ~ ~	C A C		C A C		тот	сст	~ ~ ~ ~		000	тот				~ ~ ^	100
	numai				TCC	CAU	CTC		GAG	ACA		CAC	TAC			ACA				AGG		CCA	AGG
	mouse	GGG	JAAA	GUI	166	CAI	CIG	acc	GAG	ACA	GAG	CAC	TAG	GAT	acc	AAG			GAC	A	aaa	CCA	Add
												\ fra	mes	shifti	ng I	bр	inse	rtior	ו				
												1											
В							mr	n10 ⊢				1		_ 20 ba	ises							Sc	ale
			125 3	07 290	11	25 307	280	1 125	307 2	70	125 3	07 260	11	125 30	7 250	12	5 307	240	125	307 20	30 L	:ch	r6
			1125,0	01,250	1 1	25,007	200	1120	,007,21	Bef	Sea Ge	nes \		120,001	1,250	1 12	.5,007,	240	1125	,007,20			
	Р	Y C) E	D	Gł	< A	W	H	L,	A E	T	E	Т	L	G C	Q	D	L	*			💼 Ltb	r
					Ba	sic Ger	e Anno	otation	Set fro	m ENC	ODE/C	GENCC	DE Ve	rsion N	/7 (Ens	sembl	82)						
	Р	Y C) E	D	G ł	< A	W	Н	L,	A E	Т	E	Т	L C	G C	Q	D	L	*			💼 Ltb	r
																			<u> </u>				
																$\gamma^{}$			_				

translated in a different reading frame

Supplementary Figure S22: Real frameshift in the last coding exon of *LTBR*.

(A) The human genome browser shows the last coding exon of *LTBR*. The alignment shows a frameshift in mouse (1 bp insertion – highlighted in gray).

(B) The mouse genome browser shows that the C-terminus of Ltbr is translated in a different frame. The dashed line shows the position of the frameshift.

Supplementary Figure S23: CESAR alignments of exons flanked by a U12 intron. The *MYO7B* gene (hg19: chr2:128,388,703-128,389,413) contains a U12 intron with an AT donor and an AC acceptor splice site. Using U12 specific splice site profiles, CESAR correctly identifies the conserved AT-AC splice sites.

Supplementary Table S1: The probability of deleting codon(s). These probabilities were derived from a human-rhesus alignment.

Number of codons deleted	Probability
1	0.00916
2	0.00396
3	0.00253
4	0.00191
5	0.00150
6	0.00135
7	0.00122
8	0.00116
9	0.00113
10	0.00108
Sum	0.025

Supplementary Table S2: The insertion probabilities associated with different sense codons.

Codon	Codon insertion
	probability
ACC	0.017981249
ATG	0.018984288
AAG	0.022613024
AAA	0.020731263
ATC	0.019797907
AAC	0.018084301
ATA	0.010602242
AGG	0.015901891
CCT	0.019572174
CTC	0.01682396
AGC	0.019045792
ACA	0.019485644
AGA	0.018170669
CAT	0.013882891
AAT	0.016456899
ATT	0.017789867
CTG	0.034270648
CTA	0.0084321
ACT	0.016427456
CAC	0.016768181
ACG	0.007151639
CAA	0.012221466
AGT	0.014247335
CCA	0.020065188
CCG	0.007220994
CCC	0.017115286
TAT	0.014817392
GGT	0.012572496
TGT	0.015166296
CGA	0.010368331
CAG	0.026072787
CGC	0.014941054
GAT	0.017237967
CGG	0.013522864
CTT	0.0149404
TGC	0.016183075
GGG	0.014124981
GGA	0.019038267
GGC	0.018230046
TAC	0.017342818
GAG	0.02179875
TCG	0.005771725
TTA	0.009876462
TTT	0.017288348
GAC	0.016802695
CGT	0.009603293
GAA	0.018091498
TCA	0.016484707
GCA	0.018616245
GTA	0.009152154
GCC	0.021175368
GTC	0.014428412
GCG	0.006742048
GTG	0.026216405
TTC	0.017482347
GTT	0 014378031
GCT	0 020157935
TTG	0.014331903
TCC	0.018710301
TGG	0.016215136
TCT	0.010210130
Sum	1 00000
Juii	1.000000

Supplementary Table S3: The different parameters that were used to run the spliced aligners that were examined in this study.

Program	Parameters
Exonerate	–model coding2genome –n 1
Exonerate (protein sequence as input)	–model protein2genome –n 1
Spaln	-01 -pw -yX -S1
Spaln (protein sequence as input)	-01 -pw -yX
Pairagon	-vulgar -cross -a GMap
GeneWise	-genes -pretty -quiet

I	Mutations										
		Ge	nome Alignm	ent	realigned with CESAR						
		Exon-	-		Exon-	-					
		inactivating		Splice site	inactivating		Splice site				
_	Species	mutations	Frameshifts	mutations	mutations	Frameshifts	mutations				
_	Mouse	11937	9046	2891	794	614	180				
	Rat	12248	9197	3051	1084	793	291				
	Cow	14377	11859	2518	1418	1185	233				
	Dog	14574	11834	2740	1307	1042	265				

Mutated Exons

			G	enome al	ignment			realigned with CESAR								
	Exons with inactivating Exons with only Exons with only					/ splice site	Exons with both frameshifting and	Exons with inactivating	Exons with only	Exons with only splice	Exons with both frameshifting and					
Species	s mutations frameshifts		ifts	mutatio	ns	splice site mutations	mutations	frameshifts	site mutations	splice site mutations						
Mouse	5772	3,87%	2980	2,00%	1796	1,20%	996 0,67%	580 0,39%	408 0,27%	135 0,09%	37 0,02%					
Rat	6099	4,15%	3154	2,15%	1870	1,27%	1075 0,73%	807 0,55%	557 0,38%	207 0,14%	43 0,03%					
Cow	6226	4,24%	3763	2,56%	1602	1,09%	861 0,59%	1002 0,68%	816 0,56%	160 0,11%	26 0,02%					
Dog	6296	4,27%	3634	2,46%	1732	1,17%	930 0,63%	959 0,65%	738 0,50%	183 0,12%	38 0,03%					

Mutated G	Senes																	
	Genome alignment										realigned with CESAR							
							Genes wit	h both	Genes	with					Genes wi	th both		
	Genes with	inactivating	only splice	frameshifti	ng and	inactivating		Genes with only		Genes with only		frameshifting and						
Species	muta	ations	frameshifts		site mutations		splice site mutations		mutations		frames	hifts	splice site mutations		splice site mutations			
Mouse	4425	32,8%	2149	15,9%	1084	8,0%	1192	8,8%	470	3,5%	348	2,6%	82	0,6%	40	0,3%		
Rat	4597	34,1%	2216	16,4%	1074	8,0%	1307	9,7%	665	4,9%	485	3,6%	120	0,9%	60	0,4%		
Cow	4666	34,6%	2603	19,3%	913	6,8%	1150	8,5%	858	6,4%	716	5,3%	97	0,7%	45	0,3%		
Dog	4766	35,3%	2548	18,9%	1010	7,5%	1208	8,9%	842	6,2%	660	4,9%	122	0,9%	60	0,4%		

Supplementary Table S4: A break down of the number of mutations observed in genome alignments and after realigning with CESAR.

				intact exons		genes with at least one intact exon		genes where all exons are intact	
			distance to human		percent of				
			(substitutions per		188788		percent of		percent of
	Assembly	Species	neutral site)	number	exons	number	19865 genes	number	19865 genes
	panTro4	Chimp	0,013	179898	95,29	19102	96,16	15158	76,31
	gorGor3	Gorilla Orangutan	0,017	174520	92,45	10247	93,54	13748	69,21 E0.64
	pomAbez	Gibbon	0,030	171302	90,77	10247	91,80	12010	59,64
	rbeMac3	Rhosus	0,042	174304	92,33	18440	92,65	12019	66 13
м	macFas5	Crah-eating macaque	0,070	182427	96.63	18500	93,10	16231	81 71
A	papHam1	Baboon	0.070	174640	92.51	17913	90.17	13145	66.17
M	chlSab1	Green monkey	0.070	183027	96.95	18733	94.30	16471	82.92
М	calJac3	Marmoset	0,122	173871	92,10	18058	90,90	12119	61,01
А	saiBol1	Squirrel monkey	0,121	176982	93,75	18203	91,63	13169	66,29
L	otoGar3	Bushbaby	0,272	177235	93,88	18041	90,82	13665	68,79
S	tupChi1	Chinese tree shrew	0,324	172467	91,36	17517	88,18	10888	54,81
	speTri2	Squirrel	0,331	174631	92,50	17757	89,39	13000	65,44
	jacJac1	Lesser Egyptian jerboa	0,432	170146	90,13	17089	86,03	11720	59,00
	micOch1	Prairie vole	0,501	172989	91,63	17151	86,34	13454	67,73
	criGri1	Chinese hamster	0,482	168945	89,49	16897	85,06	9858	49,63
	mesAur1	Golden hamster	0,495	163008	86,34	16860	84,87	10861	54,67
	mm10	Mouse	0,514	176103	93,28	17499	88,09	14428	72,63
	rn5	Rat	0,520	172744	91,50	17187	86,52	12986	65,37
	hetGla2	Naked mole-rat	0,377	174191	92,27	17475	87,97	13694	68,94
	cavPor3	Guinea pig	0,433	171040	90,60	17214	86,66	11352	57,15
	chiLan1	Chinchilla Bruch tailed rat	0,412	174014	92,17	17507	88,13	12628	63,57
	occDeg1	Brush-talleu rat	0,451	1/252/	91,39	1/209	87,03	10740	03,45 54 11
	ochPri3	Pika	0,309	169085	89.56	17104	85,07	12167	61 25
	susScr3	Pig	0.367	159686	84.59	16818	84.66	10772	54.23
	vicPac2	Alpaca	0.362	173513	91,91	17680	89.00	11466	57.72
	camFer1	Bactrian camel	0,361	170853	90,50	17605	88,62	10245	51,57
	turTru2	Dolphin	0,333	162710	86,19	16582	83,47	8805	44,32
	orcOrc1	Killer whale	0,332	175913	93,18	17572	88,46	14041	70,68
	panHod1	Tibetan antelope	0,399	171872	91,04	17535	88,27	10765	54,19
	bosTau7	Cow	0,434	175414	92,92	17806	89,64	13121	66,05
	oviAri3	Sheep	0,403	168934	89,48	17472	87,95	9996	50,32
	capHir1	Domestic goat	0,402	167720	88,84	17482	88,00	9468	47,66
	equCab2	Horse	0,322	171452	90,82	17646	88,83	10322	51,96
	cerSim1	White rhinoceros	0,303	178141	94,36	17943	90,33	14231	71,64
	felCat5	Cat	0,348	173555	91,93	17793	89,57	11159	56,17
	canFam3	Dog	0,369	176094	93,28	17910	90,16	12866	64,77
	musFur1	Ferret	0,392	1/5//5	93,11	1/814	89,68	13046	65,67
	allivier1	Panda	0,305	172388	91,31	17308	87,13	11/23	59,01
	lonWod1	Pacific Wairus	0,358	178257	94,42	17122	89,64	14082	73,91
	nteAle1	Black flying-fox	0,353	17/6/2	90,38	17135	88 50	12039	62 58
	nteVam1	Megahat	0,350	153684	81 41	16789	84 52	6234	31 38
	mvoDav1	David's myotis (bat)	0.392	164806	87.30	16872	84.93	8790	44.25
	myoLuc2	Microbat	0.381	158460	83.94	16358	82.35	9641	48.53
	eptFus1	Big brown bat	0,381	172205	91,22	17308	87,13	12523	63,04
	eriEur2	Hedgehog	0,467	161747	85,68	16015	80,62	11810	59,45
	sorAra2	Shrew	0,528	157817	83,60	15966	80,37	10026	50,47
	conCri1	Star-nosed mole	0,402	161113	85,34	16428	82,70	11876	59,78
	loxAfr3	Elephant	0,362	171382	90,78	17562	88,41	11064	55,70
	eleEdw1	Cape elephant shrew	0,497	167221	88,58	16453	82,82	12564	63,25
	triMan1	Manatee	0,345	175256	92,83	17689	89,05	13277	66,84
	chrAsi1	Cape golden mole	0,421	173975	92,15	17327	87,22	13672	68,83
	echTel2	Tenrec	0,507	165703	87,77	16912	85,14	10228	51,49
	oryAfe1	Aardvark	0,366	173459	91,88	17453	87,86	12946	65,17
	dasNov3	Armadillo	0,353	166767	88,34	17187	86,52	10644	53,58
	monDom5	Opossum	0,778	167167	88,55	17571	88,45	10347	52,09
	sarHar1	Tasmanian devil	0,797	160701	85,12	17227	86,72	7751	39,02
	macEug2	wallaby	0,778	120532	63,85	15526	78,16	2669	13,44
	ornAna1	Platypus	0,968	129515	68,60	15033	75,68	4346	21,88

Supplementary Table S5 (part 1): Percent of human exons and genes that we annotate in 99 non-human vertebrates. Continued on the next page.

							genes with	at least one	genes wher	e all exons are
					intact exons		intact exon		intact	
				distance to human		percent of				
				(substitutions per		188788		percent of		percent of
		Assembly	Species	neutral site)	number	exons	number	19865 genes	number	19865 genes
		falChe1	Saker falcon	1,197	118446	62,74	13695	68,94	2971	14,96
	S	falPer1	Peregrine falcon	1,197	119653	63,38	13862	69,78	3128	15,75
	А	ficAlb2	Collared flycatcher	1,336	116148	61,52	13438	67,65	3310	16,66
	U	zonAlb1	White-throated sparrow	1,375	111363	58,99	12924	65,06	3286	16,54
	R	geoFor1	Medium ground finch	1,350	113874	60,32	13291	66,91	2650	13,34
	0	taeGut2	Zebra finch	1,349	138125	73,16	15205	76,54	4644	23,38
	Р	pseHum1	Tibetan ground jay	1,313	124539	65,97	14241	71,69	4791	24,12
	S	melUnd1	Budgerigar	1,235	115388	61,12	13443	67,67	3482	17,53
	1	amaVit1	Parrot	1,260	109715	58,12	13319	67,05	2786	14,03
	D	araMac1	Scarlet macaw	1,276	100007	52,97	13047	65,68	2016	10,15
	А	colLiv1	Rock pigeon	1,227	116580	61,75	13687	68,90	2855	14,37
		anaPla1	Mallard duck	1,207	111240	58,92	13165	66,27	2446	12,31
		galGal4	Chicken	1,242	120518	63,84	13841	69,68	4135	20,82
		melGal1	Turkey	1,264	135159	71,59	15035	75,69	3514	17,69
		allMis1	American alligator	1,057	156967	83,15	16777	84,46	7405	37,28
		cheMyd1	Green seaturtle	0,998	149938	79,42	16415	82,63	5199	26,17
		chrPic1	Painted turtle	1,004	153944	81,54	16810	84,62	6897	34,72
		pelSin1	Chinese softshell turtle	1,053	142844	75,66	16358	82,35	4798	24,15
		apaSpi1	Spiny softshell turtle	1,104	128666	68,15	15497	78,01	3071	15,46
		anoCar2	Lizard	1,272	139306	73,79	15571	78,38	5056	25,45
		xenTro7	X. tropicalis	1,723	131987	69,91	15107	76,05	4413	22,22
		latCha1	Coelacanth	1,417	131129	69,46	15202	76,53	4150	20,89
		tetNig2	Tetraodon	2,376	101546	53,79	13225	66,57	1919	9,66
	Т	fr3	Fugu	2,355	108105	57,26	13526	68,09	2574	12,96
	Е	takFla1	Yellowbelly pufferfish	2,403	97014	51,39	12780	64,33	1849	9,31
	L	oreNil2	Nile tilapia	2,200	113542	60,14	13669	68,81	2755	13,87
	Е	neoBri1	Princess of Burundi	2,237	109593	58,05	13743	69,18	2458	12,37
	0	hapBur1	Burton's mouthbreeder	2,223	111824	59,23	13824	69,59	2601	13,09
	S	mayZeb1	Zebra mbuna	2,224	111995	59,32	13808	69,51	2600	13,09
	Т	punNye1	Pundamilia nyererei	2,228	111582	59,10	13792	69,43	2550	12,84
		oryLat2	Medaka	2,349	108653	57,55	13531	68,12	2452	12,34
	F	xipMac1	Southern platyfish	2,316	110660	58,62	13724	69,09	2535	12,76
	1	gasAcu1	Stickleback	2,104	112467	59,57	13684	68,89	2662	13,40
	S	gadMor1	Atlantic cod	2,133	97172	51,47	13354	67,22	2083	10,49
	Н	danRer7	Zebrafish	2,211	114799	60,81	14032	70,64	3042	15,31
		astMex1	Mexican tetra (cavefish)	2,105	111496	59,06	14147	71,22	2822	14,21
		lepOcu1	Spotted gar	1,793	125258	66,35	14834	74,67	3622	18,23
		petMar2	Lamprey	2,192	58439	30,96	9540	48,02	1069	5,38

Supplementary Table S5 (part 2): Percent of human exons and genes that we annotate in 99 non-human vertebrates. Non-mammalian species.