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Here we give details of the Bayesian method used to estimate the bipartite latent space
social network model defined in the main text. We describe the Markov chain Monte Carlo
(MCMC) algorithm used to estimate the parameters. Then, we address the issue that the
likelihood is invariant to rotations, reflections or translations of all the latent positions,
illustrating a procedure to solve this problem.

1 Markov chain Monte Carlo estimation

1.1 Metropolis within Gibbs updates

Markov chain Monte Carlo (MCMC) sampling was used to find the joint posterior distribu-
tion of all model parameters. To do so a standard Metropolis-within-Gibbs sampler was used
by iteratively sampling each model parameter from its full conditional distribution given all
the other parameters.

The director and board latent positions as well as the intercepts β and γ were updated
using random walk Metropolis within Gibbs updates. As an example, for a variable θ being
updated, we propose a new value θ′ drawn from a Gaussian density centered at θ, and accept
θ′ as the next value of θ in the Markov chain with probability

α(θ, θ′) = min

{
1,
π(θ′| . . . )
π(θ| . . . )

}
.

The proposal distribution is a D-variate Gaussian for the latent positions of boards and
directors, and a univariate Gaussian for the intercept parameters. The variances of such
proposal distributions are tuned so that acceptance rates are in the range 30–35%.

1.2 Updating scheme

Initialise all of the parameters to random feasible values. Then, for every iteration:

• For i = 1, . . . , N update the position of director i using Metropolis-Hastings.
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• For t = 1, . . . , T and for j = 1, . . . ,M update the position of board j at time t using
Metropolis-Hastings.

• For t = 1, . . . , T update γt using Metropolis-Hastings.

• For t = 1, . . . , T update βt using Metropolis-Hastings.

• Update τw, τ
0
w, τγ, τ

0
γ , τβ, τ

0
β using conjugate Gamma full conditional updates.

The results in the article are based on an MCMC run of 1 million iterations with the first
500, 000 discarded as burn in, taking every 50th iteration thereafter.

1.3 Posterior and full conditional distributions

The joint posterior distribution of the parameters can be written as:

π
(
X ,W ,γ,β, τw, τ

0
w, τγ, τ

0
γ , τβ, τ

0
β

∣∣Y) ∝ P (Y|X ,W ,γ,β)×
π (X )×
π
(
W
∣∣τw, τ 0w) π (τw) π

(
τ 0w
)
×

π
(
γ
∣∣τγ, τ 0γ ) π (τγ) π

(
τ 0γ
)
×

π
(
β
∣∣τβ, τ 0β) π (τβ) π

(
τ 0β
)
.

(1)

The full conditional distributions follow. As in the main text, f (s;µ, ν) denotes a Gaussian
density evaluated at s and with mean µ and variance ν, and g (s;u, v) denotes a Gamma
density evaluated at s with shape u and rate v. Also, 1A denotes the indicator function
for the event A, i.e. its value is 1 if A is true or 0 otherwise. For board j and for every
j = 1, . . . ,M : T inj denotes the time index of first appearance of board j on the ISE, whereas
T outj denotes the index of the last appearance.
For any i = 1, . . . , N :

π (xi|. . . ) ∝

[
D∏
d=1

f

(
xid; 0,

1

τx

)] M∏
j=1

T out
j∏

t=T in
j

[
p
(t)
ij

]1{i∈Dt}
. (2)

For any j = 1, . . . ,M :

π
(
w

(1)
j

∣∣∣. . .) ∝ [ D∏
d=1

f

(
w

(1)
jd ; 0,

1

τ 0w

)
f

(
w

(2)
jd ;w

(1)
jd ,

1

τw

)][∏
i∈D1

p
(1)
ij

]1{T in
j

=1}
; (3)

π
(
w

(T )
j

∣∣∣. . .) ∝ [ D∏
d=1

f

(
w

(T )
jd ;w

(T−1)
jd ,

1

τw

)][∏
i∈DT

p
(T )
ij

]1{T out
j

=T}
. (4)

For any t = 2, . . . , T − 1 and j = 1, . . . ,M :

π
(
w

(t)
j

∣∣∣. . .) ∝ [ D∏
d=1

f

(
w

(t)
jd ;w

(t−1)
jd ,

1

τw

)
f

(
w

(t+1)
jd ;w

(t)
jd ,

1

τw

)][∏
i∈Dt

p
(t)
ij

]1{t≥T in
j }1{t≤T out

j }
.

(5)
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For any t = 1, . . . , T :

π
(
γ(t)
∣∣. . . ) ∝ f

(
γ(t); 0,

1

τ 0γ

)1{t=1}

f

(
γ(t); γ(t−1),

1

τγ

)1{t>1}

f

(
γ(t+1); γ(t),

1

τγ

)1{t<T} ∏
j∈Bt

∏
i∈Dt

p
(t)
ij ;

(6)

π
(
β(t)
∣∣. . . ) ∝ f

(
β(t); 0,

1

τ 0β

)1{t=1}

f

(
β(t); β(t−1),

1

τβ

)1{t>1}

f

(
β(t+1); β(t),

1

τβ

)1{t<T} ∏
j∈Bt

∏
i∈Dt

p
(t)
ij .

(7)

The full conditional distributions of the precision parameters are as follows:

π (τw|. . . ) ∝ g

(
τw; a+

1

2
MD(T − 1), b+

1

2

T∑
t=2

M∑
j=1

D∑
d=1

[
w

(t)
jd − w

(t−1)
jd

]2)
; (8)

π
(
τ 0w
∣∣. . . ) ∝ g

(
τ 0w; a+

1

2
MD, b+

1

2

M∑
j=1

D∑
d=1

[
w

(1)
jd

]2)
; (9)

π (τγ|. . . ) ∝ g

(
τγ; a+

1

2
(T − 1), b+

1

2

T∑
t=2

[
γ(t) − γ(t−1)

]2)
; (10)

π
(
τ 0γ
∣∣. . . ) ∝ g

(
τ 0γ ; a+

1

2
, b+

1

2

[
γ(1)
]2)

; (11)

π (τβ|. . . ) ∝ g

(
τβ; a+

1

2
(T − 1), b+

1

2

T∑
t=2

[
β(t) − β(t−1)]2) ; (12)

π
(
τ 0β
∣∣. . . ) ∝ g

(
τ 0β ; a+

1

2
, b+

1

2

[
β(1)
]2)

. (13)

2 Likelihood invariance and post processing of latent

positions

The likelihood LY (X ,W ,γ,β), depends on the latent positions only through the distances

||xi − w
(t)
j || for all i, j, t. If we apply a rotation, reflection or translation to all positions,

the value of the likelihood will not be affected because of this. We therefore postprocess
the posterior samples of latent positions to account for the fact that rotation or translation
may have occurred during the sampling process. We use Procrustes matching to correct the
samples of latent positions, by finding a rotation matrix for each posterior sample which
gives the best match to a reference sample.

The first part of our postprocessing requires a reference set of latent positions, to which
others will be matched. As a reference set we take the latent positions belonging to the
MCMC iterate which obtained the highest value of the full log posterior density. We then
create a (N + TM) × D matrix containing all of the latent positions for that particular
iteration, namely

Ẑ =
[
x̂1 . . . x̂N ŵ

(1)
1 . . . ŵ

(1)
M . . . . . . ŵ

(T )
1 . . . ŵ

(T )
M

]
.
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We repeat the same operation with all the other iterations obtaining a sequence of matri-
ces Z(1),Z(2), . . . ,Z(L), where L is the number of iterations. Then we apply a Procrustes
transformation to each of these matrices, using Ẑ as a reference.

Each rotation matrix can be evaluated in the following way. We denote by Zref the
reference matrix and by Z the matrix to be rotated. Then both matrices are centred and

X =
(
Zcentredref

)′
Zcentred

is evaluated, with the dash denoting the transposed matrix. Let X = UV′ be the singular
value decomposition of X. Then the rotation matrix is given by VU′. Once all the ma-
trices have been rotated, the corresponding directors’ and boards’ positions are recovered
from Z(1), . . . ,Z(L). This procedure guarantees that, within each iteration, all of the latent
distances (and hence the likelihood values) are preserved.
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