Cancer therapeutic approach based on conformational stabilization of mutant p53 protein by small peptides

Supplemental Material

Supplemental materials and methods

Purification of recombinant full length (FL) proteins from Sf9 cells: mutant p53^{R249S}, mutant p53^{R175H} and WT p53:

 $2x10^7$ Sf9 cells in log-phase were grown in nine 175 cm² flasks and incubated overnight at 27°C. Baculoviruses containing a recombinant p53 were added into each flask, and incubated for 72 hrs. Cells were scraped from the flasks and centrifuged at 4°C. The cell pellet was washed twice with ice-cold isotonic buffer (10mM Na₂HPO₄, pH 7.2, 130 mM NaCl, 1 mM DTPA). Cells were suspended in 50ml of Buffer A (20 mM Tris-HCl, pH 8.0, 12% sucrose, 2 mM EGTA, 2 mM PMSF, 5 mM DTT) with 0.2% Triton X-100 by gentle inversion. Nuclei were pelleted by centrifugation at 5600g for 8 min, and then were lysed by adding 20 ml of Buffer B (20 mM Tris-HCl, pH 8.0, 12% sucrose, 2 mM EGTA, 2 mM PMSF, 10 mM DTT + protease inhibitors) with 0.5M NaCl followed by vigorous vortexing and incubation for 20 min on ice. The nuclear lysate was transferred to ultracentrifuge tubes and centrifuged at 100,000g for 60min at 4°C. The supernatant was removed and diluted with Buffer B to a final concentration 0.04 M of NaCl, then centrifuged at 20,000g for 5 min at 4°C. The nuclear lysate was loaded onto a 5ml Hitrap Q FF (Amersham Pharmacia) ion-exchange column, pre-washed with 50 ml of buffer A. Then, the column was washed with buffers containing higher salt concentrations to elute the protein. The protein was further purified by gel-filtration chromatography using a preparative Superdex 75 column (Amersham Pharmacia Biotech), pre-equilibrated with 20 mM sodium citrate pH 6.1, 150 mM NaCl, 10 μ M ZnCl₂, and 10 mM DTT. Fractions containing purified protein were pooled together. The fractions obtained after each purification step were analyzed by dot-blot for the presence of mutant p53 and subsequently by SDS-PAGE followed by Coomassie blue staining to check the purity of the fractions.

Phage Display

The phage display libraries used were purchased from New England Biolabs (NEB). One library consists of linear hepta-peptides (PhD-7) and the other library consists of linear dodeca-peptides (PhD-12) (CAT NOs.: PhD-7, E8100S and PhD-12, E8110S, accordingly). The randomized peptide sequences in both libraries are expressed at the Nterminus of the minor coat protein pIII, resulting in a valency of 5 copies of the displayed peptide per virion. Both libraries contain a short linker sequence between the displayed peptide and pIII. Phage display procedures were performed according to the manufacturer instructions. Briefly, phage libraries were titered using the supplied E. coli host strain ER2738 which is a robust F+ strain with a rapid growth rate and is suited for M13 propagation. The supplied stock phage concentration was estimated to be 10^{12} phage/ml. Panning was performed by allowing interaction between 10μ of phage libraries (10^{10} phage) and 5µg of either WT53 His-wtp53, mutp53^{R175H} or DBD-mutp53^{R249S}, for 2 hours in 50mM Tris. 1% BSA. Phage-p53 generated complexes were immunoprecipitated by using different biological agents covalently attached to beads.

These included nickel beads for His-WTp53-phage complexes, Biotin-p53RE-DNA-Streptavidin beads for WTp53-phage complexes, and PAb1620-beads and LTAg-PAb419-beads for p53^{R175H}-phage complexes. Prior to immunoprecipitation, beads were blocked with blocking buffer: 0.1 M NaHCO3 (pH 8.6), 5 mg/ml BSA, 0.02% NaN3. Immunoprecipitation was performed for 2 hours at room temperature. Agarose beads were washed 10 times with PBS+0.5% Tween. Phage were eluted using either HindIII, EcoRI digestion for 30 min at 37C° for phage-WTp53-p53RE complexes, or through competition-based elution with an excess (5µg) of DBD-WTp53 for 30min at RT for other phage-p53 complexes. Eluted phage were titered (Table S2) and amplified through infection of 20 ml early-log E. coli host strain ER2738 and incubated at 37°C with vigorous shaking for 4.5 hours. Phage were extracted using PEG precipitation (15 minutes at 10,000 rpm at 4°C) and resuspended in 200 µl TBS, 0.02% NaN3. The amplified eluate was titered according to the manufacturer's instructions on LB/IPTG/Xgal plates. The second and third rounds of panning were carried out in a similar manner, using the same amount of phage; however, the amount of p53 was reduced to 3µg and 1µg in the second and third rounds, respectively.

Figure S1- Calibration of conditions for phage display.

A - Western blot analysis of an immunoprecipitation (IP) experiments, where agarose beads covalently cross-linked to anti-p53 antibodies (PAb1620 or PAb240) or proteins (ASPP2 or Bcl2) were incubated for 3 hours at 4°C with WT p53, mutp53 R175H or mutp53 V143A proteins (each extracted from Sf9 cells transfected with baculovirus expressing the respective protein). The resultant immunoprecipitates, as well as the supernatant (sup), were subjected to Western blot analysis, using an anti p53 (α p53) antibody conjugated to horseradish peroxidase (HRP).

B - Western blot analysis of an IP experiment, where beads covalently cross-linked to PAb1620 or PAb240 antibodies were incubated with WTp53 or mutp53 R175H for 3 hours at 4°C in various solutions (A-I and IP buffer). The resultant immunoprecipitate, as well as the supernatant (sup), were subjected to Western blot analysis, using an anti p53 (α p53) antibody conjugated to HRP. Solution A – 50mM Tris; solution B – Tris, 150 mM NaCl; solution C – Tris, NaCl, 0.5% Triton; solution D – Tris, 0.5% Glycine; solution E – 40mM Na₄O₇P₂; solution F – 400mM Guanidine-HCl; solution G – 800mM Guanidine-HCl; solution H – 1M Urea; solution I – 3M Urea; IP – IP Buffer.

C - Sequence of the oligonucleotide used as the binding element for p53. The oligonucleotide comprises a 5' biotin label, followed by a HindIII recognition site (underlined), followed by an EcoRI recognition site (underlined), followed by a p53 consensus binding element (underlined, thep53 binding site is composed of two half sites, each of which binds a dimer of p53 and together this forms a complex of DNA and a p53 tetramer), followed by two copies of the p53 response element of the p21 promoter (underlined). For binding experiments, this

oligonucleotide was annealed to a complementary oligonucleotide to form a double stranded (ds) oligonucleotide.

D - Pre-cleared phage induce binding of mutant p53R175H to PAb1620. Beads covalently cross-linked to PAb1620 and PAb240 were incubated with purified mutant p53R175H in the presence of pre-cleared and normal phage from the third selection, non-specific phage (NS), or no phage. Immunoprecipitation was performed for 3 hours with beads covalently bound to PAb1620, followed by 3 washing steps. Elution was in sample buffer for 10 minutes at 95°C. The eluted protein was subjected to Western blot analysis using anti p53 (α p53) antibody conjugated to horseradish peroxidase (HRP).

E - Western blot analysis of H1299 cells expressing mutp53 under the control of a Zn^{++} inducible promoter. Cells were treated with different concentrations of Zn^{++} for 24 hours, harvested, lysed and protein levels were determined. 50µg of protein was loaded in each lane.

F - Western blot analysis of single cell clones of ES2 cells stably knocked out for p53 using CRISPR/Cas9. Figure shows 4 representative clones, two clones show a sucssesful knockout (no p53 protein) and two clones in which p53 protein levels were not effected. The later two clones served as controls in viability and p53 target genes expression assays.

6

Figure S2 – Evaluation of peptides efficacy in different cell lines expressing endogenouse mutp53 forms.

Bar graphs illustrating the effect of various selected peptides on cell viability for the indicated cell lines expressing endogenouse mutp53. Black bars represent randomly screened peptides, blue bars represent peptides with a significant effect on cell viability, red bars are negative controls (non-treated) and green bars are positive controls (increasing concentrations of cytotoxic drug). Cell lines were treated with selected peptides, Cis-platinum was used as positive control for cell death. 48 hours after treatment, cells were washed with PBS, and the remaining attached cells were stained with Crystal violet and washed 4 times with PBS. Stained cells were dissolved in 10% acetic acid and plates were taken for optical density measurement at 595nM.

Figures S3 - The in vivo effect of peptides in a mouse triple negative breast cancer xenograft model (MDA-MB-231 cells)

A-D 10^{6} MDA-MB-231 cells expressing endogenous mutp53 and stably expressing luciferase were injected into the hips of nude mice. When tumors reached visible size, mice were treated by intra-tumoral injection, three times a week, with either a mixture of 3 control peptides that showed no phenotype in vitro (pCAPs 76, 77 and 12; 2µg of each peptide) or a mixture of 3 test peptides that exhibited mutp53-reactivating ability (pCAPs D60R, 24R and 174; 2µg of each peptide).

Luciferase readings of MDA-MB-231 tumors in control peptide-injected mice (**A**) and in the effective pCAP mix group (**B**) (logarithmic scale) as a function of time after initiation of treatment (peptide injection). Mice 2 and 5 showed a complete response, reaching bioluminescence readings that were as low as or close to the background threshold detection levels of the IVIS system ($5x10^6$ photons) even after 21 days of treatment. Following cessation of the treatment after 35 days, mice numbers 2 and 5 were kept alive and monitored for an additional 21 days; no reappearance of tumors was detected either visually or by live imaging.

C - Live imaging of the control group of MDA-MB-231-injected mice, performed at termination of the experiment (day 35)

D - Live imaging of MDA-MB-231-injected mice treated with the effective peptides mix, performed at termination of the experiment (day 35)

E,**F** - 10^6 SKBR3 breast cancer cells, expressing endogenous mutp53 and stably expressing luciferase, were injected into the hips of nude mice. When tumors reached visible size, mice were treated by intra-tumoral injection, three times a week, with either a mixture of 3 control

peptides that showed no phenotype in vitro (pCAPs 76, 77 and 12; 2µg of each peptide) or a mixture of 3 test peptides that exhibited mutp53-reactivating ability in culture (pCAPs 154, 250 and 242; 2µg of each peptide).

E (control group mice) and **F** (effective pCAP mix group) are depicted on a logarithmic scale box-plot displaying the luciferase readings in tumors as a function of time. Average (horizontal line), standard deviation (box), highest and lowest reads (eror bars) are shown, before (until day 0; white bacground) and after initiation of treatment (peptide injection; colored backgrond).

G - Live imaging of control group mice at the beginning of treatment (day 0) and termination of the experiment (day 32)

H - Live imaging of mice treated with an effective peptides mix at the beginning of treatment (day 0) and at the termination of experiment (day 32)

Table S1 - Calibration of selection strategies and titration.

- Panning of NEB phd-12 phage display library against p53^{R249S} (Table S1A) and against p53^{R175H} (Table S1B), using the PAb1620+mutp53 strategy alone compared to dual strategy panning in alternating rounds of selection (Table S1C), where panning in the first round was performed with PAb1620Ab+mutp53. The second round of panning was for phage binding imobilized p53RE DNA-WTwtp53 complex, and the third round was employed PAb1620Ab+mutp53 selection again. The phage titer shows an increase in eluted phage between selection rounds in all performed experiments. However, the control panning experiment, performed by panning only against PAb1620 (without p53) in the third rounds, indicates that the use of a single selection strategy results in a high degree of background (phage binding directly to PAb1620) regardless of p53. The dual selection strategy (Table S1C), on the other hand, yeilded a significantly higher number of phage binding to the p53+PAb1620 complex compared to PAb1620 alone.

Selection round	The selection membran	Number of eluted phage
Selection round	The selection marker	(Phage/µl)
1	1620Ab + FL-p53R249S	10 ³
2	1620Ab+ FL-p53R249S	10 ⁵
2	1620Ab	105
3	1620Ab+ FL-p53R249S	10 ⁶
3	1620Ab	3*10 ⁶

Table SIA- selection with R249

 Table S1B- selection with R175H:

Selection round	The selection monker	Number of eluted phage
Selection round	The selection marker	(Phage/µl)
1	1620Ab + FL-p53 H175R	10^{3}

2	1620Ab+ FL-p53 H175R	10 ⁵
2	1620Ab	10^{5}
3	1620Ab+ FL-p53 H175R	10 ⁶
3	1620Ab	$2*10^{6}$

Table S1C- Alternating selection with mutp53 and wtp53

Selection round (Phd-12)	The selection marker and the p53 form	Number of eluted phage (Phage/µl)
1	1620Ab + p53R249S	3.5*10 ²
1	pAb1620 + p53R175H	$2*10^{2}$
2	p53RE + wtp53	2*10 ³
3	pAb1620 + p53R175H	10 ⁵
3	pAb1620 + p53 R2498	10 ⁵
3	pAb1620	4*10 ³

#	Library	round	Selection type	Tither	#	Library	round	Selection type	Tither
1	phd-7	1°	1620 + 175	2*10 ²	36	phd-7	3°	1620+175, Ni-wt, Tag-wt	1*10 ⁶
31	phd-7	1°	1620wt	2*10 ³	43	phd-7	3°	1620+175, Ni-wt, Tag+175	2*10 ⁶
32	phd-7	1°	Tagwt	1*10 ³	65	phd-7	3°	1620+175, RE-wt, Tag+175	2*10 ⁶
81	phd-12	1°	Tagwt	5*10 ³	69	phd-7	3°	Tag-wt, 1620+175, Tag+175	5*10 ⁶
4	phd-7	1°	REwt	1*10 ³	85	phd-12	3°	1620+175, RE-wt, Tag+175	2*10 ⁵
					92	phd-7	3°	1620+175, Ni-wt, Tag-wtDBD	3*10 ⁵
33	phd-7	2°	1620+175, 1620-wt	2*10 ⁵	93	phd-7	3°	1620+175, Ni-wt, Tag+175	4*10 ⁵
39	phd-7	2°	1620+175, 1620+175	1.5*10 ⁴	94	phd-7	3°	1620+175, Ni-wt, Tag+249DBD	4*10 ⁶
47	phd-7	2°	1620+175, 1620+175	2*10 ⁴	95	phd-7	3°	Tag-wt, 1620+175, Tag+175	5*10 ⁶
45	phd-7	2°	1620+175, 1620-175	2*10 ⁴	98	phd-7	3°	1620-wt,Tag+175, Tag+249DBD	5*10 ⁶
52	phd-7	2°	Tag-wt, 1620+175	1.5*10 ⁶					
41	phd-7	2°	1620+175, 1620	8*10 ³	37	phd-7	3°	1620+175, Ni-wt, RE-wt	5*10 ⁵
90	phd-12	2°	Tag-wt, 1620+175	1.5*10 ⁵	24	phd-7	3°	1620+175, Ni-wt, RE	5*10 ²
					57	phd-12	3°	1620+175, Ni-wt, RE-wt	8*10 ⁴
34	phd-7	2°	1620+175, Tag-wt	5*10 ⁴	75	phd-7	3°	Tag-wt, 1620+175, RE-wt	5*10 ⁴
40	phd-7	2°	1620+175, Tag+175	3*10 ⁴	96	phd-7	3°	Tag-wt, 1620+175, RE+wtDBD	1.5*10 ⁶
48	phd-7	2°	1620+175, Tag+175	4*10 ⁴	97	phd-12	3°	1620+175, Tag-wt, RE+wtDBD	5*10 ⁴
40	phd-7	2°	1620-wt, Tag+175	4*10 ⁴	118	phd-12	3°	RE+249DBD	5*10 ⁴
44	phd-7	2°	1620+175, Tag	1*10 ³					
51	phd-7	2°	1620-wt, Tag+175	2*10 ⁶	63	phd-7	4°	1620+175, Ni-wt, RE-wt, 1620+175	1*10 ⁶
83	phd-7	2°	Tag-wt, Tag+175	2*10 ⁶	71	phd-12	4°	1620+175, Ni-wt, RE-wt, 1620+175	1*10 ⁶
55	phd-12	2°	1620+175, Tag-wt	2*10 ⁴	66	phd-7	4 °	1620+175, Ni-wt, Tag+175, 1620+175	3*10 ⁶
					62	phd-7	4°	1620+175, Ni-wt, Tag-wt, 1620+175	3*10 ⁶
5	phd-7	2°	1620+175, Ni-wt	3*10 ⁴					
82	phd-7	2°	Tag-wt, Ni-wt	3*10 ³	84	phd-12	4 °	1620+175, Ni-wt, RE-wt, Tag+175	5*10 ⁵
10	phd-12	2°	1620+175, Ni-wt	1*10 ⁵	87	phd-7	4 °	Tag-wt, 1620+175, RE-wt, Tag+175	9*10 ⁶
38	phd-7	2°	1620+175, RE-wt	5*10 ⁵	102	phd-7	4 °	Tag-wt, 1620+175, RE-wt, Tag	4*10 ³
53	phd-12	2°	1620+175, RE-wt	5*10 ⁴					
86	phd-7	2°	Tag-wt, RE-wt	2*10 ⁵	121	phd-7	4 °	RE	1*10 ⁴
91	phd-12	2°	Tag-wt, RE-wtDBD	1*10 ⁵	112	phd-7	4 °	RE-wtDBD	5*10 ⁴
					113	phd-7	4 °	RE-249DBD	6*10 ⁶
35	phd-7	3°	1620+175, Ni-wt, 1620-wt	3*10 ⁵	96	phd-7	4 °	RE+wtDBD	1.5*10 ⁶
42	phd-7	3°	1620+175, Ni-wt, 1620+175	5*10 ⁴	101	phd-7	4 °	RE+wtDBD	1.5*10 ⁶
64	phd-7	3°	1620+175, RE-wt, 1620+175	1*10 ⁶	97	phd-12	4°	RE+wtDBD	5*10 ⁴
					117	phd-12	4°	RE+249DBD	1.5*10 ⁶

Table S2 – Performed phage display selections: strategies and titration of selected eluetes.

Table S3 - Summary of peptide functional screens and sequence similarities

The results of a variety of functional assays performed on representative synthetic peptides, presented as a heat map. Peptides were evaluated for their effect in each assay and assigned a score and corresponding color according to performance relative to a positive control (score 0-no effect-white – score 6- at least as effective as the positive control- black). Assays include: mutp53 conformation (orange), mutp53 DNA binding (red), viability of mutp53-expressing cells and induction of p53 target genes as assayed by by qRT-PCR (blue). Peptide sequences are aligned and have a background color according to similarity to known p53 interacting proteins and to each other. Since peptide sequences have been changed by us along time in an attempt to yield more effective sequences according to performance in the different assays, table 2 also reflects the "evolutionary" process of peptide analysis. First set of peptides tested (pCAPs 1-160) comprised sequences identified in the phage display selection. Later on, lead sequences were modified to resemble p53 interacting proteins. Later, arginine residues and N-terminal myristoil were added to enhance cell permeability (pCAPs 200-326). Highlighted amino acids are similar to motifs found in p53-interacting proteins.

			Сот	nfor	m	DI	NA		Viabiliy								CR	
Name	Peptide Sequence	Similarity	H1299	SK3	BT549	H1299	SK3	H1299	HOP92	ES2	SK3	MDA	wi48	EP156	H23	MDA231	ES2	SCORE
																		10
pCAP-1	EVTFRHS VV	p53		-	1			1	3	4	3	L-	┣—		1	3	2	19
pCAP-2	W VHDSCHANLQN YRN YLLP			-		⊢		1		2	-		┣─					4
pCAP-3	FHDEEVRGDVVNGPNHOGPK			-		⊢		-		2	-	-	-					- 7
pCAP-4	I FVIVMI			-		⊢		-		2	-							2
pCAI-5				-		⊢		-		$\frac{2}{2}$	-	2						4
pCAP-7	SPLOTPAAPGAAAGPALSPV			-		1		⊢		-	⊢		2					3
pCAP-8	LTFEHYWAOLTS			-							⊢	-						0
pCAP-9	TIIHREDEDEIEW		2			3			3	2	2			3				15
pCAP-10	VAEFAOSIOSRIVEWKERLD						3											3
pCAP-11	EWKERLDKEFS LS VYQ KMKF						3	3	3	5	2							16
pCAP-12	GGGGGGGGGGGG																	0
pCAP-13	HFSHHLK																	0
pCAP-14	HHFSHHWKT		2					2	2		3							9
pCAP-15	THFSHHLKH		2					2	2		3			3		3		15
pCAP-16	L PNPPER HH		2			3	3	3	3	4				4				22
pCAP-17	LHSKTLVL		2		2	3	3			3	3			4				20
pCAP-18	SHQVHTHHNN			3									3					6
pCAP-19	NPNTYVPHWMRQ																	0
pCAP-20	HHPWTHHQRWS	CHD1	2	4		2					3				4		4	19
pCAP-21	NHPWQFPNRWTV		4	2	2	2			2		3	3		4			3	25
pCAP-22	S LLIGFGIIRS R																	0
pCAP-23	IRILMFLIGCGR		2		2			3	3	3	3			4	4			25
pCAP-24	LRCLLLLIGRVG		3	2	2	3	3			3	3			4				23
<i>pCAP-25</i>	YRRLLIGMMW			-		⊢												
<i>pCAP-26</i>	DEFHSFYTARQTG		-			⊢					L_		<u> </u>					<u> </u>
<i>pCAP-27</i>	VHEVTHHWL		- 2	2				-		2	2	 	-	4		2	- 2	0 24
<i>pCAP-28</i>	HIDSHPHHHHPH KRDS RDV			-		- 4		-		3	် ၂၂၂၂	_ З	-	4		2	~ ~	21
<i>pCAP-29</i>			3		2	3	2	2	2	2	-	-	-				2	10
<i>pCAP-30</i>	TIHPSIS		3	-	~	3		- 4			-	-					~	10
pCAP-31	TSPLOSIK					-		-			-	-	-					
pCAP 32			2	2	-	-		-		Δ	-	Δ	-	Δ				16
pCAI-35						⊢		\vdash		2	4	4	-	4			\vdash	14
pCAP-35	GAMHLPWHMGTL		2	2	2	⊢	4	3	2	3	3		3	4	2		3	33
pCAP-36	YPTOGHLR		5	3				2	2	3	3		3	5	3		3	32
pCAP-37	KLOVPIK											2						2
pCAP-38	WTLSNYL											2						2
pCAP-39	DSLHSTY											2	-					2
pCAP-40	S EFPRS WDMETN																	0
pCAP-41	WHHRQQIPRPLE											2						2
 pCAP-42	MHPPDWYHHTPKH		3	2		4		2	2	3	3	3		3			3	28
 pCAP-43	TDSHSHH									2	3	3	3					11
- pCAP-44	VPHIHEFT		2	3			3			3	2							13
pCAP-45	HDTHNAHVG																	0
pCAP-46	ASWQALALYAAGW		2		2		2			2	3		3	4	6	3	2	29
pCAP-47	TLYLPHWHRH		2				3				3		3					11
pCAP-48	IPMNFTSHSLRQ		2		2			3	3	3								13
pCAP-49	TRILCIVMM									5			3					8
pCAP-50	WSEYDIPTPQIPP																	0
pCAP-51	AILTLILRRVIWP							2	2									4
pCAP-52	SPYPIRT													3				3
pCAP-53	ILVIIQRIM											3						3
pCAP-54			3	-	2	2		-			4	4	4	4				23
pCAP-55	FLLPEPDENTRW	 	-			⊢	-	-	-	<u> </u>	L	┣—	┣—	4				4
pCAP-56	ATPFHQT			-	-			-			-	-	-				\square	0
<i>pCAP-57</i>				-		2	2	-			-	-	-	4			\square	8
<i>pCAP-58</i>	SILPLFLIKKSG			-		⊢		-				-	-				\square	
<i>pCAP-59</i>		L							-			-						0
<i>pCAP-60</i>	SFILFIKKGKLU	 		2		3		4		3	5	—	2		4	\vdash	2	20
<i>pCAP-61</i>			2	3	-	⊢		2	-2	5	-	- 2	3				\square	17
<i>pCAP-62</i>	ILLINHA IPA			-	2	⊢	-	-		5		2	3				\vdash	
<i>pCAP-03</i>			2	-	3	-		-		-	2	2	-			\vdash	\vdash	3
pCAr-04	AFSIFIFIAWKQ	1										2						~ ~

			Cor	ıforı	n	DI	NA			V	iabi	liy				Р	CR	
Nama	Pontida Saguanaa	inilarity	1299	ŝ	T549	1299	K 3	1299	OP92	S2	3	DA	148	P156	23	DA231	S2	ORE
Ivume	териие Sequence	S	Ì	σ	'n	Ì	σ	Ì	Ĭ	ш	σ	Σ	Ň	Ш	Ξ	Σ	ш	о ЛЕ
<i>pCAP-05</i>	THESHHIKGGGRKKRRORR	P		4		~		2			2	4	3					0
pCAP-67	LHSKTLVLGGGRRRRRGDR					\vdash												0
pCAP-68	YRRLLIGMMWRRRRRRRRR	<u>र</u>	4	5		4		3	5	5		4	2			2	3	37
 pCAP-69	SILTLS RRRRRRRRRR																	0
pCAP-70	SILTLSRGRKKRRQRRRR		3	3		2		2	3		3	3	3		2	2	4	30
pCAP-71	WTLSNYLGGRKKRRQRRR		2															2
<i>pCAP-72</i>	SCRCRLRRRRRRRRRRRR								2			3						5
<i>pCAP-73</i>									3	3			_					6
pCAP-74	TRILCIVRKKRRORRRGDR		3	3		2		2	5	5	3	4	2			3	3	35
pC/H - 75	GGGGGGGGGGGRRRRRRRRR																	0
pCAP-77	SEYLCSSLDAAG																	0
pCAP-78	GESFVQHVFRQN																	0
pCAP-79	SVHHHHRMHLVA																	0
pCAP-80	HLHKHHYKDSRM		3			3						3						9
<i>pCAP-81</i>	VRCIFRGIWVRL							2	2									2
<i>pCAP-82</i>	HSSHHPVHSWN		1	2		5	2		3		Δ		3	3		3		30
pCAP-83	GRRRFCM		4	4		5	4	4			4		5	5		5		0
pCAP-85	КЦТІННН																	0
pCAP-86	FGSHHEL																	0
 pCAP-87	HANLHHT		3	2		2		3	3	4		4	3			4	4	32
pCAP-88	SYQTMQP											4						6
pCAP-89	SILTLSCRCRLRLWR			2						4		2						8
pCAP-90	SCRCRLR					2		4	4	2								12
<i>pCAP-91</i>						4			4		3							-7
<i>pCAP-92</i>			Δ	1		-		2	4		3							13
pCAF-93	LRFIDYP		4	- 1		\vdash												4
pCAP-95	HQIHRNHTY							4	4									8
pCAP-96	бтурнна																	0
pCAP-97	WNHHHS TPHPAH		1	3		4	2	3	4	5		3	3	3		3	5	39
pCAP-98	HSSGHNFVLVRQ											2						2
pCAP-99	GLHLFTTDRQGW							2	3			2						7
<i>pCAP-100</i>	FPGHTIH			5				3		3	2	3				3		19
<i>pCAP-101</i>	SSVHHRG					-				े २								2
pCAP-102	LRROLOL									3								3
pCAP-104	LLRLGLI		3		3	6				3	3	3					3	24
pCAP-105	SRIVLGW			2														5
pCAP-106	LIRRCSLQR			5														8
pCAP-107	DRLSVFLFIM																	0
pCAP-108	IIRGNFLIGGRL		3			3			2	3	3	3				3	3	23
<i>pCAP-109</i>									2			2						4
<i>pCAP-110</i>										3		2	-					- 2
pCAP-111 pCAP-112	ТТЅННРК											2				3		5
pCAP-113	НТТАНТН												3					3
pCAP-114	AISHHTR																	0
pCAP-115	HPHNHTVHNVVY								3									3
pCAP-116	KHHPFDHRLGNQ																	0
<i>pCAP-117</i>	DHSKFVPLFVRQ		3															3
<i>pCAP-118</i>	SNHHRHHINIH			2		2					3	3	3			3		16
pCAP-119 pCAP-120	SIRTI GRELIPV			-		-		-		3						\vdash	\vdash	3
pCAP-120									2	3			-					5
pCAP-122	HSYSPYYTFRQH		2							3			-				\vdash	5
pCAP-123	GLCRIIL									3							\square	3
pCAP-124	VMVLFRILRGSM							2										2
pCAP-125	ELGLHRH																	0
pCAP-126	RRLRICV																	0
pCAP-127	SPPIRHH		3															3
<i>pCAP-128</i>			-3	2		3			3	3		3	-2			- 3		22
pCAP-129	FRSFAIPLVVPFRRRRRR						4	3	2	2								11

			Cor	for	n	D	NA			Vi	iabi	liy				P	CR	
Name	Peptide Sequence	Similarity	H1299	SK3	BT549	H1299	SK3	H1299	НОР92	ES2	SK3	MDA	wi48	EP156	H23	MDA231	ES2	SCORE
pCAP-130 (1R)	EVTFRHS VVRRRRRRRRRRR	p53					6	3	4									13
pCAP-131 (16R)	LPNPPERHHRRRRRRRRRRR	-	3		3	3	3	2	3	1								18
pCAP-132 (21R)	NHPWQFPNRWTRRRRR						3	4										7
pCAP-133 (22R)	SLLIGFGIIRSRRRRRRR							2	2	6								10
pCAP-134 (23R)	IRILMFLIGCGRRRRRRRR				4		3	2	6	6	3	3		3	3	3		36
pCAP-135 (28R)	HTDSHPHHHHPHRRRRR						3	3	2	2								10
pCAP-136 (33R)	SILTLRLRRLRRRRRRR						3	3	5	3								14
pCAP-137 (35R)	GA MHLPWHMG TRRRRR							3	3	2								8
pCAP-138 (36R)	YPTQGHLRRRRRRRRRRR						3	4	2	2								11
pCAP-139 (42R)	MHPPDWYHHTPKRRRRR						2	3	2	2		3						12
pCAP-140 (43R)	TDSHSHHRRRRRRRRRR							3	3									6
pCAP-141 (46R)	SWQALALYAAGWRRRRRR						6	3		5	3	3	3	3	3			29
pCAP-142 (47R)	TLY LPHWHRHR RRRRRRRRR						6	2		3				3				14
pCAP-143 (48R)	IPMNFTSHSLRQRRRRRRRR						2			4								6
pCAP-144 (60R)	SFILFIRRGRLGRRRRRRRRR		2			2	2	2	3	3	3	2	6	6		4	4	41
pCAP-145 (83R)	HSS HHHPVHS WNRRRRRR						3	2		2								7
pCAP-146 (87R)	HANLHHTRRRRRRRRRR						3	2	3	3								11
pCAP-147 (93R)	ATQHHYIKRRRRRRRRRR						4	3		3								10
pCAP-148 (97R)	WNHH HS TPHPD RRRRRRRRR		4	4			4	5	3	4	2		3	3	3	4	4	43
pCAP-149 (100R)	F PGHTIHRR RRRRRRRRR						3	5	3	2								13
pCAP-150 (108R)	IIRG NFLIGGRL RRRRRRRR		4	4			4	3		2	5							22
pCAP-151 (128R)	CILRLWWRRRRRRRRRR						5	4	5	4	3	3		3	3	3		33
pCAP-152 (25R)	YRRLLIGM RRRRRRRRRRRR						5	3	3									11
pCAP-153	YWSAPQPATRRRRRRRRRR						3		3									6
pCAP-154 (24R)	LRCLL LLIGRVGRK KRRQRR		6	4	5		4	5	5	5	3	5	3	4	5	3		57
pCAP-155 (54R)	IRGRIIR RRRRRRRRR			2	2	5	5	5		4	4	4	4		3			38
pCAP-156 (44R)	VPHIHEFTRRRRRRRR																	0
pCAP-157 (60TAT)	SFILFIRRGRLGRKKRRQRRRP		1	1	1	2	3	3	3	3	5	2	2	5	2	4		37
pCAP-158 (60RGL	SFILFIRRGRLGRGDR		1	1			4		4		4		1	1				16
pCAP-159	Fite-SFILFIRRGRLGRRRRRRR		1		1			4	4		4			4	3	3		24
pCAP-160 (D60R)	rrrrrrrglrg rriflifs		1	1	1		3	5	4	4		5	4	5	4	5	4	46
pCAP-161	HNAH		3	2		2	2	3	5	3	5		4		4			29
pCAP-162	SILT			2														2
pCAP-163	LTLS				4													4
pCAP-164	PLTLI																	0
pCAP-165	SLLIG																	0
<i>pCAP-166</i>	KPPER																	0
<i>pCAP-167</i>	FILIR					⊢				5								5
<i>pCAP-168</i>	CRIIR					⊢												0
<i>pCAP-169</i>	SFILI																	0
<i>pCAP-170</i>	IRILM			5	5	5	3	3		3	3							21
<i>pCAP-171</i>	PHHHS					⊢												
<i>pCAP-172</i>	EFHS DI DDI					⊢												
<i>pCAP-173</i>					_												\vdash	52
pCAP-174	HS I PHPD		4	4	-5	4	5	4	5	4	4	5		4	4			53
<i>pCAP-1/5</i>	USTK					-							\vdash				\vdash	
pCAP-1/0			\vdash			-						-	\vdash	\vdash	\vdash	\vdash	\vdash	
<i>pCAP-1/7</i>	HF5HH DDV/					-							\vdash				\vdash	
$pCAP-1/\delta$						-							\vdash				\vdash	
pCAP-1/9			┞─┥			-							\vdash	\vdash			\vdash	
pCAP-160	1	1	1										1 1	1			1 /	

			Сот	Conform I		DN				V	iabi	liy				Р	CR	
Name	Pantida Saguanca	imilarity	1299	ŝ	T549	1299	K3	1299	OP92	S2	K3	DA	i48	P156	23	DA231	S2	CORE
Tume		S	Т	ល	Ъ	Ξ	S	Т	I	Ш	S	Σ	3	Ш	Ξ	Σ	Ш	Š
<i>pCAP-201</i>	HPTHPIRLEDNLTR	14-3-3			2	-		2	2		2							3
<i>pCAP-202</i>	RRRHDSCHNOLONYDHSTE	APAFI ASPP1	3	2		-	3	3		6	3 4		6	5	4	Δ		13
pCAI-203	MSTESNMPRLIONDDRRR	ASPP2				-	3	4		4			5			5	\vdash	7 3 21
pCAP-205	RCRNRKKEKTECLQKESEK	ATF3		2	3													5
pCAP-206	RRRSHSQENVDQDTDE	BAK					3	3	3	2		1	5			5		24
pCAP-207	RRS RS NEDVEDKTEDE	BAK																0
pCAP-208	RRIRSGGKDHA WTPLHENH	BARD1																0
pCAP-209	HTPHPPVARTSPLQTPRR	BCL2																0
pCAP-210	DEFERYRRFSTSRRR	BCL-X	1		1	2				2			5	3	3	6		23
<i>pCAP-211</i>	PDSEPPRMELRRR	BCR			2	-												0
<i>pCAP-212</i>	RRIK MIRTS FS FIOHIVS	BRGI				-	2									-		2
pCAP-213	RRRESEORS IS LIHHHST	C-ABL				⊢	~	2	2									
pCAP-214	RRDTF DIRILMAF	CARM	1			-												0
pCAP-216	myr-HFNHYTFESTCRRRRC	CAS		2														2
pCAP-217	HS TPHPPQ PPERRR	CCDC	8					2	2									4
pCAP-218	RREVTEL HHTHEDR R	CEP72																0
pCAP-219	SYRHYS DHWEDRRR	CEID2									1							1
pCAP-220	STTHPHPGTSAPEPATRRR	CHD6	2					2			2							6
<i>pCAP-221</i>	BVEENNGVNDDVOVEESPTP	CIF2		3	3	3	3	2	5	6	5	3	6	5	6	4	4	58
<i>pCAP-222</i>	SPWTHERCROR	CUL/	R1		4	⊢						-				-		4
pCAP-223	RRKSEPHSLSGGYOTGAD	DIABL	0			⊢		2	2			-						
pCAP-225	HTIHS IS DFPEPPDRRRR	DMP1				-					3							3
pCAP-226	DDSDNRIIRYRR	G3BP2						3	3		3							9
pCAP-227	myr-RRKILFIRLMHNKH	GAS2	3	1	1	5	1	2	6	5	6	3	6	6	3	5		53
pCAP-228	DEDAAHS TGHPHNSQHRRRR	HIPK1				3												0
рСАР-229	myr-PRVLPS PHTIHPS QYP	HIPK2		2		4	3	4	4		3		3	3	3	3	3	35
pCAP-230	RKRGKSYAFFVPPS ES KERW	HMGB	2	1	2	4	3	5	5	4	4	1	6	4	6	6		53
pCAP-231	HRTQSTLILFIRRGRET	HTRA2			6													3
pCAP-232	RSRSSHLRDHERTHT	HZF																0
pCAP-233	SHY HTPQNPPS TRRR	IFI16	3				3	3	3		3							15
pCAP-234	HRTGHYTRCRQRCRSRSHNR	KLF4									2							2
pCAP-235	RS YS KLLCLLERLRISP	MIF		2	5			2	2		2							13
pCAP-236	RRRSTNTFLGEDFDQ	MORT																0
pCAP-237	HTIHVHYPGNROPNPPLILOR	MULE		3	2	5					2							12
pCAP-238	TSPHPSLPRHIYPRR	NFAT	2			4												6
pCAP-239	REGFYGPWHEORRR	OGA	2								2							4
pCAP-240	TEOHHYIPHRRR	OSGIN2				⊢					3							3
pCAP-241		PAR3				⊢												
pCAP-242	mvr-RRLIVRILKLPNPPER	PARC	2		4		4	5	5	5	5	3	4	6	6	5	5	55
pC/H-242	RCRSILPLILISE	PFRP	-				2					•						2
pCAP-244	RRVSELORNKHGRKHEL	PIASI			3	⊢		2	2									-7
pC/H-244	NHITNGGEEDSDCSS RRRRL	PIN1				⊢	3	2	2									10
pC/H=245	RRRLDDEDVOTPTPSEYON	PIRH2				⊢		2										3
pCAP-240	REITEIRGRIGKTTLTYIED	PAD51				⊢	3											- č
pC/H-247	EIVGESCKTDEHALDTEYRR	RAD51				-												
pCAP-240	myr-DERTGKTRRVIDTRDIRR	RAD51				-	3				3							Ĕ
<i>pCAP-249</i>	myr-BERTORTRETEDTRET	RAD51	1	3	2	3	5	6	6	5	6	3	6	5	5	Λ	1	64
pCAP-250	RIRRVIERS VHF	RAD9			~	5	5	3	2	5		5		5	5		-	6
<i>pCAP</i> 252	PRVIL PSVDGGHS TPHPD	RAD9				-										-		- V
<i>pCAP-252</i>	TGKTEVKRHLTFFFKKYR	DAN				⊢						-			-			
<i>pCAP-255</i>	NHEDVDTIELDTAGEVSDDD	RAN				-						-				-		
<i>pCAP-254</i>		RAS	_			⊢										-		
<i>pCAP-255</i>		RASSF	5			⊢		-			2	-			-	-		
<i>pCAP-250</i>	mur HSS HHHPTVOHPP	RPA70				-		4								-		2
<i>pCAP-257</i>	ELCODDLIDER	SINJA		-				4			4		6					0
<i>pCAP-258</i>		SIVA	-	-		о 5					-4	-	5	-Z	-2	4	\vdash	24
<i>pCAP-259</i>		SMG1			4	5	4	-				-	5	3	-2	2	\vdash	21
pCAP-260	RKTFIKHRIDSTEVIYQDED	STK11	-	-		-						-				-	\square	0
<i>pCAP-261</i>	RKKQPLPSAPENEE	S1K15				-		2		3		-				-	\square	0
<i>pCAP-262</i>	ESKTGHKSEEQRLRRYR	TBP				-												0
pCAP-263	YDDEHNHHPHHS THRRR	TSC22				<u> </u>												0
pCAP-264	RRRREVHTIHQHGIVHSD	ттк																0

			Сог	ıforı	m	DI	NA			Viabiliy						P	CR	
Name	Pentide Sequence	Gimilarity	11299	K3	tт549	1299	K3	11299	IOP92	S2	K3	1DA	/i48	:P156	123	1DA231	S2	CORE
nCAP-265	EEPDROPSGK PGGPK PPSP		±	0)	ш	<u>+</u>	0)	<u>т</u>	1	ш	0)	2	5	ш	<u> </u>	2	ш	S O
pCAP-205	HHRI SVEIVRRHSTHASR	TWIST				⊢		2		⊢		⊢	⊢					
pCAP-267	KRGGRKRRGGGHRLSYFIRR	TWIST	2		4	⊢	6	-		2	3		2	2	2	2		25
pCAP-268	TPSYG HTPS HHR RR	WT1	5			H	4											9
pCAP-269	DEPLPPPERRR									⊢								0
pCAP-270	SPHPPY																	0
pCAP-271	SPHPPYSPHPPYSPHPPYP																	0
pCAP-272	RRPHNLHHD																	0
- pCAP-273	RDFHTIHPSISRR										3							3
pCAP-274	LRDPHPPERRIR																	0
pCAP-275	myr-MTYSDMPRRIITDEDRRR							3	3		3							9
pCAP-276	RRVDIHDGQRR																	3
pCAP-277	DQPYPHRRIR																	3
pCAP-278	RRYDTVIDDIEYRR										3							6
pCAP-279	RDTIERPEIRR										3							6
pCAP-280	myr-RYRRLILEIWRR										3							3
pCAP-281	myr-RDFILFIRRLGRR																	3
pCAP-282	myr-RRPVAPDLRHTIHIPPER	LTA			3	3		6	6	2	2	3		4		3		42
pCAP-283	RRPADQISYLHPPER																	0
pCAP-284	myr-RHDTHNAHIRR							5	5							4		14
pCAP-285	RR DIIRHNAHS							4	4									8
pCAP-286	HDFHDYLERR							4	4									8
pCAP-287	RDFERTIVDI							4	4									12
pCAP-288	THDFDRLLRIRRR			2	3													5
pCAP-289	RHNHIRPDNQ			2				4	4									10
pCAP-290	RYKEPRITPRE				4			2	2									8
pCAP-291	DLQYDFPRIRR																	0
pCAP-292	YDELYQKEDPHRRR																	0
pCAP-293	RRIRIDPQHD							2										0
pCAP-294	FKPERFPQNDRRR																	0
pCAP-295	LDLYHPRERR							3					L_					0
<i>pCAP-296</i>	RPADRIRR					-				L_								0
<i>pCAP-297</i>	HDFDPRYRDRR					-				L								0
<i>pCAP-298</i>	RRIRDPLGNEHE					⊢		3		L			┣─					0
<i>pCAP-299</i>	ILQPDFLIRPE					⊢		2		┣		-	┣─			-		0
<i>pCAP-300</i>	RIRRDPDSPLPHPE			2	2	-		5	6				-					0
<i>pCAP-301</i>				ാ		-		C C	C A	-		-				4		20
<i>pCAP-302</i>				-		⊢		3	4	-		-	⊢			-		10
<i>pCAP-303</i>				-	3	-				-		-	-					
pCAP-304						⊢	4	4	4	⊢		⊢	⊢				4	16
pCAP-306	myr-BLIBIBII M			6		Δ		-		⊢		⊢	⊢					10
pCAP-307	HDPRIIRIR			ľ		-		2	2	⊢			⊢					4
pCAP-308	myr-RRICRFIRICRVR	CDC25	B	6	4	⊢		6	6		3	\vdash	⊢	2	3	6		36
pCAP-309	HPHVILPRIBIBI	CDC20		Ē		H		2	2			\vdash	⊢					4
pCAP-310	RLRCLLLLIGRVGRR			4		⊢				\vdash								0
pCAP-311	EIHTIHLLPERR									\vdash								0
pCAP-312	RRPRIPDYIL			2						⊢								2
pCAP-313	myr-RRREILHPEFRILYE			2				4	3									9
pCAP-314	RSTPHIHEFIRR			2														2
pCAP-315	LHFSHIDRR			3				4	4									11
pCAP-316	myr-DIHTIHLPDTHRR			3				3	3									9
pCAP-317	RRDIHTIHPFYQ	HSD17	4	3	4	2		5	5				5	4	4	3		39
pCAP-318	RPEFHSFHPIYERR							3										3
pCAP-319	SHDFYPHWMRERIR																	3
pCAP-320	EPSHPRSRYPRTF																	0
pCAP-321	RNIIIRDFIHFSHIDR																	0
pCAP-322	RRIRDPQIK-myrLEIHFSHID																	0
pCAP-323	myr-DLHTIHIPRDRR																	0
pCAP-324	SHDFPHREPRPERR																	0
pCAP-325	myr-RRIRDPRILLLHFD	сстз		3	3	4	3	5	4	4	3	4	6	4	4	6		53
pCAP-326	myr-RRHNAHHS TPHPDDR	RAD9A	14			4		6	6	4	2		5	4	5	4		60