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SUPPLEMENTARY METHODS 
 
Sample acquisition, nucleic acid isolation and patient information 
Results in this work correspond to tissue samples obtained from the patient at nine distinct time points 
spanning 4,024 days from diagnosis (see Table S1 for details and Figure 1 for an overview of the timeline). All 
samples were annotated with a time point value representing the number of days from diagnosis (day 0). A 
skin sample was obtained as a normal reference at 42 days from diagnosis. At this day, the patient was 
considered to be in remission with no detectable tumor burden. Samples representing the primary tumor (day 
0) were obtained from a clot obtained from the bone marrow aspirate (annotated as “day 0, clot”) and from a 
fixed slide of bone marrow cells that were obtained from the Wright-Giemsa stained bone marrow aspirate 
slide (annotated as “day 0, slide”). Both of these samples were of marginal quantity and quality. All additional 
tissue samples described in this work were obtained from total bone marrow aspirate or core (the solid core left 
after removal of the aspirate). Marrow core samples were decalcified and then fixed and placed in paraffin for 
sectioning prior to further analysis. The aspirates were never fixed and were processed to cell pellets and 
frozen prior to additional analysis. Samples were obtained during first remission (day 42), first relapse (day 
1,893), second relapse (days 3,068 and 3,072), and during final remission (day 3,219 and 4,024). The patient 
received a bone marrow allograft from a sibling (brother) on day 2,010 after achieving a second remission. He 
received a second bone marrow allograft from a matched unrelated donor (MUD) on day 3,151 after achieving 
a third remission. Since the second relapse sample occurred after the first allograft from the sibling donor we 
subjected this sample to sorting for blasts to enrich for tumor cells from the patient. As a control we separately 
sorted for lymph cells to enrich for cells from the sibling donor. Blasts and lymphocytes were sorted 
concurrently from the same second relapse sample by CD45 and side scatter (lymphocytes were CD45 bright 
with low side scatter and blasts were CD45 dim with low side scatter) (see Figure S2). We then collected 
CD19+/CD34+ cells in the blast gate. Antibodies used were PerCP-CY5.5 CD45 (eBioscience; clone 2D1), PE-
CD34 (PE-pool; Beckman Coulter Genomics; PN IM1459U) and FITC-CD19 (BD Biosciences; clone HIB19). 
The majority of variant discovery analysis was performed on the sorted blasts from the second relapse sample 
with validation/verification of these events being conducted in the additional time point samples. Blood from our 
B Lymphoblastic Leukemia (B-ALL) patient and both the sibling bone marrow donor and matched unrelated 
donor were subjected to standard HLA typing. The B-ALL patient had HLA type as follows: ‘HLA-A31:01 / HLA-
A02:01’, ‘HLA-B18:01 / HLA-B08:01’, ‘HLA-C07:01’. Both the sibling donor and unrelated donor had matching 
HLA type. All of the samples described above were subjected to genomic DNA isolation by column purification 
(Qiagen DNeasy). The sorted blasts from day 3,072 sample was also subjected to RNA isolation using a 
TRIzol® procedure followed by DNAseI treatment and cleanup using a Qiagen RNeasy mini kit. 
 
Cytogenetics and quantitative interphase FISH 
Cytogenetics analyses were performed on marrow samples obtained for the primary diagnosis (day 0), first 
relapse (day 1,893), second relapse (day 3,072), and additional time points during remission. FISH was 
performed using probes for KMT2A (also known as MLL), ETV6/RUNX1 (also known as TEL/AML), and 
BCR/ABL1. Standard cytogenetics analysis using GTG banding was performed on each disease sample.  
 
Whole genome, exome, and transcriptome sequencing 
Whole genome, exome and transcriptome sequencing (RNA-seq) were performed using library construction 
and capture hybridization methods previously described [1, 2]. All sequence data were generated as 2x100 bp 
reads on the Illumina HiSeq 2000 or HiSeq 2500 platforms. Whole genome sequence libraries were 
constructed from two DNA fragment size ranges each, for both tumor (~150-250 bp; ~300-450 bp) and normal 
(~100-300 bp; ~100-450 bp). Exome sequence libraries were constructed independently from the whole 
genome libraries from DNA fragments size selected to be ~100-400 bp. Exome capture hybridizations used the 
NimbleGen SeqCap EZ Human Exome Library v2.0 (for the skin normal and second relapse) or NimbleGen 
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SeqCap EZ Human Exome Library v3.0 (for the primary tumor and first relapse) kits (Roche, Inc.). Unstranded 
(non strand specific) RNA-seq libraries were constructed using polyA+ selected RNA input and the Ovation 
RNA-Seq System V2 (Nugen, Inc.) kit. cDNA fragmentation was performed using a Covaris instrument set to 
‘Broad Range Program 2’ (5DC/4I/200CB/90sec). A size selection targeting fragments in the range of 300-500 
bp was performed using a dual SPRI (Solid Phase Reversible Immobilisation) strategy. SPRI beads were 
obtained from AMPure. 
 
DNA sequence alignment and data quality assessment 
Alignment of whole genome and exome data was performed using the Genome Modeling System (GMS) 
essentially as described in Griffith et al. 2015 using the GMS processing profile: ‘January 2015 Reference 
Alignment Candidate 1’ [2]. Paired end read sequences were aligned to the human genome reference 
sequence (version GRCh37 also known as hg19). Read alignments were performed using bwa-mem [3] 
version 0.7.10 with default parameters except ‘-t 8’ to utilize 8 threads for parallel processing. For datasets with 
multiple lanes of data, these were aligned independently for each lane and merged using Picard 
‘MergeSamFiles’ version 1.113 with default parameters. Duplicate reads were marked with Picard 
‘MarkDuplicates’ version 1.113 with default parameters. For datasets generated from multiple sequence 
libraries duplicates were marked within each library prior to merging into a final BAM file (e.g. WGS datasets 
each consisted of two independent fragment size libraries). Quality of the alignments was assessed by metrics 
determined by Samtools flagstat (version 0.1.19), FastQC 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), Picard ‘CollectInsertSizeMetrics’ (version 1.113), 
and Picard ‘CollectWgsMetrics’ (version 1.113). To assess sample quality and identify possible sample swaps, 
each sample was subjected to analysis on an Illumina iScan Instrument utilizing a Human OmniExpress 
genotyping array according to the manufacturer's recommendations (Illumina Inc, San Diego, CA). Genotypes 
obtained from this platform were assessed for concordance with SNP genotypes obtained by whole genome 
sequencing. Sample identities were further confirmed by WGS genotyping of 24 biallelic SNP locations 
previously selected for this purpose [4]. To obtain variant allele frequencies for these SNP positions, read 
counts supporting reference and variant alleles were obtained using bam-readcount v0.6 
(https://github.com/genome/bam-readcount) and alternative allelic frequencies were compared using the 
GenVisR package in R (https://github.com/griffithlab/GenVisR).  

Genome-wide sequencing depths in the WGS data were calculated using Picard CollectWgsMetrics 
(https://broadinstitute.github.io/picard/) with a minimum mapping (MINIMUM_MAPPING_QUALITY) and base 
quality (MINIMUM_BASE_QUALITY) equal to 20, a maximum coverage (COVERAGE_CAP) of 100,000, and 
lenient validation stringency of files (VALIDATION_STRINGENCY). Sequencing depths in targeted regions of 
the genome were calculated using SAMtools depth [5] with a minimum mapping (-q) and base quality (-Q) 
equal to 20. Cumulative coverage heatmaps were plotted using ‘ggplot2’ (http://ggplot2.org/) in conjunction 
with the ‘GenVisR’ package (https://github.com/griffithlab/GenVisR).  
 
Germline variant analysis 
Germline variant analysis was performed using WGS and exome data for the normal skin (day 42). Germline 
variant calling was limited to single nucleotide variants (SNVs) and small insertions and deletions (indels).  

Germline SNVs consisted of the union of variant calls from two variant callers, Samtools [5] and 
VarScan [6]. Samtools variants were called using ‘samtools mpileup’ with parameters ‘-BuDS’ followed by 
filtering with the GMS filter tools ‘var-filter-snv’ and ‘false-positive-vcf v1’ with parameters ‘--max-mm-qualsum-
diff 100 --bam-readcount-version 0.4 --bam-readcount-min-base-quality 15’. VarScan variants were generated 
using version 2.3.6 of the software with parameters ‘--nobaq --min-coverage 3 --min-var-freq 0.20 --p-value 
0.10 --strand-filter 1 --map-quality 10’. The resulting SNVs were filtered using the GMS filter tool ‘false-positive 
v1’ with parameters ‘--max-mm-qualsum-diff 100 --bam-readcount-version 0.4 --bam-readcount-min-base-
quality 15’.  
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 Germline indels were called using VarScan (version 2.3.6) with parameters ‘--nobaq --min-coverage 3 -
-min-var-freq 0.20 --p-value 0.10 --strand-filter 1 --map-quality 10’. The resulting indels were filtered using the 
GMS filter tool ‘false-indel v1’ with parameters ‘--max-mm-qualsum-diff 100 --bam-readcount-version 0.4 --
bam-readcount-min-base-quality 15’. Refer to Griffith et al. 2015 for detailed descriptions of the SNV and indel 
filters [2].  

The predicted functional relevance of SNVs and indels were assessed by annotation with the Ensembl 
Variant Effect Predictor (VEP) [7] and Gemini (v0.16.3) [8]. The Gemini query was constructed to limit results 
to coding variants only and remove all variants that are reported as common polymorphisms in the 1000 
genomes or the exome sequencing project. The list of candidates was further limited to only those variants 
occurring within genes of the Cancer Gene Census [9]. All variants in this final list were manually reviewed. 
Variants within regions with suspected but unassembled pseudogenes or other partial gene segments missing 
from the human reference sequence, such as PDE4DIP, USP6, NOTCH2, MAML2, and FANCD2 were 
removed from the analysis [10]. Passing variants were re-annotated with the GMS annotator [2] and transcript 
models obtained from Ensembl version 74 (GRCh37) (Table S3). 
 
Somatic variant analysis 
Somatic variant calling was performed using tools optimized for each variant type that were integrated into the 
GMS [2] (refer to Tables S3, S4, S6 and S7 for all final variant calls). For this case we used GMS processing 
profiles ‘January 2015 WGS Somatic Variation’ and ‘January 2015 Exome Somatic Variation’ for exome and 
WGS data, respectively. For all variant types, multiple variant calling and filtering algorithms were employed 
and combined to produce a final candidate set. The majority of these calls were subjected to validation by 
comparison across the primary datasets (WGS, exome and/or RNA-seq). Most SNVs and CNVs were also 
subjected to validation by DNA capture and deep sequencing (described below). All variants provided in the 
supplementary materials of this manuscript were subjected to manual review except for non-coding SNV lists 
in Tables S3, S6, and S7. Visualizations of support for all individual variants mentioned by name in the 
manuscript are provided in the supplementary materials. 

Single nucleotide variant candidates were identified by a combination of five somatic SNV callers: 
Samtools [5], SomaticSniper [11], VarScan [6], Strelka [12], and Mutect [13] as previously described [1]. To 
produce each individual call set, each variant caller utilized custom parameters and filtering. The filtered 
Samtools calls were intersected with SomaticSniper calls and variants found by both these callers were joined 
by union with calls from VarScan, Strelka, and Mutect. Samtools variant calls were produced with ‘samtools 
mpileup’ using the parameters ‘-BuDS’. These Samtools calls were filtered by the GMS filter ‘false-positive-vcf 
v1’ with the following parameters ‘--max-mm-qualsum-diff 100 --bam-readcount-version 0.4 --bam-readcount-
min-base-quality 15’. Variants were called by SomaticSniper (version 1.0.4) using the parameters ‘-F vcf -G -L 
-q 1 -Q 15’. These SomaticSniper calls were filtered using the GMS filter tool ‘false-positive v1’ with parameters 
‘--bam-readcount-version 0.4 --bam-readcount-min-base-quality 15’ and the GMS filter tool ‘somatic-score-
mapping-quality v1’ with parameters ‘--min-mapping-quality 40 --min-somatic-score 40]’. VarScan variant calls 
were produced with version 2.3.6 of the software using default parameters except ‘--nobaq’. The resulting 
variants were filtered using GMS filter tools ‘varscan-high-confidence v1’ and ‘false-positive v1’ with 
parameters ‘--bam-readcount-version 0.4 --bam-readcount-min-base-quality 15’. Strelka variant calls were 
generated using version 1.0.11 with default parameters except ‘isSkipDepthFilters = 0’ was used for WGS data 
and ‘isSkipDepthFilters = 0’ was used for exome data. Mutect variant calls were produced with version 1.1.4 
with default parameters. Mutect analysis was performed in parallel on 50 approximately equally sized subsets 
of the reference genome sequence. Mutect calling was guided by known mutation positions from Cosmic 
version 54 [14] and known SNPs from dbSNP version 137 [15]. 

Small somatic insertions and deletions were identified by a combination of four somatic indel callers: 
GATK, Pindel [16], VarScan, and Strelka as previously described [1]. To produce each individual call set, each 
variant caller utilized custom parameters and filtering. The indel final call set was the union of GATK, Pindel, 
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VarScan and Strelka. GATK indel calling used the now deprecated GATK indel caller with default parameters. 
Pindel v0.2.2 was run with the parameter ‘-w 10’ with a config file generated to pass both tumor and normal 
BAM files set to an insert size of 400. Pindel results were filtered using the GMS filters ‘pindel-somatic-calls 
v1’, ‘pindel-vaf-filter v1’ with parameters ‘--variant-freq-cutoff=0.08’ and ‘pindel-read-support v1’. VarScan indel 
calling was performed using version 2.3.6 of the software with default parameters except for ‘--nobaq’. 
VarScan variants were filtered by the GMS filter tool ‘varscan-high-confidence-indel v1’. Finally indels were 
called using Strelka version 1.0.11 with default parameters except ‘isSkipDepthFilters = 0’ and 
‘isSkipDepthFilters = 1’ were used for the WGS and exome data respectively. 

All transcript variant annotations (e.g. predicted amino acid effects) for SNVs and indels were 
generated by the GMS’s variant annotator [2] using transcript models obtained from Ensembl version 74 [17]. 
Variants were also annotated where appropriate with information from dbSNP (version 138) [15]. 

Copy number variants (CNVs; large-scale amplifications or deletions) were identified by observing 
differences in WGS coverage between tumor samples and the normal skin reference sample. Coverage was 
calculated for fixed size windows of the reference genome using the GMS tool ‘bam-window’ version 0.5 with 
parameters ‘-w 10000 -r -l -s -q 1’. The resulting window coverage values were analyzed by CopyCat 
(https://github.com/chrisamiller/copyCat) with parameters ‘--per-read-length --per-library’. CopyCat corrects 
window values to account for GC bias, mappability, and other factors. The resulting window values were 
segmented by a circular binary segmentation algorithm to identify series of consecutive windows that may 
represent individual CNV events. CNVs were predicted from Exome data using the R package cn.mops [18]. 
CNVs were predicted from genotype microarray data by use of circular binary segmentation on normalized 
microarray intensity values corresponding to each SNP position assayed. All copy number variants were 
visualized and manually reviewed using the GMS tool ‘CnView’ and custom R scripts. 
 SVs were identified by a custom pipeline in the GMS essentially as previously described [1]. Briefly, the 
tool BreakDancer (version 1.4.5) was used with parameters ‘-g -h:-a -t -q 4 -d’. The resulting candidates were 
filtered via a GMS tool utilizing NovoCraft NovoAlign alignment of read assemblies created by Tigra [19]. SVs 
were also called with Manta (https://github.com/Illumina/manta) using default parameters. It produced a VCF 
(v4.1) file containing 367 candidate somatic structural breakpoints corresponding to translocations, inversions, 
deletions, insertions, and tandem duplications. 132 events passed the default filtering steps of Manta. All 
translocations were manually reviewed in IGV to determine potential genes affected. All translocations, 
deletions, and inversions were manually reviewed using both svviz [20] to realign reads to the predicted 
breakpoint sequence and IGV [21] to visualize coverage support. SVs passing this manual review are provided 
in Table S3. 
 The overall somatic mutation rate calculation for the second relapse tumor was determined by 
identifying the number of single nucleotide variants present in non repetitive regions of the genome that were 
successfully validated by custom capture and deep sequencing. To obtain a rate per Mb, this number was 
divided by the effective discovery space for these variants and multiplied by 1 million. The effective discovery 
space was the number of positions in the genome with sufficient coverage (>= 20x depth, base quality >= 20 
and mapping quality >= 20) after excluding repetitive regions. The size of the effective discovery space was 
determined to be 1,298,325,076 bp. 
 One SNV/SNP position (C/T at 2:221,177,686) was filtered in a custom way. A somatic SNV was called 
at this position in the patient’s second relapse WGS data (the sorted blasts sample). Careful examination of all 
data revealed that the patient’s germline genotype at this position was C/C, the patient’s tumor harbored a 
somatic C/T, the sibling allograft genotype was C/C, and by coincidence the second (MUD) allograft genotype 
was C/T. In other words, the patient by chance acquired a somatic SNV (C/T) at the site of a known 
polymorphism but where the patient was homozygous reference for the polymorphism (C/C). The patient’s 
sibling was also homozygous (C/C) but the second allograft donor was heterozygous (C/T). This created a 
confusing pattern of transmission for this single variant over the time points sequenced. This variant was 
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therefore removed from Figure 4 and Figure S10, but only for the time points sequenced after the MUD 
allograft (day 3,219 and day 4,024). 
 
Design and analysis of a custom capture array and validation sequencing 
A custom reagent of biotinylated DNA oligonucleotides was designed and ordered from Roche NimbleGen to 
allow capture and deep sequencing of candidate regions. These candidate regions consisted of four 
categories: (A) somatic SNVs identified in the second relapse by analysis of the WGS and exome data, (B) 
SNPs found to be heterozygous by analysis of the WGS data from the skin normal that also lie within large-
scale deletions found by analysis of the WGS data for the second relapse, (C) heterozygous SNPs from the 
normal skin data that occur in control (copy neutral) regions according to the second relapse data, and (D) all 
SNPs and exons of the FLT3 locus. A total of 5,628 regions were submitted for probe design. These regions 
included 2,403 candidate somatic SNVs, 2,429 SNP heterozygous sites tiled across large-scale deletions, 536 
heterozygous SNP sites tiled across control regions that were not copy altered, and 260 SNPs and exons of 
the FLT3 locus. A total of 27 large-scale deletion regions and 285 copy neutral control regions were tiled. 
SNPs in the deletion and control regions were required to have a VAF in the normal skin sample between 40% 
and 60%. Deletion regions were required to have a copy number difference between tumor and normal that 
was at least -0.25. Control regions were required to have a copy number difference greater than -0.1 and less 
than 0.1. SNPs determined to be heterozygous in the normal skin WGS data were required to have a minimum 
coverage of 20x to be included. The custom capture reagent was applied to eleven samples from eight time 
points during disease progression and sequencing achieved ~800-900x coverage for the targeted regions 
(Table S2, Figure 1). The purpose of this array was to validate somatic SNVs and deletions and to obtain 
accurate VAFs for validated somatic SNVs. These VAFs would be used to monitor disease burden and 
examine clonal architecture during disease progression (Figure 4). SNVs initially detected by WGS or exome 
were considered validated as somatic if they were adequately supported by the deep custom capture data. 
Specifically, we required that this custom capture data provide: (A) >50x coverage in both tumor 
(SB_d3072_A) and normal skin samples, (B) >0% VAF in the tumor sample, and (C) <1% VAF in the normal 
skin sample. This resulted in 1,921 high quality validated somatic variants. The mutations spectrum analysis 
and visualization depicted in Figure S5 was created using the GenVisR package 
(https://github.com/griffithlab/GenVisR) with variants from the master SNVs list (Table S7). Filters were applied 
to these variants requiring 50x coverage for tumor (SB_d3072_A) and normal samples. A VAF filter requiring ≥ 
20% (tumor) and ≤ 1% (normal) was applied leaving a total of 1,756 variants after removing indels. 
Expectations were calculated by randomly mutating the 1,756 variants passing filters with equal probability (⅓) 
100 times and taking the average. The variance of this method was found to be 6.02e-5. 
 
RNA-seq analysis - alignment, expression estimation and fusion detection 
Analysis of RNA-seq data including read alignment, estimation of transcript abundance, and fusion detection 
were conducted essentially as previously described [22]. Briefly, RNA-seq analysis was conducted using the 
GMS rna-seq processing profile ‘December 2014 OvationV2 RNA-seq’. RNA-seq reads were pre-processed 
with flexbar [23] version 229 with parameters ‘--adapter CTTTGTGTTTGA --adapter-trim-end LEFT --nono-
length-dist --threads 4 --adapter-min-overlap 7 --max-uncalled 150 --min-readlength 25’. The resulting trimmed 
reads were aligned to the human reference genome (version GRCh37 also known as hg19) using the aligner 
TopHat version 2.0.8 [24]. TopHat alignments were performed with default parameters except ‘--bowtie-
version=2.1.0’. Quality of the resulting RNA-seq BAM file was assessed by FASTQC version 0.10.0 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and samstat version 1.08 [25]. Transcript 
abundances measure as Fragments Per Kilobase of transcript per Million mapped reads (FPKM) values were 
generated by Cufflinks version 2.1.1 with parameters ‘--num-threads 4 --max-bundle-length 10000000 --max-
bundle-frags 10000000’. Additionally, during transcript abundance estimation a mitochondrial and ribosomal 
RNAs were ‘masked’ (excluded) from consideration by Cufflinks using the ‘--mask-file’ parameter and a GTF 
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file containing these transcripts. Mitochondrial and ribosomal transcripts were identified using the ‘biotype’ field 
in a transcripts GTF file obtained from Ensembl. RNA fusions were predicted by use of ChimeraScan version 
0.4.6 [26] with parameters ‘-p 2 --bowtie-version=0.12.7 --reuse-bam=0 --total-frag-limit=5 --span-frag-limit=1 --
fusion-partner-limit=3’ and Integrate version 0.2.0 [27] with default parameters. 
 
Outlier expression analysis.  
Gene transcripts were identified as outliers through a multiple filter pipeline (Figure 3A). Transcripts without at 
least one control with an FPKM >= 0.5 were discarded. The control FPKM values were used to approximate 
normal distributions for each transcript, and z-scores were calculated for each transcript using the ALL1 FPKM 
values. These z-scores were used as a secondary filter by keeping only the top 1% of genes by z-score (Table 
S3). This list of putative driver genes were submitted to DGIdb [28] (http://dgidb.genome.wustl.edu/), filtering 
for candidates that were considered clinically actionable, unambiguous, and with known drug-gene 
interactions. To allow comparison of RNA expression values from ALL1 to healthy tissue (Figure 3C) we also 
obtained RNA-seq data from eight healthy donors [29] (dbGAP Accession: phs000159). In this previous study, 
bone marrow aspirates from healthy donors were separated into populations of CD14+ (monocytes), CD19+ 
(B-cells; CD33-/CD19+), CD3+ (T-cells; CD33-/CD3+), CD34+ (hematopoietic progenitors), PMN (neutrophils; 
CD33-/CD15+/CD16+), and Pro (promyelocytes; CD14-/CD15+/CD16low/-) cells using fluorescence-activated cell 
sorting as previously described [29]. Finally, comparisons of ALL1 microarray expression data from sorted 
bone marrow to microarray expression data from 207 B-cell leukemia bone marrow (N=131) or peripheral 
blood (N=76) samples with >80% blasts (Figure 3D) from Kang et al. 2010 (GEO Accession: GSE11877, [30]). 
The ALL1 sample was processed (in triplicate) using the same microarray platform (Affymetrix Human 
Genome U133 Plus 2.0 Arrays). 
 
Definition of “founding” variants 
To identify likely “founding” variants of the second relapse (SB_d3072_A) (those likely to be present in every 
tumor cell rather than a subclone) a high quality set of variants were selected as follows. First, readcounts and 
VAFs were obtained from the combined (exome, wgs, capture) sequence data using bam-readcount (0.7) for 
all somatic variants within the capture regions. To ensure the accuracy of VAF estimates for this analysis, 
filters were applied before clustering to limit the somatic variants to copy neutral and LOH-free regions (i.e. 
variants in deletion regions were excluded). Similarly, variants with a variant allele frequency greater than 5% 
in the normal skin (day 42) sample were removed. A coverage cutoff was also applied requiring a variant to be 
covered at or above the second decile in both the normal and tumor sample effectively removing variants 
within an allosome and ensuring adequate depth. 1,588 variants remained after filtering with an average 
coverage of 1,293x in the sorted blast sample (‘SB_d3072_A’). A k-means clustering algorithm was used to 
identify clusters of somatic variants with similar VAF (using k=3, n=100). Variants within the highest density 
cluster centered around 50% VAF were classified as founding with remaining clusters designated as subclones 
(Figure S9-S10). To determine the frequency of founding variants originally identified in the second relapse 
sample (‘SB_d3072_A’) at different time points, variants with such a designation were extracted for 12 
samples. A variant was considered for this analysis if the variant had ≥ 20x coverage for each individual 
sample. Additionally, VAF filters unique to each sample, mirroring those filters used for the purity estimate, 
were applied (Table S1, see below for more details on purity estimation). The number of founding variants 
from the second relapse samples detected in each earlier or later sample are provided in Table S1. 
 
Tumor purity, contamination, and clonal architecture 
An estimate of both tumor purity and sample contamination, defined as the proportion of tumor cells within a 
sample and the proportion of cells contributed by allografts received by the patient was performed. These 
estimates were derived from analysis of VAFs obtained after combining all sequence data available (WGS, 
exome, and capture) for each sample to create a single master variant read counts table (Table S7). 
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To estimate tumor purity, founding variants were first identified in the sorted blasts sample from relapse 
2 (described above). To ensure sufficient depth, variants were required to have >= 20X coverage within each 
sample. VAF cutoffs specific to each sample (ranging from 1-10%) were applied to ensure that variants 
acquired after the time point analyzed were not included in purity calculations (Figure S10). Purity estimates 
were calculated for each sample by multiplying the VAFs by two and taking the median for each sample. 
To estimate potential contamination of each patient DNA sample by DNA from the sibling allograft donor, we 
analyzed 536 heterozygous control SNPs on the custom capture panel (see detailed custom capture 
description above) and used three samples as reference points. Heterozygous SNPs in the patient were 
determined by examination of the skin normal sample obtained at day 42 during the first remission. Since 
these variants were heterozygous in the ALL1 patient we expected a VAF close to 50%. In samples obtained 
after an allograft, we expect deviation from 50% for a subset of SNPs that are homozygous in the donor. To 
identify SNPs homozygous in the DNA of the allograft donor we examined the sorted lymphs sample, where 
cells corresponding to the sibling allograft donor were purified as a control (see detailed sample description 
above). The degree of deviation from the expected 50% for these variants was used as a measure of the 
percent contamination of each patient sample by the donor’s bone marrow cells (Figure S6). To calculate 
these estimates, VAFs for the control SNPs were extracted from each BAM file and a coverage filter was 
applied requiring a position to be covered above the second decile for each time point. Variants in CNV/LOH 
regions or within an allosome were removed for this analysis leaving 414 heterozygous control SNPs. 
Heterozygous variants (60 ≥ x ≥ 40 % VAF) in the normal that were homozygous after the first allograft 
according to the sorted lymph sample (x < 40 or x > 60 % VAF) were selected and contamination rates 
calculated (contamination rate = |variant position - 50| x 2). Variants that were heterozygous in the normal 
sample, heterozygous in the sorted lymph sample, but homozygous after the second allograft were selected 
and contamination rates calculated for the second allograft. The median of these calculations is reported in 
Table S1. Note that since all samples with the exception of “M_d3219_I” and “BM_d4024_I” were obtained 
prior to the second allograft, we expect no contamination from this genotype prior to day 3,219. This second 
estimate was performed to gauge the measurement error of the approach. 

The clonality analysis depicted in Figure S9 was performed using a modification of the approach 
described in Miller et al. 2014 [31]. Briefly, variants targeted by the custom capture sequencing described 
above were obtained and limited to those that were somatic and supported by both WGS and custom capture 
data. Filters were applied requiring that: (A) the VAF in the normal skin sample be less than 5%, (B) normal 
coverage was greater than the 2nd decile (867x) and (C) tumor coverage was greater than the 2nd decile 
(958.4x). Variants within LOH or CNV regions were removed and a clustering algorithm was applied (K-means, 
k=3, trials=100). Variants plotted were ceilinged at a coverage of 2,000x (i.e. set equal to 2,000x for display 
purposes in this plot). 
 
Neo-epitope prediction 
We used a pipeline ‘pVAC-Seq’ (https://github.com/griffithlab/pVAC-Seq) developed at the McDonnell Genome 
Institute to assess candidate epitopes resulting from somatic mutations. Briefly, each of the coding missense 
mutations identified in ALL1 was annotated with predicted amino acid changes, which were then translated into 
a 21-mer amino acid FASTA sequence, with ideally 10 amino acids flanking on each side of the mutated amino 
acid. This FASTA was then evaluated through the HLA class I peptide binding algorithm NetMHC 3.4 [32, 33] 
to predict high affinity dextramer (10mer) peptides for the mutant as well as the wild type. This was done for all 
five patient alleles- HLA-A02:01, HLA-A31:01, HLA-B08:01, HLA-B18:01 and HLA-C07:01 and differences in 
binding affinities were calculated. The candidate neoepitope peptides were filtered to include only those with 
binding affinity IC50 value < 500nm and the best representative neoepitopes per mutation across all alleles 
were considered for further analysis (Table S3). 
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Cloning and sequencing of full length EP300-ZNF384 clones 
To verify the structure of the EP300-ZNF384 fusion (Table 1) predicted in the whole genome data by 
Breakdancer [34] and Manta (https://github.com/Illumina/manta) and transcriptome data by ChimeraScan [26] 
and Integrate [27], we performed full length cDNA cloning and sequencing to capture the fusion sequence. 
Amplicons for cloning were generated from cDNA obtained from the second relapse (sample 
‘SB_d3072_A_RNA’) using primers targeting the 5’ UTR of EP300 and 3’ UTR of ZNF384 as follows: EP300 
5'UTR (5’-GCGAATTTGTGCTCTTGTGC-3’) and ZNF384 3'UTR (5’-CCTGTGAAGGAAAGCCGTGA-3’). 
Amplicons were ligated into the cloning vector PCR2.1 and were subjected to a primer walking sequencing 
strategy on an ABI Sanger sequencing instrument. A total of 25 sequencing primers were used. Sequence 
assemblies for each clone were created by use of a Phred/Phrap/Consed pipeline [35-37] followed by manual 
sequencing finishing. The resulting consensus sequence was exported for each clone to determine the precise 
cDNA breakpoint of the EP300-ZNF384 and to confirm the presence of two somatic missense mutations that 
were found to be in linkage with the fusion event. Two EP300-ZNF384 clones were sequenced in this manner. 
These clones agreed exactly on the sequence of the breakpoint and the presence of two somatic missense 
mutations in the EP300 portion of the fusion. These two somatic mutations were also observed in the WGS, 
Exome and RNA-seq data from the second relapse tumor. Each clone also contained three additional 
differences that were not shared between the two clones, thus representing either sequencing or cloning 
artifacts. To obtain a clone without artifacts we produced indexed libraries for an additional 34 clones and 
sequenced them on an Illumina MiSeq instrument. The resulting reads were aligned against a custom 
reference sequence consisting of the expected EP300-ZNF384 sequence based on the human reference 
genome and our knowledge of the cDNA breakpoint. All 34 clones shared the same fusion breakpoint and the 
two somatic missense mutations observed in the first two clones. These clones had between 1 and 9 artifacts 
each. One clone ‘MC15b’ had only a single base change in the last codon of the open reading frame of the 
fusion and this mutation was conservative in that it maintained the stop codon (TAG -> TAA, Stop -> Stop). 
This clone was used for functional experiments. 
 
Personalized assays for disease monitoring 
Three personalized genomic assays were developed to monitor disease in the patient. These were based on 
three types of somatic events: single nucleotide variants (SNVs), large-scale deletions, and the EP300-
ZNF384 structural variant. To monitor disease burden by use of somatic SNVs we started with 1,921 high-
quality validated variants discussed in the custom capture and validation sequencing section above. These 
variants were further filtered down to 1,588 variants by limiting variants to those passing filters identical to 
those used in Figure S9 (Methods). The VAFs for remaining variants were calculated by combining all 
sequence data and plotted for each disease time point using the SinaPlot method 
(https://github.com/sidiropoulos/sinaplot). The primary (day 0 clot and slide) samples had an additional 40x 
coverage filter applied to compensate for the low depth compared to the capture time-point data leaving 270 
and 581 variants, respectively (Figure 4A). The same approach was used to compare the final time point 
subjected to deep capture sequencing (day 3,219) to the persistent relapse sample (day 3,107) and disease-
free normal skin sample (day 42) (Figure 4C).  

To assay tumor burden by quantitative FISH, four deletions were assayed by interphase nuclei FISH 
using custom probes for a 5 Mb deletion on chromosome 12 (12p13.2 - 12p12.3), a 15 Mb deletion on 
chromosome 18 (18p11.32 - 18p11.1), a 26 Mb deletion on chromosome 20 (20p13 - 20p11.1) and a 39 Mb 
deletion on chromosome 9 (9p24.3 - 9p13.1). Refer to Table S3 for additional details on each of these deletion 
regions. 200-1000 nuclei were assessed for each time point in the quantitative interphase nuclei FISH assay 
and the percent of cells were recorded and plotted for each time point examined (Figure 4B).  

Finally, to assay the presence of EP300-ZNF384 throughout progression of the tumor (Figure 4D) we 
performed qualitative PCR using primers that flanked the genomic fusion breakpoint and were expected to 
produce a 168 bp product from genomic DNA. This assay was applied to genomic DNA isolated from the day 
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42 normal skin (‘Skin_d42_I’), day 0 marrow core (‘MC_d0_clot_A’), day 42 marrow (‘BM_d42_I’), day 1,893 
relapse 1 (‘M_d1893.1_A’), and day 3,072 relapse 2 (‘SB_d3072_A’) samples. Primer sequences for the 
EP300-ZNF384 DNA breakpoint were as follows, Left Primer 5’-CTAGAGTAACAGGGACCAAAGAGTA-3’ 
(targets EP300 side of breakpoint), Right Primer 5’-GACCCACACATGCATCAAAACA-3’ (targets ZNF384 side 
of breakpoint). To further assess the presence of EP300-ZNF384 throughout progression of the tumor we 
performed quantitative PCR (qPCR) using primers that flanked the genomic DNA fusion breakpoint. This assay 
was applied to genomic DNA obtained from the day 42 normal skin (‘Skin_d42_I’), day 42 marrow 
(‘BM_d42_I’), day 1,893 relapse 1 (‘M_d1893.1_A’), and day 3,072 relapse 2 (‘SB_d3072_A’) samples, and a 
sample obtained after the final remission. The same primers used for PCR described above were used for this 
qPCR assay. Positive control primers for the qPCR targeted HBB (Beta Globin) with sequences as follows: Left 
Primer 5’-CTAATGCCCTGGCCCACAAG-3’, Right Primer 5’-AGATGCTCAAGGCCCTTCATA-3’. A series of 
standards was created using genomic DNA from the second relapse (sorted blasts) sample diluted to 1:1, 1:10, 
1:100, 1:1000, and 1:10000. The 1:1 sample was used as a positive control in each run. Negative controls 
consisted of water, genomic DNA from the skin obtained from the patient during remission (day 42), and skin 
from an unrelated sample. The values shown in Figure 4D were calculated as follows: ( 2!!!"#). First a delta 
cycle threshold (delta CT) value was calculated for each replicate by subtracting the Beta Globin CT value from 
each sample CT value. Next a delta-delta CT value was calculated by subtracting the delta CT value for the 
1:1 positive control from the sample delta CT value. A more intuitive abundance value was then calculated as 
2-(delta-delta CT value). The geometric mean of three such values for each sample (technical replicates) was 
calculated. Error bars display the 95% confidence interval (assuming normal distribution) for each mean. 
Finally, all values were subjected to a square root normalization for display purposes. 
 
Allele specific assay of FLT3 transcript expression using a heterozygous FLT3 SNP 
To assay allele-specific mRNA expression, total RNA was purified from aspirate smears from archived bone 
marrow samples. The aspirate smear coverslips were removed by soaking overnight in xylene. Tissue was 
scraped off coverslips with clean razor blades into microcentrifuge tubes, and then washed and pelleted in 
70% ethanol to remove the xylene. Pellets were resuspended in 100ul RNA lysis buffer from Quick-RNA 
MicroPrep Kit (Zymo Research, Irvine, CA), and purified according to kit instructions. cDNA libraries were 
made from each sample using Quantitect Reverse Transcription Kit (Qiagen, Valencia, CA) and subjected to 
40 cycles of PCR (qPCRBIO SyGreen Hi-Rox, PCRBiosystems, St. Louis, MO) using primers designed to 
amplify a 188bp amplicon that included a heterozygous C/T single nucleotide polymorphism (Left primer 5’-
AATGGGTGCTTTGCGATTCA-3’, Right Primer 5’- CAATGTGGTCTGAGGAGTTTGA-3’). This SNP is located 
at cDNA position +602 from the transcriptional start site (dbSNP version 142 ID: rs1933437). In genomic 
coordinates the SNP is at ‘13:28,624,294(G/A)’ (reference build GRCh37). To obtain digital read counts for 
each allele, a second round of PCR was performed using barcoded versions of the same primers used in the 
first round. PCR product from each sample was purified using Agencourt AMPure XP beads (Beckman 
Coulter, Indianapolis, IN), pooled and sequenced on the Ion PGM System (Thermo Scientific, Waltham, MA). 
 
Cloning and sequencing of FLT3 intron 1 indel mutations 
To validate the genomic sequence of the FLT3 intron 1 indel mutations (Figure S40) PCR amplicons flanking 
each indel were generated, cloned and sequenced. The primers used to generate these amplicons were as 
follows: Indel1 Left Primer 5’-TGGAAATTCCCAGAATCCAG-3’, Indel1 Right Primer 5’-
GGGCCCAAAGAGGATAAATG-3’, Indel2 Left Primer 5’-CATGGTGGACAGCACCTG-3’, and Indel2 Right 
Primer 5’-GACACTGGAGGTTTGCCACT-3’. Amplicons were ligated into the cloning vector PCR2.1. A total of 
8 clones were generated, one for each indel using template DNA from the relapse 2 tumor, and 3 for each 
indel using template DNA from the normal skin. Each clone was subjected to a primer walking sequencing 
strategy on an ABI Sanger sequencing instrument. A total of 8 sequencing primers were used. Sequence 
assemblies for each clone were created by use of a Phred/Phrap/Consed pipeline [35-37] followed by manual 
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sequencing finishing. In addition to Sanger sequencing, additional amplicons for Indel1 and Indel2 were 
generated from multiple disease time points, indexed, pooled and sequenced on an Illumina MiSeq instrument. 
The two outermost primers (Indel1 Left and Indel2 Right) were also used to generate an amplicon of ~1,200 bp 
that would contain both FLT3 indel 1 mutations if they were in linkage (they were not). 
 
Integration of WGS, Exome and RNA-seq data and clinical interpretation 
To produce a final report for the ALL1 case and generate starting points for the figures of this manuscript we 
used the GMS “clin-seq” (aka “med-seq”) pipeline to integrate results from the McDonnell Genome Institute’s 
automated pipelines for read alignment, somatic variant detection, and RNA-seq analysis [2]. This pipeline 
attempts to cross-validate variant calls from multiple variant calling algorithms and complementary data sets 
such as WGS and exome. For example, fusion candidates identified in the RNA data were intersected with 
interchromosomal translocation candidates identified in the genomic DNA data. A detailed final report of SNVs 
and indels was generated to place all variants in the context of known polymorphism data from dbSNP and 
1000 genomes and to aggregate read support across all sequence datasets generated for this work (Table 
S3). To assess the expression status of SNVs and small indels identified in the genomic DNA, readcounts and 
VAFs were generated for these site from the RNA-seq BAM file using bam-readcount 
(https://github.com/genome/bam-readcount). All single nucleotide variants and small indels were compared to 
Cosmic [14] to identify mutations occurring in known hotspots. For further details on the integrative analysis 
performed by the clin-seq pipeline, refer to Griffith et al. 2015 [2]. To assist in the interpretation of biological 
and clinical relevance all affected genes were annotated with results from the Drug Gene Interaction database 
(DGIdb) [28] (http://dgidb.genome.wustl.edu/), and all variants were used to query the Database of Canonical 
Mutations (DoCM) (http://docm.genome.wustl.edu/) and Clinical Interpretation of Variants in Cancer (CIViC) 
resource (https://civic.genome.wustl.edu/). 
 
SUPPLEMENTARY RESULTS 
 
The first individual blood cancer [38] and solid tumor [39] whole genomes were sequenced and published 
within the last several years and were followed by extensive surveys of cancer exomes (and some whole 
genomes) by The Cancer Genome Atlas (TCGA) [40] and International Cancer Genome Consortium (ICGC) 
[41]. These efforts (and also sequencing focused on integrating exomes and transcriptomes) have 
considerably expanded our understanding of the recurrent mutations, structural variants, and copy number 
alterations that occur in leukemia cohorts [42-45].  
 
Genome analysis 
The patient (hereafter referred to as ALL1) was appropriately consented for whole genome sequencing on an 
IRB approved protocol. We performed a combination of genotype microarray analysis, expression microarray 
analysis, whole genome sequencing (WGS), whole exome sequencing, transcriptome sequencing, custom 
capture sequencing, qPCR, and quantitative interphase FISH. Although the immediate analysis focused on the 
second relapse sample, we were able to ultimately obtain 18 samples from 9 time points throughout disease 
progression to better understand the evolution of this tumor over time (Figure 1A, Table S1). The specific 
advantages of each technology were leveraged to create a comprehensive combinatorial analysis of the tumor, 
leading to the development of custom disease monitoring methods, which continue to be employed in disease 
management of the patient (Figure 1B). Exome and whole genome sequencing were performed for a matched 
skin normal, two leukemic bone marrow samples from the original presentation, the first relapse marrow, and 
the second relapse marrow. Both original tumor samples were fixed archival samples: one was from a bone 
marrow clot section and the other obtained from a fixed and decalcified bone marrow biopsy section. Both 
yielded heavily degraded DNA. The first relapse sample contained a low percentage of tumor cells. The 
second relapse (post-allogeneic transplantation) was a fresh sample from which blasts were sorted so that 
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contaminating normal cells from the transplant donor would not confound the analysis (CD45 dim, low side 
scatter, CD19+/CD34+) (Figure S2, Methods). Exome sequencing of these samples achieved 179-264x 
coverage and whole genome sequencing achieved 30-66x coverage (Table S2, Figure S3). WGS and exome 
data from all tumor samples were analyzed to exclude the possibility of contamination or sample swaps 
(Figure S4). The majority of de novo variant discovery was performed using genomic DNA obtained from the 
sorted second relapse sample. The status of these individual variants was then assessed retrospectively at the 
earlier time points. Based on the detection and validation of 1,921 somatic variants, we estimated a mutation 
frequency of ~1.48/Mb in the second relapse sample. The genome of the second relapse exhibited enrichment 
for single nucleotide variants (SNVs) that are transitions (Figure S5), and a substantial number of small 
insertions and deletions (indels), large-scale deletions, translocations, and other structural variants (Table S3). 

Analysis began with the search for clinically relevant somatic mutations in the whole genome and 
exome data of the second relapse. Variant candidates identified in these data were used to design a custom 
capture reagent for 5,628 regions of interest (Methods). This capture reagent was used to perform deep 
(~800-900x) validation sequencing for variants discovered by WGS or exome, and later, to assess the 
presence of each variant at additional samples/time points not previously sequenced (Table S2). Additional 
regions of interest were used to assess both large-scale deletions and sample quality and purity. Since the 
second relapse sample was obtained after the patient received a matched sibling allograft, we were concerned 
that some somatic variants identified in the second relapse might actually represent contamination from the 
sibling donor cells despite our use of sorted blasts for the analysis (Figure S3). To assess this issue we 
included hundreds of SNPs in our custom capture reagent that were found to be heterozygous in the normal 
skin sample obtained from the patient. Analysis of these variants demonstrated that somatic variants observed 
in the sorted blasts from the second relapse at a VAF greater than ~0.5% were unlikely to be artifacts of 
contamination (Methods, Figure S6, Table S1). Of the 2,403 candidate somatic SNVs included in the custom 
capture design, 2,339 (97.3%) achieved ≥ 50x coverage in both the normal skin and sorted blasts samples and 
of those 1,931 (80.4%) were validated as somatic (Methods). We also defined a set of high quality variants 
(Methods) that excluded SNVs within regions of copy number variation (CNV) or loss of heterozygosity (LOH) 
(Figure S7-S8). The resulting 1,588 validated SNVs in copy neutral regions were used to model the clonal 
architecture of the second relapse tumor: a founding clone and at least two subclones were apparent (Figure 
S9). The dominant cluster of high quality VAFs identified in the second relapse was used to estimate tumor 
purity, resulting in purity estimates of ~85% for the primary sample, ~16% for the first relapse sample, and 
~94% for sorted blasts from the second relapse (Methods, Table S1, Figure S10). Extending our clonality 
analysis to the additional unsorted sample obtained at second relapse (day 3,072), we observed at least three 
subclones, suggesting that the sorting of blasts resulted in clonal skewing that obscured one subclone (Figure 
S10). Based on pairwise comparisons of VAFs observed at primary, first relapse, and second relapse, we 
identified events that persisted throughout the course of the disease, suggesting that they were present in the 
original founding clone. We also observed variants that were lost during disease progression, and variants that 
were acquired or enriched during progression (Figure S11-S12). Based on these observations, we infer that at 
least six distinct subclones existed at some point during the disease. While insufficient to create a complete 
model of clonal evolution [1], we have sufficient data to conclude that a dramatic shift in clonal architecture 
occurred between the initial presentation and the second relapse. For example, of 898 validated mutations in 
the dominant clone of the second relapse (i.e. present in every tumor cell of that sample), only 273 (30.4%) 
were detectable in the primary “clot” tumor despite adequate coverage (≥ 20x coverage) for 723 of these 
mutations (Table S1, Figure S10, Methods). Most variants that appear to be ‘gained’ in the relapse were likely 
present in the primary but were present within a low frequency subclone that below our limit of detection [1]. 
This gain and loss of subclones is consistent with a recent report evaluating the clonal architecture of pediatric 
ALL [46]. 

Potentially relevant somatic variants were identified by integrated analysis of all data using multiple 
algorithms for detection, annotation and visualization of each type of variant (Table 1, Table S3 and Methods). 
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Germline variant analysis was also performed, but did not reveal any established candidates for susceptibility 
to B-ALL (Methods, Table S4). A total of 98 somatic SNVs with predicted coding effects were identified across 
the primary and two relapses. Among these were two missense mutations in EP300 (P250H and P252S) 
(Figure S13) and a nonsense mutation within NF1 (R2258*) (Figure S14). The EP300 mutations are in linkage 
with each other and were present at a high variant allele frequency (VAF) in the primary sample and in both 
relapses. The NF1 nonsense mutation, previously observed three times in the COSMIC database [14], 
appeared to have been acquired or enriched between the initial presentation and the first relapse, and 
exhibited the highest VAF of all coding mutations in the second relapse (Table S3). Among nine validated 
small insertions or deletions (indels), a 14-bp frameshift mutation was identified in SETD2 (Figure S15), a 
tumor suppressor that influences chromatin state and transcriptional elongation. 

In the second relapse sample, we observed 25 regions of copy number alteration including large-scale 
deletions as well as focal amplifications and deletions from the whole genome sequence analysis (Methods, 
Table 1, Table S3 and Figures S16-S31). The majority of deletion events were supported by corresponding 
evidence for loss of heterozygosity (LOH). We observed only a single copy neutral LOH event affecting most of 
chromosome 17 (Figure S27). Based on the magnitude of LOH observed, this event appears subclonal and is 
the likely explanation for the higher than 50% VAFs observed for the NF1 R2258* mutation. Focal events 
defined as < 5 Mb (0.2 - 4.8 Mb) included deletions affecting SETD2 (3p21.31, Figure S17) and IKZF1 (also 
known as Ikaros, 7p12.2 - 7p12.1, Figure S20). The IKZF1 deletion is approximately 70 Kb in size, affects 
exons 4-8 (of reference transcript NM_006060) consequently removing the N-terminal end of the protein, and 
possibly giving rise to a dominant negative form previously described in childhood ALL [47]. This region of 
IKZF1 is unusual: near the deletion breakpoint, we observed an assembly gap in the reference genome 
sequence build (GRCh37). It is possible that there is a complex repetitive element or segmental duplication 
that might be related to instability and focal deletion at this site. Several large-scale deletions (> 5 Mb) were 
also detected, including one affecting the tumor suppressor RB1 (13q14.13 - 13q14.3, Figure S26) and 
another affecting ETV6 (aka TEL) and CDKN1B (12p13.2-12p12.3, Figure S24). A large complex deletion 
associated with multiple breakpoints and rearrangements was observed on 10q (10q24.1-10q24.33, Figure 
S22) that affects multiple cancer genes including TLX1, NFKB2, SUFU, and NT5C2. Based on the coverage 
depth of each CNV event, we estimated whether it was likely to be heterozygous (single copy loss), 
homozygous (two copy loss), or heterozygous in a sub-clonal population of the tumor (Table S3) (with the 
caveat that it would be difficult to tell from the WGS CNV and LOH data the difference between a two copy 
deletion in a sub-clone, and a single copy deletion in the founding clone). Based on these estimates it seemed 
likely that the focal chromosome 7 deletion (IKZF1, Figure S20), and chromosome 12 (CDKN1B and ETV6, 
Figure S24) and chromosome 13 losses (RB1, Figure S26) were heterozygous and present in the dominant 
clone of the second relapse. In addition to the large-scale CNVs described above we identified smaller 
deletions and other structural variants (SVs) by analysis of read pairing and alignment data (Methods). For 
example, we detected a heterozygous ~13 Kb deletion of the first exon of the transcription factor XBP1 (Table 
1, Figure S32) and a 544 bp inversion of the 3rd exon of polymerase subunit POLR2C. Finally, SV analysis of 
the WGS data for second relapse predicted three translocations potentially resulting in fusion genes (Table S3, 
Figure S33-S37). One of these, resulting from a balanced translocation t(12;22)(p13;q13) (Figure S33) was 
predicted to result in an EP300-ZNF384 fusion gene and protein (Figure S34). The genomic breakpoint of the 
fusion was validated by RT-PCR (Figure S35A), and qPCR of genomic DNA demonstrated that this 
translocation event was present in the primary tumor samples obtained at diagnosis (Figure S35B). For this 
reason, the EP300-ZNF384 fusion is a candidate initiating event for this tumor. This hypothesis is supported by 
a recent study that identified the same fusion in two B lymphoblastic leukemia cases [48]. Two additional gene 
fusions, TBX19-SUFU (Figure S36) and ADCY10-CC2D2B (Figure S37) were predicted from the WGS data 
but neither of these was predicted to result in an open reading frame. While the genome analysis described 
above led to the identification of several events relevant to the biology of this tumor (summarized in Figure 2 



14 

and Table 1), none suggested treatment strategies once the patient was determined to have refractory disease 
following salvage therapy. 
 
Transcriptome analysis 
Several transcriptome analyses and methods for integration of RNA-seq data with WGS and exome data were 
developed during the course of this analysis. At the second relapse, 35 coding somatic SNVs were present 
and 62% of these were confirmed as expressed by RNA-seq (Figure S38). RNA-seq also confirmed 
expression of the EP300-ZNF388 fusion (Figure S39A) described above. Full length cDNA cloning and 
Sanger sequencing established the complete fusion RNA sequence. This cDNA includes an ORF that 
maintains the 5’ reading frame of EP300 and 3’ reading frame of ZNF384, including the entire C2H2 zinc finger 
domain (Figure S34B). Gene fusions with ZNF384 as the 3’ partner (but different 5’ partners) have been 
previously reported in ALL and other leukemias [49-52] (Figure S39B). Fusions involving EP300 have not 
been previously described. We used predictive analysis of microarray (PAM) method [53, 54] to establish that 
the patient was not of the ‘Ph-like’ subtype (Methods) associated with poor outcome, increased prevalence 
with age, and the presence of kinase-activating mutations that may be targetable [55]. Additional analysis 
using the ‘ROSE’ algorithm [56] clustered the patient with ‘R5’ cases that are enriched for fusions similar to the 
EP300-ZNF384 event we observed. 

Comparison of expression data from the second relapse to several sample cohorts was used to identify 
possible outlier expression of genes relevant to B-ALL treatment (Methods, Figure 3). Sample cohorts for 
comparison consisted of sorted blood cells from healthy donors, and 207 additional B-ALL tumors from 
pediatric patients. To identify outlier genes, a multiple-step filter approach was taken, selecting for differentially 
expressed, clinically actionable, and druggable genes using a combination of statistical thresholds and the 
Drug-Gene Interaction database [28] (Methods, Figure 3A). The resulting four potential gene targets were 
FLT3, PDGFRB, WT1, and TUBB3 (Table S3). Of these, the fms-related tyrosine kinase, FLT3, had an 
estimated transcript abundance that was several orders of magnitude above the other three. Evaluation of the 
RNA expression estimates of FLT3 in ALL1 and controls revealed an aberrant overexpression of this gene in 
the second relapse sample of ALL1 (Figure 3). FLT3 was highly expressed in the second relapse in both the 
absolute sense (i.e. when compared to all genes expressed in that tumor, Figure 3C), as well as in the relative 
sense (i.e. when compared to other B-ALL samples, Figure 3B, 3D). In the second relapse sample, FLT3 had 
an estimated expression level (FPKM of 108.0) that placed it within the top 0.51% of all genes (Table S5). 
FLT3 expression in the second relapse was also an outlier compared to blood cell types sorted from healthy 
donors, including hematopoietic stem and progenitor-enriched CD34+ fractions (Figure 3B, 3C) as well as 
additional B-ALL samples from Kang et al. 2010 (Figure 3D) [30]. The overexpression of FLT3 was confirmed 
orthogonally by evaluation on an exon array platform, in triplicate, and was compared directly to exon array 
data from other studies (Methods). 

We investigated whether cis-acting regulatory mutations might be increasing FLT3 transcription levels. 
We scanned for potential regulatory somatic variants in the ALL1 second relapse WGS data. While we did not 
find any promoter mutations, we did find two somatic indels in a small region of FLT3 intron 1 (Figure S40). 
Amplicon sequencing designed to flank both of these mutations revealed that they were not in linkage (i.e. both 
alleles had a different somatic FLT3 intron 1 mutation). This raised the possibility that each mutation 
independently increased expression of its own allele. To test this, we made use of a heterozygous C/T single 
nucleotide polymorphism (SNP) in exon 2 (Methods). We reasoned that acquisition of each indel should result 
in an allele-specific increase in FLT3 expression that could be assessed by the C:T ratio of the exon 2 SNP in 
RNA derived from that sample. Since only one of the indels was present at a high VAF at first relapse (day 
1,893), mRNA isolated from that time point should predominantly represent a single allele, and should be 
associated with skewed expression of the SNP. RNA was purified from archived bone marrow biopsies taken 
at diagnosis (day 0), first relapse (day 1,893), and second relapse (day 3,072). As a control, RNA was isolated 
from a human B-ALL cell line (REH) that over-expresses FLT3, and is wild type for the exon 2 SNP (C/C). We 
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used RT-PCR to amplify a short fragment containing the exon 2 SNP followed by digital PCR to compare the 
contribution of each allele to the total FLT3 mRNA at each time point. We found that at each time point—
diagnosis, first relapse, and second relapse—the relative contribution of each allele to total FLT3 mRNA was 
equivalent, suggesting that the intron 1 indels do not promote FLT3 transcription. Further, this SNP was 
expressed equally from both alleles in the second relapse sample in RNA-seq data (50.5% VAF based on 
3,913 reads covering the SNP position). Therefore, these data clearly indicate that both FLT3 alleles were 
massively overexpressed in the second relapse sample, suggesting that the gene was activated in trans by an 
unknown mechanism. 
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SUPPLEMENTARY FIGURES 
 
Figure S1. Cytogenetics summary. (A) Results of a FISH using a break apart ETV6 probe with 5’ and 3’ in 
red and green colors. A normal signal would be yellow and if it rearranged you will see a red and a green. In 
our case we just see a loss of one yellow- indicating that the whole ETV6 locus was deleted. (B) A metaphase 
spread obtained at second relapse. Note evidence for a large scale deletion on chromosome 12 (where ETV6 
is located). (C) FISH for ETV6 and ETV6-RUNX1 fusion performed on tumor cells from the second relapse. 
Both assays indicate loss of a single copy of ETV6 but the ETV6-RUNX1 fusion is not detected. 
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Figure S2. Sorting of blasts and lymphocytes from the second relapse 
The second relapse sample used for WGS and variant discovery was obtained at day 3,072 after the patient 
had received an allograft from his brother. To obtain a sample from the second relapse that would not be 
substantially contaminated by cells from the sibling donor, the bone marrow sample obtained at second 
relapse was subjected to the following sort. Blasts and lymphocytes were sorted concurrently from the same 
second relapse sample by CD45 and side scatter (lymphocytes were CD45 bright with low side scatter and 
blasts were CD45 dim with low side scatter). We then collected CD19+/CD34+ cells in the blast gate. This 
sample is referred to as ‘SB_d3072_A’ in this work. As a control, the lymphocytes were also sorted and 
subjected to custom capture sequencing along with samples from other time points throughout disease 
progression (Methods). This sample is referred to as ‘SL_d3072_I’. 
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Figure S3. Sequencing coverage summary 
Coverage depths for sequencing alignments of samples in this study are summarized as heatmaps. Data are 
shown for whole genome sequencing (A), custom capture sequencing (B), exome capture sequencing (C), and 
RNA sequencing (D).  
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Figure S4. Identity SNP analysis of all sample subjected to whole genome sequencing 
A summary of 24 ‘identity SNPs’ used to confirm the genotype of five samples obtained from our patient and 
subjected to whole genome sequencing. Variant allele frequencies (VAFs) were calculated for these 24 SNPs 
for all five samples with WGS data. (A) Each position along the x-axis indicates a SNP position with reference 
base indicated at the bottom and variant base indicated at the top. VAFs are plotted on the y-axis. If a sample 
is heterozygous for a SNP the VAF should be around 50%. If a sample is homozygous the VAF should be 
close to 0% or 100%. All samples appear to agree with respect to their genotypes for these identity SNPs 
suggesting that this data are not affected by sample swaps or contamination from unrelated DNA. (B) The 
coverage or total read count observed at each position in the WGS data for each sample is shown. All samples 
achieved at least 10x (generally 30-50x) coverage at the 24 identity SNP positions. 
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Figure S5. Mutation spectrum (Tv/Ti) analysis 
Transitions/Transversions present in the master variant list (Table S7) were calculated and plotted via the R 
package GenVisR for the second relapse sample (SB_d3072_A). Coverage filters were applied requiring 50x 
depth in both tumor and normal samples. Variant allele frequency (VAF) filters requiring >= 20% in tumor and 
<= 1% in normal were also applied. SNV locations passing filters were randomly mutated with equal probability 
(⅓) 100 times and the proportions for each transition/transversion were calculated. The average of these 
calculations are displayed as expected values (left). The average variance of this calculation was found to be 
6.02e-5. 
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Figure S6. Estimation of allograft donor DNA contamination 
Sequencing and variant detection was performed on some samples obtained after a sibling allograft (on day 
2,010). To determine the possible contribution of this DNA to false positive somatic variants called in the 
second relapse, we estimated the proportion of contaminating DNA present from the sibling in each sample 
(Methods, Table S1). In the top panel, VAFs for heterozygous germline SNPs called from the normal skin are 
plotted for each time point. Heterozygous variants in the normal (group A) are highlighted in red. Variants that 
were homozygous after the first allograft in the sorted lymph (group C) are highlighted in blue. These variants 
were used to estimate contamination from the sibling donor (Table S1). In the second panel the VAFs for this 
subset of variants are shown. As expected contamination is not detected prior to the allograft. The sorted 
blasts sample obtained at second relapse (day 3,072) also shows very little contamination indicating that the 
sorting strategy (Methods) was successful in purifying tumor cells from the patient. Bulk marrow samples 
obtained from the same time point show considerable levels of contamination from the sibling donor. In the 
third panel, heterozygous variants in the normal (group A) that were also heterozygous in the sorted lymph 
(group B, highlighted green) but homozygous after the second allograft (group D, highlighted purple) were 
selected to estimate contamination from the second allograft. Note that only the following samples, days 3,219 
and 4,024 were obtained after the second MUD allograft (on day 3,151) and therefore contamination from this 
genotype is only expected in these samples. Vertical lines indicate time points for bone marrow transplants. 
The fourth panel refers to the tissue type and sorting strategy (if any) applied to each sample. 
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Figure S7. Genome wide CNV and LOH analysis of whole genome data 
(A) Copy number differences (tumor - normal) for 10 kb coverage windows across the entire genome are 
plotted against chromosome position for all four tumor samples with whole genome sequence data (one blue 
dot for every 10 kb window) (Methods). Due to low amounts of input DNA or degraded material for both 
primary samples, and low purity of the first relapse, confident calling of copy number variation (CNV) events 
was not possible in these samples. The high quality and abundant material obtained from the second relapse 
allowed the identification of CNV segments indicated in green (B) Loss of heterozygosity was assessed by 
examining variant allele frequencies (VAFs) for variants found to be heterozygous in the normal skin sample.  
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Figure S8. Copy number calls across platforms for the second relapse 
Copy number variation was identified using WGS, exome and microarray data. (A) Segmented calls identified 
from the different platforms are displayed for all chromosomes. CopyCat 
(https://github.com/chrisamiller/copycat) was used to identify CNVs from the WGS data, CnMops [18] was 
used to identify CNVs from exome data and DNACopy [57] was used to identify CNVs from microarray data. 
(B) The raw data that was used to identify the CNVs in the previous panel plotted against chromosome position 
for all chromosomes. The raw data consists of normalized read-depth values for the WGS data (one for each 
fixed 10kb window across the genome), normalized read-depth values for the exome data (one for each exon 
targeted by the exome reagent), and probe intensities for the microarray data. 
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Figure S9. Analysis of clonal architecture of the second relapse (sorted blasts) sample 
The clonal architecture of the second relapse sorted blasts tumor sample was assessed by examining the 
distribution of variant allele frequencies (VAFs) for 1,588 high quality somatic variants. High quality somatic 
variants were those detected in the WGS data and validated by deep capture sequencing. VAFs used in this 
analysis were calculated using all combined data (WGS, exome, and custom capture). Variants in regions of 
CNV or LOH were also removed because of the increased uncertainty for VAFs of these variants (Methods).  
(A) VAFs were clustered to allow identification of potential subclones and plotted as a density plot. These 
clusters were labeled as the ‘Founding’ clone (green), ‘Subclone A’ (purple), and ‘Subclone B’ (blue). 
‘Founding’ clone variants are those that appear to be in every cell of the second relapse tumor sample while 
‘Subclone A’ and ‘Subclone B’ variants represent variants present in only a subset of cells of the tumor. (B) 
Coverage values for the same high quality somatic variants were plotted against VAF and colored according to 
subclone assignment. Coverage values were ceilinged at 2,000x for display purposes. 
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Figure S10. Estimation of tumor purity at all time points 
Display of capture variant allele frequencies (VAF) originating from the relapse 2 sorted blast sample 
(SB_d3072_A) across 12 additional samples. Clonal predictions are derived from relapse 2 (SB_d3072_A) and 
are used to colour variants across all time points. A coverage filter of 20x was applied to all variants at each 
individual time point to ensure accurate VAF estimates. Estimated tumor purity and the number of variants 
passing filters at each time point are displayed in the lower panel. 
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Figure S11. Pairwise comparisons of VAFs for all coding variants in primary, relapse 1 and relapse 2 
Variant allele frequencies (VAFs) for 98 variants predicted to affect coding sequences (Table S3) were plotted 
for all pairwise comparisons of the two primary tumor samples, relapse 1 and relapse 2. Where applicable, 
VAFs were calculated from combined WGS, exome, and capture data for each sample (Table S8). Inset 
panels are used when VAFs are low due to low tumor purity. Black dots indicate selected high VAF variants 
labeled with a gene symbol. Note variants along each axis that represent variants that were potentially gained 
or enriched during tumor evolution. For example, an NF1 variant was present in relapse 1 and relapse 2 but 
was undetectable in either primary sample. By contrast two EP300 variants were detectable in both primary 
samples as well as relapse 1 and 2.  
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Figure S12. Detection of coding variants throughout disease progression 
Select coding somatic variants originating from the WGS datasets and passing manual review (Table S3) are 
displayed as bar plots of variant allele frequencies (Table S8) for multiple samples. To be included in this 
analysis, variants must have passed review in either relapse-1/relapse-2 alone or in any two samples. 
Situations in which coverage was less than 10 reads are annotated as red triangles. Clustering is based on 
VAF values derived from Figure S9, and variants that are copy altered, or are primary specific are indicated. 
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Figure S13. Read support for two linked missense SNVs in EP300 (P250H and P252S) 
(A) Readcounts for reference (green) and variant (red) alleles are displayed for two EP300 variants (p.P250H, 
p.P252S) identified in the primary among 6 samples representing 4 time points. (B) Variant allele frequencies 
(VAFs) at these time points are displayed among the 6 samples. (C) Mutations identified in Cosmic are 
displayed opposite the EP300 variants from this case in relation to known protein domains for the transcript 
ENST00000263253. The expression level (FPKM value) for EP300 is 17.4. 
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Figure S14. Read support for an NF1 nonsense SNV (R2258*) 
(A) Readcounts for reference (green) and variant (red) alleles are displayed for an NF1 p.R2258* variant 
identified at the first relapse among 6 samples representing 4 time points. (B) Variant allele frequencies (VAFs) 
at these time points are displayed for the 6 samples. (C) Mutations identified in Cosmic are displayed opposite 
the NF1 p.R2258* variant in relation to known protein domains for the transcript ENST00000358273. The 
expression level (FPKM value) for NF1 is 12.2. 
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Figure S15. Read support for a SETD2 frameshift indel (R2510fs) 
(A) Readcounts for reference (green) and variant (red) alleles are displayed for a SETD2 p.R2510fs variant 
identified at the second relapse among 6 samples representing 4 time points. (B) Variant allele frequencies 
(VAFs) at these time points are displayed among the 6 samples. A VAF is not shown for the RNA sample 
because indels of this size could not be detected by our RNA-seq alignments. (C) Mutations identified in 
Cosmic are contrasted with the ALL1 variant in relation to known domains for transcript ENST00000409792. 
The expression level (FPKM value) for SETD2 is 17.6. 
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Figure S16. Focal amplification at 1p36.13 - 1p36.12 (near SPEN and SDHB) 
(A) Ideogram showing Giemsa banding and labels for chromosome 1. (B) Copy number differences (CNV) (y-
axis) were calculated as the difference between the second relapse tumor (SB_d3072_A) and skin normal and 
plotted against chromosome position (x-axis). Each black point represents the result of this calculation for 
WGS read coverage data from a single 10 kb window. Negative values indicate copy loss in the tumor and 
positive values indicate copy gain in the tumor. Boundaries of the region of interest (ROI) summarized in the 
legend are indicated as dotted vertical lines. Points colored red indicate copy number amplification/gain and 
blue points indicate copy number deletion/loss. (C) Variant allele frequencies (VAFs) in the tumor are plotted 
for all SNPs identified as heterozygous in the normal sample. Variants deviating from 50% (heterozygous A/B) 
towards 0% (homozygous A/A) or 100% (homozygous B/B) indicate a region of loss of heterozygosity (LOH). 
Points for SNPs within the ROI are indicated as green circles and SNPs outside the ROI are indicated as black 
circles. (D) CNV differences (red, blue, or black circles) with LOH VAF data overlaid (as green or grey 
triangles) are plotted for a magnified view of the ROI. Cancer gene positions are shown. Refer to Methods for 
more details.  
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Figure S17. Focal deletion at 3p21.31 (affecting SETD2) 
(A) Ideogram showing Giemsa banding and labels for chromosome 3. (B) CNV differences are displayed for a 
verified CNV event (see Table S3 for details) indicated by vertical dotted lines. (C) VAFs for heterozygous 
SNPs of the patient provide a readout of LOH. (D) CNV differences with LOH VAF data overlaid are plotted for 
a magnified view of the ROI. Refer to Figure S17 for a more detailed description of this view.  
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Figure S18. Large deletion at 5q23.2 - 5q31.1 (affecting ACSL6 and AFF4) 
(A) Ideogram showing Giemsa banding and labels for chromosome 3. (B) CNV differences are displayed for a 
verified CNV event (see Table S3 for details) indicated by vertical dotted lines. (C) VAFs for heterozygous 
SNPs of the patient provide a readout of LOH. (D) CNV differences with LOH VAF data overlaid are plotted for 
a magnified view of the ROI. Refer to Figure S17 for a more detailed description of this view. 
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Figure S19. Large deletion at 6q12 - 6q23.2 (affecting six cancer genes) 
(A) Ideogram showing Giemsa banding and labels for chromosome 3. (B) CNV differences are displayed for a 
verified CNV event (see Table S3 for details) indicated by vertical dotted lines. (C) VAFs for heterozygous 
SNPs of the patient provide a readout of LOH. (D) CNV differences with LOH VAF data overlaid are plotted for 
a magnified view of the ROI. Refer to Figure S17 for a more detailed description of this view.  
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Figure S20. Focal deletion at 7p12.2 - 7p12.1 (affecting IKZF1 aka Ikaros). 
(A) Ideogram showing Giemsa banding and labels for chromosome 7. (B) CNV differences are displayed for a 
verified CNV event (see Table S3 for details) indicated by vertical dotted lines. (C) VAFs for heterozygous 
SNPs of the patient provide a readout of LOH. (D) CNV differences with LOH VAF data overlaid are plotted for 
a magnified view of the ROI. Refer to Figure S17 for a more detailed description of this view.  
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Figure S21. Large deletion at 9p24.3 - 9p13.1 (affecting nine cancer genes including PAX5) 
(A) Ideogram showing Giemsa banding and labels for chromosome 9. (B) CNV differences are displayed for a 
verified CNV event (see Table S3 for details) indicated by vertical dotted lines. (C) VAFs for heterozygous 
SNPs of the patient provide a readout of LOH. (D) CNV differences with LOH VAF data overlaid are plotted for 
a magnified view of the ROI. Refer to Figure S17 for a more detailed description of this view.  
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Figure S22. Large deletion at 10q24.1 - 10q24.33 (affecting TLX1, NFKB2, SUFU, and NT5C2) 
(A) Ideogram showing Giemsa banding and labels for chromosome 10. (B) CNV differences are displayed for a 
verified CNV event (see Table S3 for details) indicated by vertical dotted lines. (C) VAFs for heterozygous 
SNPs of the patient provide a readout of LOH. (D) CNV differences with LOH VAF data overlaid are plotted for 
a magnified view of the ROI. Refer to Figure S17 for a more detailed description of this view.  
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Figure S23. Focal deletion at 11p11.2 (no cancer genes affected) 
(A) Ideogram showing Giemsa banding and labels for chromosome 11. (B) CNV differences are displayed for a 
verified CNV event (see Table S3 for details) indicated by vertical dotted lines. (C) VAFs for heterozygous 
SNPs of the patient provide a readout of LOH. (D) CNV differences with LOH VAF data overlaid are plotted for 
a magnified view of the ROI. Refer to Figure S17 for a more detailed description of this view.  
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Figure S24. Large deletion at 12p13.2 - 12p12.3 (affecting ETV6 aka TEL, and CDKN1B) 
(A) Ideogram showing Giemsa banding and labels for chromosome 12. (B) CNV differences are displayed for a 
verified CNV event (see Table S3 for details) indicated by vertical dotted lines. (C) VAFs for heterozygous 
SNPs of the patient provide a readout of LOH. (D) CNV differences with LOH VAF data overlaid are plotted for 
a magnified view of the ROI. Refer to Figure S17 for a more detailed description of this view. 
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Figure S25. Focal amplification at 12p13.31 (affecting ZNF384) 
(A) Ideogram showing Giemsa banding and labels for chromosome 12. (B) CNV differences are displayed for a 
verified CNV event (see Table S3 for details) indicated by vertical dotted lines. (C) VAFs for heterozygous 
SNPs of the patient provide a readout of LOH. (D) CNV differences with LOH VAF data overlaid are plotted for 
a magnified view of the ROI. Refer to Figure S17 for a more detailed description of this view.  
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Figure S26. Large deletion at 13q14.13 - 13q14.3 (affecting RB1) 
(A) Ideogram showing Giemsa banding and labels for chromosome 13. (B) CNV differences are displayed for a 
verified CNV event (see Table S3 for details) indicated by vertical dotted lines. (C) VAFs for heterozygous 
SNPs of the patient provide a readout of LOH. (D) CNV differences with LOH VAF data overlaid are plotted for 
a magnified view of the ROI. Refer to Figure S17 for a more detailed description of this view.  
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Figure S27. Large region of copy neutral LOH at 17q (30 cancer genes affected) 
(A) Ideogram showing Giemsa banding and labels for chromosome 18. (B) CNV differences are displayed for a 
verified CNV event (see Table S3 for details) indicated by vertical dotted lines. (C) VAFs for heterozygous 
SNPs of the patient provide a readout of LOH. (D) CNV differences with LOH VAF data overlaid are plotted for 
a magnified view of the ROI. Refer to Figure S17 for a more detailed description of this view. 
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Figure S28. Large deletion at 18p11.32 - 18p11.1 (no cancer genes affected) 
(A) Ideogram showing Giemsa banding and labels for chromosome 18. (B) CNV differences are displayed for a 
verified CNV event (see Table S3 for details) indicated by vertical dotted lines. (C) VAFs for heterozygous 
SNPs of the patient provide a readout of LOH. (D) CNV differences with LOH VAF data overlaid are plotted for 
a magnified view of the ROI. Refer to Figure S17 for a more detailed description of this view.  
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Figure S29. Large deletion at 20p13 - 20p11.1 (No cancer genes affected) 
(A) Ideogram showing Giemsa banding and labels for chromosome 20. (B) CNV differences are displayed for a 
verified CNV event (see Table S3 for details) indicated by vertical dotted lines. (C) VAFs for heterozygous 
SNPs of the patient provide a readout of LOH. (D) CNV differences with LOH VAF data overlaid are plotted for 
a magnified view of the ROI. Refer to Figure S17 for a more detailed description of this view.  
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Figure S30. Focal deletion at 22q12.1 (near CHEK2) 
(A) Ideogram showing Giemsa banding and labels for chromosome 22. (B) CNV differences are displayed for a 
verified CNV event (see Table S3 for details) indicated by vertical dotted lines. (C) VAFs for heterozygous 
SNPs of the patient provide a readout of LOH. (D) CNV differences with LOH VAF data overlaid are plotted for 
a magnified view of the ROI. Refer to Figure S17 for a more detailed description of this view.  
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Figure S31. Focal amplification at 22q13.2 (affecting EP300) 
(A) Ideogram showing Giemsa banding and labels for chromosome 22. (B) CNV differences are displayed for a 
verified CNV event (see Table S3 for details) indicated by vertical dotted lines. (C) VAFs for heterozygous 
SNPs of the patient provide a readout of LOH. (D) CNV differences with LOH VAF data overlaid are plotted for 
a magnified view of the ROI. Refer to Figure S17 for a more detailed description of this view.  
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Figure S32. Medium sized deletion affecting XBP1 exon 1 (12,799 bp deletion, 22:29195159-29207958) 
Manual review of data supporting a deletion that knocks out the first exon of XBP1 in the second relapse, 
sorted blasts tumor sample. (A) An IGV screenshot showing coverage around the predicted deletion 
breakpoints from the SV caller Manta. Coverage and alignments are shown for the normal skin WGS data 
followed by second relapse WGS data. (B) An ‘svviz’ view of the reads aligning to the predicted deletion allele 
sequence showing WGS reads from the tumor aligning but no reads aligning in the normal WGS data. (C) 
These alignments are contrasted with reads from both tumor and normal aligning to the reference allele. Since 
we have relapse 2 reads that align to both the alternate and reference alleles we know that this deletion is 
heterozygous in the tumor. Since there are no normal reads that align to the alternate (deletion) allele, we 
know that this deletion is somatic. 
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Figure S33. WGS support for discovery of an EP300-ZNF384 fusion 
Supporting WGS reads for the EP300-ZNF384 translocation. (A) Discordant reads that encompass the 
translocation identified using pairoscope (http://pairoscope.sourceforge.net/). No encompassing reads were 
identified in the normal sample indicating a somatic event. (B) Reads spanning the translocation allele 
identified by svviz. No reads supporting the translocation were found in the normal sample indicating a somatic 
event. (C) Reads aligning to the reference allele at the chr12, chr22 breakpoints identified by svviz. Presence 
of reads indicate that the tumor sample is heterozygous for the translocation allele at both breakpoints. The 
normal sample is homozygous for the reference allele at both breakpoints. 
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Figure S34. EP300-ZNF384 fusion, predicted DNA and protein structures (with 2 missense mutations) 
(A) The DNA breakpoints for a predicted EP300-ZNF384 fusion [t(12;22)(p13;q13)] are depicted in relation to 
the position of exons for known transcripts (blue lines and rectangles). The breakpoint position is linked back to 
ideograms for each chromosome by red dotted lines. EP300 is transcribed from the positive strand (left to 
right), while ZNF384 is transcribed from the negative strand (right to left). Both breakpoints occur within introns 
of EP300 and ZNF384, respectively. The predicted arrangement of fused chromosomes assuming a reciprocal 
event are depicted below as ‘Chimeric DNA sequence 1’ and ‘Chimeric DNA sequence 2’. (B) The fusion 
protein sequence predicted by full length cDNA cloning of the EP300-ZNF384 transcript is depicted with known 
protein domains indicated as colored rectangles. The predicted fusion is 577 amino acids in length. The 
position of two missense mutations detected within the EP300 gene (in linkage with the translocation event) 
are depicted as blue circles.  
 

 
 
 



50 

Figure S35. PCR and qPCR support for the ALL1 EP300-ZNF384 fusion 
Two assays of genomic DNA for an EP300-ZNF384 translocation. (A) An RT-PCR assay was used to amplify a 
168 bp amplicon representing the translocation breakpoint. Primers were selected in the introns of EP300 and 
ZNF384, adjacent to the genomic DNA breakpoint (see Methods for primer sequences and assay details). 
This assay was applied to bone marrow samples obtained from our patient at four time points (B) A qPCR 
assay was conducted with the same primer sequences as the RT-PCR assay. This assay was applied to 
seven samples from our patient along with positive and negative controls. Colored lines indicate measured 
fluorescence from Sybr green incorporation into PCR product plotted against PCR cycle number (see Methods 
for additional assay details). 
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Figure S36. TBX19-SUFU DNA translocation 
Supporting WGS reads for the TBX19-SUFU translocation. (A) Discordant reads that encompass the 
translocation identified using pairoscope. No encompassing reads were identified in the normal sample 
indicating a somatic event. (B) Reads spanning the translocation allele identified by svviz. No reads supporting 
the translocation were found in the normal sample indicating a somatic event. (C) Reads aligning to the 
reference allele at the chr1 and chr10 breakpoints identified by svviz. No reads were identified in the tumor at 
the chr10 breakpoint indicating loss of the reference allele in this region. The chr1 breakpoint is heterozygous 
in the tumor. The normal sample is homozygous for the reference allele at both breakpoints. 
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Figure S37. ADCY10-CC2D2B DNA translocation 
Supporting WGS reads for the ADCY10-CC2D2B translocation. (A) Discordant reads that encompass the 
translocation identified using pairoscope. No encompassing reads were identified in the normal sample 
indicating a somatic event. (B) Reads spanning the translocation allele identified by svviz. No reads supporting 
the translocation were found in the normal sample indicating a somatic event. (C) Reads aligning to the 
reference allele at the chr1 and chr10 breakpoints identified by svviz. Only one read is identified in the tumor at 
the chr10 breakpoint indicating loss of the reference allele in this region. The chr1 breakpoint is heterozygous 
in the tumor. The normal sample is homozygous for the reference allele at both breakpoints. 
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Figure S38. RNA expression of somatic and germline variants of the second relapse 
Scatter plots compare the VAF observed in genomic DNA (WGS/Exome/Capture) and RNA samples obtained 
at second relapse (day 3,072). Each point represents a single variant. Somatic variants are plotted in panel A, 
while germline are plotted in panel B. An RNA gene expression value is represented on a color scale for each 
point where red indicates high expression for the gene harboring the variant and yellow indicates low 
expression. RNA expression was measured as fragments per kilobase of transcript per million fragments 
(FPKM) with a linear transform applied such that the minimum FPKM was set to 1 (followed by log2 
transformation). Only variants predicted to affect the protein coding sequence of a gene are shown. Selected 
genes are labeled with official HUGO gene symbols.  
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Figure S39. RNA-seq support for the ALL1 EP300-ZNF384 fusion and literature support for ZNF384 
fusions in leukemia 
(A) Summary of RNA-seq evidence obtained from the second relapse (day 3,072, sorted blasts) for an EP300-
ZNF384 gene fusion identified by Chimerascan (Supplementary Methods). The predicted structure of the 
fusion based on spanning read support is also shown. (B) Summary of literature support for the occurrence in 
leukemia of fusions involving ZNF384 as a 3’ gene partner. 
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Figure S40. FLT3 intron 1 somatic indels 
(A) A schematic depiction of two somatic small indels, each a complex substitution is provided. Exon 1 and 2 of 
FLT3 are depicted (not to scale) with key features relevant to these somatic events. The somatic mutations 
themselves are indicated as ‘Indel1’ and ‘Indel2’. The position of primers used to validate these mutations by 
Sanger sequencing are indicated as blue arrows. The sequences for reference (‘Ref’) and alternative (‘Alt’) 
alleles are indicated below the FLT3 gene model. Five SNPs used to establish the haplotypes associated with 
each somatic mutation are also indicated below the FLT3 gene model. The distance in number of bases of 
sequence between features are indicated in black above the FLT3 gene model. (B) Observed haplotypes 
resolved by cloning and sequencing of these regions are depicted. 
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Figure S41. Protein expression (immunohistochemistry) of FLT3 in ALL1 and three reference tumors  
5 um paraffin sections from formalin-fixed bone marrow core biopsies were stained with rabbit anti-
CD135/FLT3 (Acris Antibodies, San Diego, USA, clone AP21030PU-N) according to standard protocols. AML 
samples with varying levels of FLT3 as determined by RNA-seq analysis [45] were first used to determine the 
specificity of the antibody. Images were acquired at 600x magnification on an Olympus BX60 microscope using 
an Infinity 3 Lumenera camera. (A) An AML with low FLT3 expression (UPN 884262; FPKM = 3.8). (B) An AML 
with high FLT3 expression (UPN 972783; FPKM = 65.5). (C) A second AML with high FLT3 expression (UPN 
923966; FPKM = 106.9). (D) The second relapse tumor sample from ALL1 demonstrating high FLT3 
expression and strong membranous reactivity (FPKM = 108.0).  
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