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Supplemental Figures

Figure S1: Measurement of the evolution of the joint protein distributions of phosphorylated MEK and
phosphorylated ERK. (Related to Figure 2B) The joint distribution of total phosphorylated MEK and ERK
every two minutes. Each dot corresponds to a single cell.
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Figure S2: Elucidating the origin of cell-to-cell variability. (Related to Figure 2) (A) Estimation of exper-
imental noise (Uda et al., 2013). Correlation of signal intensity of the total amount of ERKs measured by the
two different antibodies. Each dot denotes the signal intensity of a single cell. We measured the total amount of
ERKs by double-staining with mouse monoclonal and rabbit polyclonal antibodies. The correlation coefficient, r
was 0.92. The cell-to-cell variation and experimental noise correspond to the variation along the major axis (σc)
and that orthogonal to the major axis (σe), respectively. Copyright permission from Science. (B) In addition to
the experimental measurements for the total amount of doubly phosphorylated ERK and MEK our assay also ob-
tained measurements for cell-size, cell volume and Hoechst intensity in each cell. We computed the correlation
and partial correlations between these 5 measurements using the R package GeneNet (Schäfer et al., 2001). Partial
correlation is a much more powerful measure of statistical dependencies than correlation as has been discussed in
detail by several authors (Kolaczyk, 2009; Schäfer and Strimmer, 2005; Thorne et al., 2013); it allows to measure
dependences between each pairs of variables conditional on all other variables. Here, we compute the partial cor-
relation between every pair of variables given the three other variables as controlling variables. For example, the
partial correlation between the total amount of doubly phosphorylated ERK and MEK is the correlation between
the residuals resulting from the linear regression of the total amount of doubly phosphorylated ERK and MEK
respectively given the cell size, the cell volume and the Hoechst intensity. Both plots are on the same scale, see
colour bar.
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Figure S3: Prediction of the impact of NGF intensity on cell-to-cell variability under the extrinsic noise
model. (Related to Figure 5) Predicted total amounts (medians and predicted 90% credible intervals) of doubly
phosphorylated ERK (orange) and MEK (blue) under the extrinsic noise model are shown for decreasing values of
the hyper-parameters µk1 and µk10 . The reference hyper-parameters, µ∗k1 and µ∗k10 , are the one inferred from the
data.
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S1 Description of the mechanistic models and the parameters
ERK activation requires phosphorylation at both its tyrosine and threonine phosphorylation sites by its cognate
kinase MEK (Ferrell and Bhatt, 1997a), and two mechanisms for phosphorylation and dephosphorylation have been
proposed (Ferrell and Bhatt, 1997b; Gunawardena, 2007; Toni et al., 2012), which are here referred to as processive
and distributive. In the processive (P) mechanism, the kinase binds the protein and catalyzes the phosphorylation at
both sites before dissociating from the doubly phosphorylated substrate protein. In the distributive (D) mechanism
phosphorylation occurs in two steps where the kinase binds to the protein twice in order to phosphorylate the
two site successively. Previous studies (Toni et al., 2012) have shown that in vivo phosphorylation (as well as
dephosphorylation) occurs in a distributive way. In this section, we describe the four mechanistic models and
confirm that this distributive mechanism best captures the observed average behavior in our data.

S1.1 Systems of ordinary differential equations to model processive and distributive
phosphorylation and dephosphorylation mechanisms

In this section we derive the mathematical equations for different potential mechanistic models of the ERK (de-
)phosphorylation process. In the following M denotes doubly phosphorylated MEK, which acts as a kinase, and
E, pE and ppE denote un-, singly and doubly phosphorylated ERK, respectively; Pt represents the phosphotase
activity. The phosphorylation and dephosphorylation processes of ERK involves these 5 species as well as the
following protein complexes: E ·M , pE ·M , ppE · Pt and pE · Pt.

The mechanistic models are described by the following reactions (see also Figure S4):

Phosphorylation

Processive: E +M
k3−⇀↽−
k4
E ·M k5−→ pE ·M k6−→ ppE +M

Distributive: E +M
k3−⇀↽−
k4
E ·M k7−→ pE +M

k8−⇀↽−
k9

pE ·M k6−→ ppE +M

Dephosphorylation

Processive: ppE + Pt
k
′
3−⇀↽−
k
′
4

ppE · Pt k
′
5−→ pE · Pt k

′
6−→ E + Pt

Distributive: ppE + Pt
k
′
3−⇀↽−
k
′
4

ppE · Pt k
′
7−→ pE + Pt

k
′
8−⇀↽−
k
′
9

pE · Pt k
′
6−→ E + Pt

The reaction rates are shown above or below the corresponding reactions.
In the derivation of the mechanistic models we incorporate the known experimental and biophysical constraints.

First, since the concentration of active MEK depends on the upstream signals, its evolution is described by two
additional reactions: a production reaction and a degradation reaction, which are given by

Ø
g(k1,T,k10,t)−−−−−−−−→M

M
k2−→ Ø,

where g is given by

g(k1, T, k10, t) = k10 +
k1

exp(t− T ) + 1
.

In addition, some of the binding and un-binding reactions are reversible, whereas the phosphorylation and
dephosphorylation reactions are not. The last assumption concerns the phosphorylation of ERK at the second
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Figure S4: MAPK Signalling. (Related to Figure 1) (A) The RAS-RAF-ERK signal transduction cascade in
response to a neural growth factor (NGF), which activates the membrane-bound GTPase (RAS); this leads to the
activation of the RAF kinase and subsequently to the phosphorylation of MEK; active MEK in turn phosphorylates
ERK. (B) Processive and distributive phosphorylation and dephosphorylation processes of ERK. Pt denotes the
cognate ERK phosphatase. The reaction rates are shown next to their associated reactions. (C) The impact of the
NGF stimulus and the upstream reactions on the evolution of the concentration of active MEK are modelled using
a time dependent function which depends on three parameters: k1 describes the pulse height, k10 the background
signal and T the time at which the influence of the upstream reactions drops down. In addition active MEK is
degraded with rate k2.



site in the processive mechanism. We describe both this second phosphorylation and the unbinding of the double
phosphorylated ERK to the active MEK in a single reaction. Moreover, since we work on time-scales where
transcriptional responses can be ignored, we fix the total amounts (i.e. the sum of free and complex bound forms)
of Pt, denoted by Pttot as well as the total amount of E, including all isophorms, denoted by Etot (see Ozaki et
al., 2010).

By considering all possible combinations of processive (P) and distributive (D) phosphorylation and dephos-
phorylation reactions we can construct four possible models: DD, DP, PD and PP, where, for example, DP means
distributive phosphorylation and processive dephosphorylation. The evolution of the concentrations (here denoted
by [A]t for the concentration of species A at time t) of the 9 species is described by a set of ordinary differential
equations.

Distributive phosphorylation - Distributive dephosphorylation (DD)

d[M ]t
dt

= g(k1, T, k10, t)− k2[M ]t − k3[E]t[M ]t + k4[E.M ]t + k6[pE.M ]t + k7[E.M ]t

− k8[pE]t[M ]t + k9[pE.M ]t

d[E]t
dt

= −k3[E]t[M ]t + k4[E.M ]t + k′6[pE.P t]t

d[E.M ]t
dt

= k3[E]t[M ]t − k4[E.M ]t − k7[E.M ]t

d[pE]t
dt

= k7[E.M ]t − k8[pE]t[M ]t + k9[pE.M ]t + k′7[ppE.P t]t − k′8[pE]t[Pt]t + k′9[pE.P t]t

d[pE.M ]t
dt

= −k6[pE.M ]t + k8[pE]t[M ]t − k9[pE.M ]t

d[ppE]t
dt

= k6[pE.M ]t − k′3[ppE]t[Pt]t + k′4[ppE.P t]t

d[Pt]t
dt

= −k′3[ppE]t[Pt]t + k′4[ppE.P t]t + k′6[pE.P t]t + k′7[ppE.P t]t − k′8[pE]t[Pt]t + k′9[pE.P t]t

d[ppE.P t]t
dt

= k′3[ppE]t[Pt]t − k′4[ppE.P t]t − k′7[ppE.P t]t

d[pE.P t]t
dt

= −k′6[pE.P t]t + k′8[pE]t[Pt]t − k′9[pE.P t]t



Distributive phosphorylation - Processive dephosphorylation (DP)

d[M ]t
dt

= g(k1, T, k10, t)− k2[M ]t − k3[E]t[M ]t + k4[E.M ]t + k6[pE.M ]t + k7[E.M ]t

− k8[pE]t[M ]t + k9[pE.M ]t

d[E]t
dt

= −k3[E]t[M ]t + k4[E.M ]t + k′6[pE.P t]t

d[E.M ]t
dt

= k3[E]t[M ]t − k4[E.M ]t − k7[E.M ]t

d[pE]t
dt

= k7[E.M ]t − k8[pE]t[M ]t + k9[pE.M ]t

d[pE.M ]t
dt

= −k6[pE.M ]t + k8[pE]t[M ]t − k9[pE.M ]t

d[ppE]t
dt

= k6[pE.M ]t − k′3[ppE]t[Pt]t + k′4[ppE.P t]t

d[Pt]t
dt

= −k′3[ppE]t[Pt]t + k′4[ppE.P t]t + k′6[pE.P t]t

d[ppE.P t]t
dt

= k′3[ppE]t[Pt]t − k′4[ppE.P t]t − k′5[ppE.P t]t

d[pE.P t]t
dt

= k′5[ppE.P t]t − k′6[pE.P t]t

Processive phosphorylation - Distributive dephosphorylation (PD)

d[M ]t
dt

= g(k1, T, k10, t)− k2[M ]t − k3[E]t[M ]t + k4[E.M ]t + k6[pE.M ]t

d[E]t
dt

= −k3[E]t[M ]t + k4[E.M ]t + k′6[pE.P t]t

d[E.M ]t
dt

= k3[E]t[M ]t − k4[E.M ]t − k5[E.M ]t

d[pE]t
dt

= k′7[ppE.P t]t − k′8[pE]t[Pt]t + k′9[pE.P t]t

d[pE.M ]t
dt

= k5[E.M ]t − k6[pE.M ]t

d[ppE]t
dt

= k6[pE.M ]t − k′3[ppE]t[Pt]t + k′4[ppE.P t]t

d[Pt]t
dt

= −k′3[ppE]t[Pt]t + k′4[ppE.P t]t + k′6[pE.P t]t + k′7[ppE.P t]t − k′8[pE]t[Pt]t + k′9[pE.P t]t

d[ppE.P t]t
dt

= k′3[ppE]t[Pt]t − k′4[ppE.P t]t − k′7[ppE.P t]t

d[pE.P t]t
dt

= −k′6[pE.P t]t + k′8[pE]t[Pt]t − k′9[pE.P t]t



Processive phosphorylation - Processive dephosphorylation (PP)

d[M ]t
dt

= g(k1, T, k10, t)− k2[M ]t − k3[E]t[M ]t + k4[E.M ]t + k6[pE.M ]t

d[E]t
dt

= −k3[E]t[M ]t + k4[E.M ]t + k′6[pE.P t]t

d[E.M ]t
dt

= k3[E]t[M ]t − k4[E.M ]t − k5[E.M ]t

d[pE.M ]t
dt

= k5[E.M ]t − k6[pE.M ]t

d[ppE]t
dt

= k6[pE.M ]t − k′3[ppE]t[Pt]t + k′4[ppE.P t]t

d[Pt]t
dt

= −k′3[ppE]t[Pt]t + k′4[ppE.P t]t + k′6[pE.P t]t

d[ppE.P t]t
dt

= k′3[ppE]t[Pt]t − k′4[ppE.P t]t − k′5[ppE.P t]t

d[pE.P t]t
dt

= k′5[ppE.P t]t − k′6[pE.P t]t

In order to simulate these ODE systems one needs to determine the initial conditions for the concentrations of
the 9 molecular species. We assume that the initial concentrations of the complexes E.M , pE, pE.M , ppE.P t
and pE.P t are equal to 0. In addition, the initial conditions of the species E and ppE are constrained so that
[E]t+[ppE]t = Etot and the molecular concentration of ppE andM are determined by the observation. Therefore,
if we denote by ppE0 and M0 the initial concentrations of the two observed molecular species, we have the
following initial conditions:

[M ]0 = M0

[E]0 = Etot − ppE0

[ppE]0 = ppE0

[Pt]0 = Pttot

S1.2 Model parameters
In the rest of this supplemental material and in the manuscript, the term ”model parameter” includes reaction rates,
the 4 parameters describing the impact of upstream signals on active MEK (T, k1, k2 and k10) and the 4 parameters
related to the initial molecular concentration (M0, ppE0, Etot and Pttot). In the following table, we summarise
the number of parameters for each model.

Model Reaction rates Parameters related to Parameters related to Total number
upstream signals initial concentrations of parameters

DD 12 4 4 20
DP 10 4 4 18
PD 10 4 4 18
PP 8 4 4 16

The model parameters are inferred using a Bayesian approach, therefore, a prior distribution over the parameter
space need to be specified. We used uniform priors for each parameter based on the broader prior range proposed
by Toni et al. (2012). Below we summarise the prior ranges used for each of the parameters (when performing
parameter inference based on the average data, we setM0 = 636 and ppE0 = 188 according to the observed data).



Parameter Lower limit Upper limit Parameter Lower limit Upper limit
k1 0 100 k10 1 2
T 200 400 k2 2.10−3 3.10−3

k3 0 1 k′3 1 1000
k4 0 1 k′4 1 105

k5 0 105 k′5 0 105

k6 100 1000 k′6 0 100
k7 1 500 k′7 0 10
k8 0 1 k′8 0 1000
k9 0 10 k′9 0 105

Etot 500 1.8.104 M0 0 1000
Pttot 200 104 ppE0 0 500

S1.3 Observed species
Quantitative image cytometry enables us to quantify the concentration of doubly phosphorylated ERK and MEK.
More precisely, the total amount of free and complex bound forms of respectively doubly phosphorylated ERK
and MEK are measured, i.e.

total amount of doubly phosphorylated ERK = ppE + ppE.P t

total amount of doubly phosphorylated MEK = M + E.M + pE.M .

In the following and in the manuscript, we denote by

xt = [ppE]t + [ppE.P t]t

and
yt = [M ]t + [E.M ]t + [pE.M ]t .

The quantities involved here are the solutions of the system of differential equations described above and typically
depend on a vector of model parameter θ (see subsection S1.2).

S1.4 Model selection: distributive phosphorylation and dephosphorylation best explains
the average behaviour

We use Bayesian parameter inference and model selection to determine which mechanism best captures the ob-
served average behavior. Assuming an independent Gaussian measurement error for each time point with constant
variance, we obtain the likelihood derived in Experimental Procedure. The best fits to the data for the four mod-
els are shown in Figure S5A. Although both the DD (distributive phosphorylation and dephosphorylation) and
PD (processive phosphorylation and distributive dephosphorylation) models provide good fits to the data, the DD
model receives much higher support by the Bayesian model ranking procedure (see Figure S5B). We will therefore
base our analysis of the origins of cell-to-cell variability on this DD model with 20 model parameters including
12 reaction rates, 4 parameters describing the impact of the NGF stimulus and upstream signals and 4 parameters
controlling the initial concentrations of the species involved in the ERK-MEK system.
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Figure S5: The distributive phosphorylation and dephosphorylation mechanism best explains the average
behavior. (Related to Figure 1) (A) Fits to the average data (dots) for the four mechanistic models. The lines
represent the median of the evolution of the average concentration of the two species (total amount of doubly phos-
phorylated ERK in orange and total amount of doubly phosphorylated MEK in blue) and the error bars designate
the 0.025 and 0.975 quantiles for a set of 1000 parameters sampled from the posterior distribution. Both the DD
and the DP models provide good visual fits. (B) Model ranking through the evidence shows that the DD model has
the highest log-evidence and is therefore more strongly supported by the average data.



S2 Details on the implementation of the SMC sampler algorithm
Parameter inference is performed using the Sequential Monte Carlo sampler algorithm proposed by Del Moral et al.
(2006), which is emerging as a powerful alternative to conventional Markov chain Monte Carlo (MCMC) meth-
ods (Robert and Casella, 2004). The algorithm sequentially generates samples from the probability distributions,
p(θ)1−φp(θ|x∗)φ, for φ varying from 0 to 1, by sampling parameter vectors from the prior distribution, p(θ), and
exploiting the likelihood function in order to guide the set of parameter vectors toward a region of high posterior
probability. The exact version of the algorithm we use is detailed below (see Algorithm 1). We use N = 104 par-
ticles per population. To determine the next value of φ at the beginning of each population (step 5), we ensure that

the effective sample size (ESS), which is equal to
(∑N

n=1 ω
(n)
a

)−1
and only depends on the previous weighted

population {(θ(n)a−1, ω
(n)
a−1)}1≤n≤N as well as on φ and φold, is between 0.5 and 0.9. In addition, to perturb the

particles (step 10), we use an MCMC kernel which consists of 5 steps of Metropolis Hasting perturbations with an
adaptive multi-variate normal random-walk proposal (Del Moral et al., 2006).

Algorithm 1: The SMC sampler
Input: No. of particles per population N .
Output: Set of weighted particles {θ(n)p , ω

(n)
p }1≤n≤N .

1 Initialise a = 1, φ = 0;
2 Sample particles θ(n)1 from prior ;
3 Set weights ω(n)

1 = 1
N ;

4 while φ < 1 do
5 Set φold = φ; a = a+1;
6 Determine next value of φ;
7 Resample particles {θ(n)a−1} from weighted multinomial distribution {(θ(n)a−1, ω

(n)
a−1)};

8 Reset weights ω(n)
a−1 = 1

N , ∀n = 1, . . . , N ;
9 for 1 ≤ n ≤ N do

10 Draw θ
(n)
a ∼ Ka(· | θ(n)a−1), where Ka is a MCMC kernel;

11 Update particle weight ω̃(n)
a = ω

(n)
a−1 · p(θ

(n)
a−1|x∗)φ−φold ;

12 end
13 Normalise particle weights ω(n)

a = ω̃
(n)
a /

∑N
m=1 ω̃

(m)
a .

14 end



S3 The intrinsic noise model
The Linear Noise Approximation (LNA) is used to define a likelihood function in the case of the intrinsic noise
model. It is a Gaussian approximation to Markov Jump processes defined by the Chemical Master Equation
(Komorowski et al., 2009). Biochemical reactions are modelled through a stochastic dynamic model and the LNA
provides us with equations for the average behaviour over the population of cells as well as the evolution of the
variance and covariances with time. With mx

t (θ), my
t (θ), vxt (θ) and vyt (θ) denoting the solutions of the ODEs

describing the means and variances for the parameter θ at time t, the likelihood p({x∗i,t, y∗i,t}i,t|θ) is equal to

∏
t∈T

Nt∏
i=1

Φ(x∗i,t;m
x
t (θ), vx(θ))Φ(y∗i,t;m

y
t (θ), vy(θ))

where Φ(·;m, v) is the probability density function of a normal distribution of mean m and variance v.

S3.1 Investigating the precision of the Linear Noise Approximation
In order to investigate the accuracy of the Linear Noise Approximation, we generated 100 trajectories simulating
the DD model with the Gillespie algorithm (which took around 12 CPU days per trajectory), computed the evolu-
tion of the mean and the variance over the 100 trajectories and compared it to the solution of the ODE equations
provided by the LNA. As can be seen in Figure S6A, the Linear Noise approximations of the evolution of the
means and the variances are very accurate.

S3.2 Efficient sampling of the parameter space
In the main manuscript, we demonstrate that we can confidently implicate extrinsic noise as the dominant factor
giving rise to cell-to-cell variability in the MEK/ERK module and that intrinsic noise does not explain the level
of observed cell-to-cell variability. To substantiate this further (and to ensure that we explore the parameter space
more widely during the parameter inference step of the intrinsic noise) we use Latin hyper-cube sampling (McKay
et al., 1979) to generate a set of 106 parameter vectors using the Matlab function lhsdesign. and systematically
analyse the evolution of the molecular concentrations of MEK and ERK for each of these parameters. Only 20
parameter vectors out of the 106 lead to stable solutions for which the obtained variances of doubly phosphorylated
ERK and MEK is higher than 105 (at either 6 or 8 minutes after stimulation; but for none of these parameters do
we observe a variance of doubly phosphorylated ERK that is anywhere close to the experimental observations.
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Figure S6: Accuracy of likelihood approximations. (Related to Figures 3 and 4) (A)The evolution of
the mean and variance for the two molecular species of interest. The black lines corresponds to the mean and
variances over the trajectories simulated using the Gillespie algorithm and the red lines are the approximation
provided by the LNA. (B) Comparison of the distribution of the evolution of the protein concentrations (for all the
9 species) for one set of hyper-parameters given by the UT method and by a Monte-Carlo approximation with 1000
particles. Each plot is associated with one of the 9 species. The continuous lines correspond to the Monte-Carlo
approximation and the dashed lines correspond to the UT approximation. The red lines represent the median, the
blue lines represent the 0.25 and 0.75 quantiles and the black lines represent the 0.025 and the 0.975 quantiles of
the distributions.



S4 The extrinsic noise model

S4.1 Using Unscented Transform to derive a likelihood function for the extrinsic noise
model

To mathematically describe the cell-to-cell variability due to extrinsic noise a different parameter vector is asso-
ciated with each cell. Recall that for each time t ∈ T = {0, 2, 4, . . . 50}, we measure the total amount of doubly
phosphorylated MEK and ERK, denoted respectively by x∗i,t and y∗i,t, in cells 1 ≤ i ≤ Nt. Let denote by θi,t the
vector of parameters associated to the i-th cell measured at time t. With a single measurement per cell, it is not
possible to infer every single parameter θi,t. Instead, we study the distribution of the parameters {θi,t}i,t; here, we
consider a log-normal distribution with mean µθ and covariance matrix Σθ.

We aim at inferring the hyper-parameters µθ and Σθ of the constructed hierarchical model given the observed
data {x∗i,t, y∗i,t}i,t. Note that the model contains 20 parameters (see section S1.2) therefore µθ is of length 20 and
Σθ is a 20 × 20 symmetric matrix. Due to the prohibitive computational cost of inferring these 210 values, we
simplify the model by assuming that the covariance matrix Σθ is diagonal; we denote by σ2

θ the vector containing
the diagonal elements. The likelihood function is defined as follows

p({x∗i,t, y∗i,t}i,t|µθ, σ2
θ) =

∏
t

∏
i

∫
1(x∗i,t,y

∗
i,t)=f(θi,t,t)

p(θi,t|µθ, σ2
θ)dθi,t (1)

where f(θi,t, t) describes the simulated concentration of the two species of interest at time t when simulating the
model with parameter θi,t; as described above p(θi,t|µθ, σ2

θ) is the density of a log-normal distribution with mean
µθ and covariance matrix Σθ = diag(σ2

θ). This likelihood function can not be computed in closed-form and needs
to be estimated. We propose to use the Unscented Transform (UT) (Julier, 2002) to approximate the two moments
of the distribution p({x∗i,t, y∗i,t}i,t|µθ,Σθ). We denote by mx

t (µθ, σ
2
θ) (resp. my

t (µθ, σ
2
θ)) and vxt (µθ, σ

2
θ) (resp.

vyt (µθ, σ
2
θ)) the mean and the variance of this distributions as a function of the hyper–parameters µθ and σ2

θ .
The UT is a mathematical tool, which allows us to approximate the moments of the output of a non-linear

function given the moments of the input. The first step of the UT algorithm is to determine a set of weighted
particles {ξj}j , called sigma points, which capture both the mean µθ and the variances σ2

θ . Since we assume a
log-normal distribution over the parameter space, we consider the variable θ̃, which is distributed according to a
normal distribution with mean µ̃θ = log(µθ)− 1/2 log(σ2

θ/µ
2
θ + 1) and variance σ̃2

θ = log(σ2
θ/µ

2
θ + 1). Denoting

by D the dimension of the parameter space, the sigma-points are defined as follows:

ξ0 = µ̃θ

ξj = µ̃θ + α
√
D + κ [σ̃θ]j j = 1, · · · , D

ξj = µ̃θ − α
√
D + κ [σ̃θ]j j = D + 1, · · · , 2D,

where [σ̃θ]j represents a vector full of zeros except on the j-th element which is equal to the j-the element of the
vector σ̃θ. The sigma-point weights {wmj , wvj }0≤j≤2D are given by,

wm0 =
α2(D + κ)−D
α2(D + κ)

wv0 =
α2(D + κ)−D
α2(D + κ)

+ 1− α2 + β

wmj = wvj =
1

2α2(D + κ)
j = 1, · · · , 2D .

The parameters κ, α and β may be chosen to control the positive definiteness of the covariance matrices, spread
of the sigma-points and error in the kurtosis respectively (Silk, 2013). Here we use κ = 0, α = 0.7 and β = 2.



Once the sigma-points have been determined, the ODE system is solved for each sigma-points separately. More
precisely, for each 0 ≤ j ≤ 2D, we solve the ODE system with the parameter exp(ξj), resulting in solutions xj,t
and yj,t. Assuming a log-normal distribution in the molecular concentration space, the means and variances of the
distribution at each time point can then be computed as

mx
t (µθ, σ

2
θ) =

2D∑
j=0

wmj log(xj,t)

my
t (µθ, σ

2
θ) =

2D∑
j=0

wmj log(yj,t)

vxt (µθ, σ
2
θ) =

2D∑
j=0

wvj (log(xj,t)−mx
t (µθ, σ

2
θ))2

vyt (µθ, σ
2
θ) =

2D∑
j=0

wvj (log(xj,t)−my
t (µθ, σ

2
θ))2 .

Therefore the likelihood in equation (1) is approximated as follows

p({x∗i,t, y∗i,t}i,t|µθ, σ2
θ) =

∏
t∈T

Nt∏
i=1

Ψ
(
x∗i,t;m

x
t (µθ, σ

2
θ), vxt (µθ, σ

2
θ)
)

Ψ
(
y∗i,t;m

y
t (µθ, σ

2
θ), vyt (µθ, σ

2
θ)
)

where Ψ(·) is the pdf of a log-normal distribution.
In Figure S6B we compare the approximation of the likelihood function p({x∗i,t, y∗i,t}i,t|µθ, σ2

θ) given by the
UT algorithm to a Monte-Carlo approximation. In the Monte-Carlo approximation, 1000 set of parameters are
sampled from log-normal distributions (with mean µθ and variance σ2

θ ). For each parameter set, we solve the
system of ODE to obtain trajectories of every species in the system and then we compute the median and quantiles
of the obtained trajectories.

S4.2 Extrinsic noise: identification of model parameters that significantly vary between
cells

Under the extrinsic noise model, all model parameters differ between cells. In each cell every parameter, k, is drawn
from a log-normal distribution with mean µk and variance σ2

k (called hyper-parameters). Our Bayesian inference
procedure based on the single-cell data allows us to obtain posterior distributions for every hyper-parameters. For
the DD model, there are 20 model parameters and therefore 40 hyper-parameters.

To investigate which parameters contribute most to the observed cell-to-cell variability, we analyse the pos-
terior distribution of the coefficient of variation for each parameter (σk/µk for each k) shown in Figure S7. The
coefficients of variation take value between 0 and 1. We distinguish 3 types of posterior distributions: (i) poste-
rior distributions with a support that covers more than 60% of [0, 1] (framed in blue), (ii) posterior distributions
close to 0 (posterior framed in yellow has 0.25th percentile lower than 0.05 and a 0.75th percentile lower than
0.3), and (iii) the other posteriors distributions which are more tightly constrained and significantly different to 0
(framed in red). The parameters that contribute most to the observed cell-to-cell variability are those for which the
posterior distribution of the coefficient of variation is consistently and significantly different from zero. Indeed,
a posterior distribution of a coefficient of variation very close to 0 indicates that the model parameter does not
need to vary between cells; a posterior of a coefficient of variation not constrained and including most of the [0, 1]
support demonstrates that the variation of this model parameter between cells is not crucial to explain the level of
cell-to-cell variability. Therefore only the parameters framed in red in Figure S7 appear to play an important role
in the cell-to-cell variability. These parameters are k1, k2, k10, ppE0 and M0.
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Figure S7: Posterior distribution of coefficient of variation. (Related to Figures 4, 5 and 6) The posterior
distribution obtained using SMC sampler for the coefficient of variation of each parameter are shown here. We
distinguish 3 types of posterior distributions: (i) posterior distributions with a support that covers more than 60%
of [0, 1] (framed in blue), (ii) posterior distributions close to 0 (posterior framed in yellow has 0.25th percentile
lower than 0.05 and a 0.75th percentile lower than 0.3), and (iii) the other posteriors distributions which are more
tightly constrained and significantly different to 0 (framed in red).
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