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SUMMARY

Cellular signaling processes can exhibit pronounced
cell-to-cell variability in genetically identical cells.
This affects how individual cells respond differen-
tially to the same environmental stimulus. However,
the origins of cell-to-cell variability in cellular sig-
naling systems remain poorly understood. Here, we
measure the dynamics of phosphorylated MEK and
ERK across cell populations and quantify the levels
of population heterogeneity over time using high-
throughput image cytometry. We use a statistical
modeling framework to show that extrinsic noise,
particularly that from upstreamMEK, is the dominant
factor causing cell-to-cell variability in ERK phos-
phorylation, rather than stochasticity in the phos-
phorylation/dephosphorylation of ERK. We further-
more show that without extrinsic noise in the core
module, variable (including noisy) signals would be
faithfully reproduced downstream, but the within-
module extrinsic variability distorts these signals
and leads to a drastic reduction in the mutual infor-
mation between incoming signal and ERK activity.

INTRODUCTION

The behavior of eukaryotic cells is determined by an intricate

interplay between signaling, gene regulation, and epigenetic

processes. Within a cell, each single molecular reaction occurs

stochastically, and the expression levels of molecules can vary

considerably in individual cells (Bowsher and Swain, 2012).

These non-genetic differences frequently add up to macroscop-

ically observable phenotypic variation (Spencer et al., 2009;

Balázsi et al., 2011; Spiller et al., 2010). Such variability can

have organism-wide consequences, especially when small dif-

ferences in the initial cell populations are amplified among their

progeny (Quaranta and Garbett, 2010; Pujadas and Feinberg,

2012). Cancer is the canonical example of a disease caused by

a sequence of chance events that may be the result of amplifying
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physiological background levels of cell-to-cell variability (Rob-

erts and Der, 2007).

Better understanding of the molecular mechanisms behind the

initiation, enhancement, attenuation, and control of this cellular

heterogeneity should help us to address a host of fundamental

questions in cell biology and experimental and regenerative med-

icine.Noiseat themolecular level hasbeenamplydemonstrated in

the literature, in the contexts of both gene expression (Elowitz

et al., 2002; Swain et al., 2002; Hilfinger and Paulsson, 2011)

and signal transduction (Colman-Lerner et al., 2005; Jeschke

et al., 2013). The molecular causes underlying population hetero-

geneity are only beginning to be understood, and each new study

adds nuance and detail to our emerging understanding. Two no-

tions have come to dominate the literature: intrinsic and extrinsic

causes of cell-to-cell variability (Swain et al., 2002; Komorowski

et al., 2010; Hilfinger and Paulsson, 2011; Toni and Tidor, 2013;

Bowsher andSwain, 2012). The former refers to thechanceevents

governing the molecular collisions in biochemical reactions. Each

reaction occurs at a random time leading to stochastic differences

between cells over time. The latter subsumes all those aspects of

the system that are not explicitly modeled. This includes the

impact of stochastic dynamics in any components upstream

and/or downstream of the biological system of interest, which

may be caused, for example, by the stage of the cell cycle and

the multitude of factors deriving from it.

It has now become possible to track populations of eukaryotic

cells at single-cell resolution over time andmeasure the changes

in the abundances of proteins (Selimkhanov et al., 2014). For

example, rich temporal behavior of p53 (Geva-Zatorsky et al.,

2006; Batchelor et al., 2011) and Nf-kb (Nelson et al., 2004;

Ashall et al., 2009; Paszek et al., 2010) has been characterized

in single-cell time-lapse imaging studies. Given such data, and

with a suitable model for system dynamics and extrinsic noise

in hand it is possible, in principle, to locate the causes of cell-

to-cell variability and quantify their contributions to system dy-

namics. Here, we develop a statistical framework for just this

purpose, andwe apply it tomeasurements obtained by quantita-

tive image cytometry (Ozaki et al., 2010): data are obtained at

discrete time points but encompass thousands of cells, which al-

lows one to investigate the causes of cell-to-cell variability (John-

ston, 2014). The in silico statistical model selection framework
s).
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Figure 1. The MEK/ERK System and Modeling of the MEK/ERK Module

The binding of a growth factor to its receptor activates a succession of reactions that lead to the phosphorylation of MEK; active MEK, in turn, phosphorylates

ERK. In this study, we focus on the MEK/ERKmodule (circled in red). The impact of the stimulus and the upstream reactions on the evolution of the concentration

of activeMEK aremodeled using a time-dependent function, which depends on three parameters (k1, k10, and T). In addition, activeMEK is degraded with rate k2.

The detailed mechanism of phosphorylation and dephosphorylation of ERK is represented in the bottom-right part of the figure. Pt denotes the cognate ERK

phosphatase. The reaction rates are shown next to their associated reactions.
also has the advantage that it can be applied in situations where,

e.g., dual reporter assays, which explicitly separate out extrinsic

and intrinsic sources of variability (Hilfinger and Paulsson, 2011),

cannot be applied.

With this framework in hand we consider the dynamics of

the central MEK-ERK core module of the MAPK signaling

cascade, see Figure 1 (Santos et al., 2007; Inder et al., 2008).

MAPK mediated signaling affects cell-fate decision-making pro-

cesses (Eser et al., 2011)—including proliferation, differentiation,

apoptosis, and cell stasis—and cell motility, and the mecha-

nisms of MAPK cascades and their role in cellular information

processing have been investigated extensively (Kiel and

Serrano, 2009; Mody et al., 2009; Sturm et al., 2010; Takahashi

et al., 2010; Aoki et al., 2011; Piala et al., 2014; Voliotis et al.,

2014). Here, we take an engineering perspective and aim to

characterize how MEK and ERK transmit signals. The upstream

sources of noise in signaling involving MAPK cascades have

been amply documented (see, e.g., Schoeberl et al., 2002; San-

tos et al., 2012; Sasagawa et al., 2005), as have their down-

stream consequences, e.g., in the context of stem cell-fate deci-

sion making (Miyanari and Torres-Padilla, 2012; Schröter et al.,

2015). The manner in which MEK and ERK modulate this vari-

ability is less well understood in detail. Our aim is to answer three

related questions: (1) are the dynamics of the MEK-ERK module
noisy; (2) where might this noise originate; and (3) how does

noise in the MEK-ERK system affect the ability of this important

molecular system to relay information reliably?

Below we will first quantify the levels of cell-to-cell variability

sources of noise in the system, with a special focus on the dy-

namics of active, i.e., phosphorylated, MEK and ERK; after this

we will identify the sources of such noise and compare their rela-

tive contributions to cell-to-cell variability. We will show that our

analysis is robust to both qualitative as well as quantitative

changes in the upstream stimulation. With this in hand, we can

then turn to an investigation of the effects cell-to-cell variability

has on the ability of cell populations to respond to fluctuating

signals.

RESULTS

Quantifying Temporal Evolution of Cell-to-Cell
Variability
We investigate the causes of cellular heterogeneity in vivo during

ERK activation by phosphorylated MEK in PC12 cells. This cell-

to-cell variability study is based on measurements of the con-

centration of phosphorylated MEK and ERK at the single-cell

level obtained by quantitative image cytometry. Cells are plated

in medium containing a fixed amount of neuronal growth factor
Cell Reports 15, 2524–2535, June 14, 2016 2525



Figure 2. Measurement of the Evolution of the Joint Protein Distributions of Phosphorylated MEK and Phosphorylated ERK
(A) Cells are plated in a medium and stimulated with NGF at t = 0. Every 2min, thousands of cells are stimulated and the amount of total phosphorylatedMEK and

ERK (i.e., the sum of free and complex-bound forms) is measured at single-cell level using quantitative image cytometry, providing a series of cross-sectional

snapshots of the joint distributions of the level of phosphorylated MEK and ERK.

(B) Boxplots showing the distributions of the measured protein concentrations at each time point (the edges of the colored boxes are the 0.25 and 0.75 quantiles;

the central mark is the median).

(C) The temporal evolution of the variance, the coefficient of variation and the Fano factor for the distributions of the total amount of phosphorylatedMEK and ERK.
(NGF) as the stimulus at time t = 0. Every 2 min, cells in one well

are stimulated in order to quantify the concentration of the two

proteins of interest providing us with a series of cross-sectional

snapshots of the joint protein distributions of the total amount of

phosphorylated MEK and ERK, see Figure 2A.

The observed distributions of the total amount of phosphory-

lated MEK and ERK are illustrated in Figures 2B and S1, and

Figure 2C shows the evolution of the variance, the coefficient

of variation and the Fano factor over time for both proteins.

The variance over the cell population of the concentration is of

the order of 105 and significantly varies with time. We have

examined experimental noise versus cell-to-cell variability of

total ERKs in unstimulated PC12 cells (Figure S2) (Uda et al.,

2013) and found that the experimental noise is negligible. In addi-

tion, cell size, cell volume, and Hoechst level (the dye used to

quantify nucleic acid levels) make only negligible contributions

to observed levels of cell-to-cell variability (Figure S3). We can

thus rule out cell cycle, etc. as explanations for or cause of the

temporal variability in the amount of active ERK.

Statistical Investigation of the Cell-to-Cell Variability in
the Core MEK-ERK Module
The analysis of the origins of cell-to-cell variability in the core

MEK-ERK module (i.e., the MEK-ERK interactions as indicated

by the red circle in Figure 1, left panel) requires us to determine

the modes of ERK phosphorylation and dephosphorylation. ERK
2526 Cell Reports 15, 2524–2535, June 14, 2016
activation involves phosphorylation at both its tyrosine and thre-

onine phosphorylation sites by its cognate kinase MEK (Ferrell

and Bhatt, 1997; Ferrell and Ha, 2014). Previous studies (Toni

et al., 2012) have shown that in vivo phosphorylation (as well

as dephosphorylation) occurs in two steps where the kinase

binds to the protein twice in order to phosphorylate the two sites

successively (see Figure 1, bottom right). Using a Bayesian

model selection approach, we confirm that this distributive

mechanism best captures the observed average behavior in

our data (see Figure S2). We therefore base our analysis of the

origins of cell-to-cell variability on this mechanistic model with

20 model parameters including 12 reaction rates, four parame-

ters describing the impact of the NGF stimulus and upstream

signals and four parameters controlling the initial concentrations

of the species involved in the MEK-ERK core system (see Fig-

ure 1 and Supplemental Experimental Procedures).

In this model of the MEK-ERK core module, we assume that

the total abundance of ERK remains constant over the length

of the experiment and is described by one of the model param-

eters. Previously, we had shown experimentally that total abun-

dance of ERK does not change, while the levels of phosphoryla-

tion change considerably (Ozaki et al., 2010); therefore, it is

indeed appropriate to model the cell-to-cell variability of total

ERK as (extrinsic) parameter variability.

The workflow adopted in this analysis is summarized in Fig-

ure 3. Given the mechanistic model of ERK phosphorylation



Figure 3. Elucidating the Origin of Cell-to-Cell Variability
(Left) Flowchart of the analysis of origin of cell-to-cell variability as performed in this paper, highlighting which data are used at each steps.

(Right) Within-cell variability can be caused by intrinsic noise, resulting from the stochastic nature of biochemical reactions, or extrinsic noise, arising from

inherent differences between the cells.
described above, we will start by quantifying the relative contri-

bution of intrinsic noise and extrinsic noise in the MEK-ERK

core module. As illustrated in Figure 3, intrinsic noise results

from the stochastic nature of biochemical reactions, while

extrinsic noise arises from inherent differences between the

cells. We will then experimentally validate our model of cell-to-

cell variability by considering the response of the MEK-ERK sys-

tem to different stimuli, and we will finish with a detailed analysis

of themain source of cellular heterogeneity in theMEK-ERK core

and the overall impact on MAPK-mediated cellular information

processing.

Relative Contribution of Extrinsic and Intrinsic Noise in
the MEK-ERK Core Module
While it is straightforward to model extrinsic and intrinsic noise,

quantifying their relative contributions to real molecular systems

has thus far only been possible for systems where two-reporter

assays are available (Elowitz et al., 2002; Swain et al., 2002).

Here, we develop a statistical framework that allows us to obtain

quantitative insights into the roles of these two sources of noise

for signaling systems where direct measurements are typically

not possible.

Intrinsic variability between cells arises from the stochastic na-

ture of biochemical reactions. Each reaction occurs at a random
time, so, even if the molecular species concentrations are

identical in every cell at the beginning of the experiment, their

evolution will inevitably vary from one cell to another. This

intrinsic variability has traditionally beenmodeled using stochas-

tic simulation algorithms such as the Gillespie algorithm. Here,

we aim to examine whether there exists parameter sets for

which the stochasticity of the biochemical reactions induces

a similar variability between cells to that observed in the ex-

perimental data. In order to infer such parameter sets, we

use the linear noise approximation (LNA) (Elf and Ehrenberg,

2003; Ferm et al., 2008), which provides an explicit Gaussian

likelihood for stochastic biochemical reactions (see Experi-

mental Procedures).

Extrinsic sources of variability stem from all those elements of

the ‘‘real system’’ that are not explicitly modeled; these typically

include factors such as inherent differences between the cells in

terms of protein concentrations at the start of the experiment,

and other biophysical parameters. To capture such effects, we

allow model parameters to differ between cells (Shahrezaei

et al., 2008; Toni and Tidor, 2013): the parameters for each cell

are drawn from a log-normal distribution (with means and vari-

ances that will be inferred from the data). The potential sources

of extrinsic noise in the MEK-ERK system are differences in the

reaction rates between cells in the (de-)phosphorylation process
Cell Reports 15, 2524–2535, June 14, 2016 2527



of ERK, different initial concentrations of ERK and MEK, and dif-

ferences in the upstream signaling cascades feeding into the

MEK dynamics. The log-normal distribution has two advantages:

it allows only positive values for reaction rates, and it allows pa-

rameters to vary over orders of magnitude if indicated by the

data.

Using the Bayesian framework developed in the Experimental

Procedures, we analyze the roles of intrinsic and extrinsic noise

in the single-cell data. The resulting statistical model evidence

indicates that the extrinsic noise best explains the data. The evo-

lution of the obtained distributions for MEK and ERK are shown

and compared to the data in Figure 4A: only the extrinsic noise

model can explain the observed high levels of cell-to-cell

variability.

Variation in initial conditions is also not sufficient to generate the

observed cell-to-cell variability; this is easily seen by sampling

different values for the initial concentration of the species involved

in the MEK-ERK system according to a log-normal distribution

with mean and variance (given by the inferred means and vari-

ances in the extrinsic noise case) and simulating the model with

intrinsic noise for each of these initial conditions. The total

variance, which is the sum of (1) the mean over the different initial

conditions of the variance due to the intrinsic noise, and (2) the

variance over the different initial conditions of the mean over the

intrinsic variability, is shown in Figure 4B. This shows that the vari-

ance including variation in initial conditions does not differ appre-

ciably from the variance of intrinsic noise alone.

In a biological system, we expect extrinsic and intrinsic sour-

ces of noise: the cells are likely to be different in terms of initial

molecular concentrations and the biochemical reactions occur

at random times. We therefore compare the variances of the

observed molecular species under extrinsic noise alone with

the total variances under both extrinsic and intrinsic noise.

From Figure 4B, it is apparent that the contribution of intrinsic

noise to the total variation is negligible.

In order to validate the model further, we consider the

response of the MEK-ERK system to different stimuli; while the

upstream dynamics will be different (different receptors and

different upstream intermediates aswell as dependence on stim-

ulus strength and temporal pattern [Fujita et al., 2010; Toyoshima

et al., 2012]), the core MEK-ERK model, if parameterized

correctly, should capture the dynamics. Here, we therefore use

the hyper-parameters inferred previously except for those that

correspond to the upstream dynamics, which we inferred

directly from the EGF and NGF time courses. We find that

extrinsic noise model explains the response of the MEK-ERK

system to stimulation by EGF (Figure 5A) and different NGF stim-

ulus intensities (Figures 5B and S4). The model with extrinsic

noise shows good qualitative and quantitative agreement be-

tween model predictions and the new data obtained for different

stimulus. Thus, our extrinsic noisemodel is capable of predicting

the response of the core MEK-ERK module to other stimuli than

those used in the model development. EGF and NGF are known

to give rise to very different downstream behavior (Santos et al.,

2007), but the modular nature of MAPK signaling (Mody et al.,

2009) means that the characterization of the MEK-ERK compo-

nent for one input (a given concentration of NGF) already yields a

model that can also explain the response to other stimuli.
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Fluctuations in the Upstream Reactions and in the
Degradation Rate of the Kinase Explain Most of the
Cell-to-Cell Variability
Our Bayesian analysis allows us to assess directly which param-

eters differ most between cells. For each parameter, we have

estimates of the coefficient of variation across cells, and the

parameters that contribute most to the observed cell-to-cell

variability are those for which the inferred coefficient of variation

is consistently and significantly different from zero (see Fig-

ure S6). We find five strongly contributing factors: three model

parameters (k1, k2, and k10) and the two initial conditions that

describe the level of background activity present in the cell at

the point of stimulation. The degradation rate of active MEK

(k2) affects the steady-state levels of cell-to-cell variability; the

role of degradation reactions in determining levels of noise

(and thus cell-to-cell variability) has been previously studied (Ko-

morowski et al., 2013). The pulse height, k1, and the background

upstream signal, k10, jointly characterize the impact of the NGF

stimulus and the upstream reactions on the evolution of active

MEK (see Figure 1, top right). The origins of noise upstream of

MEK are well documented and therefore expected; here, our

focus is on how MEK-ERK core dynamics modulate such vari-

ability. In Figure 6A, we illustrate the predominant role that these

three model parameters that describe the effect of the upstream

signal (k1, k2, and k10) have on the extent of cell-to-cell variability

in this system.

To further investigate the role of the noise upstream to MEK

compared to the noise in the core MEK-ERK module, we

compare the joint distribution of the total amount of phosphory-

lated MEK and ERK when the system is simulated under the full

extrinsic noise model or only varying the ‘‘driving’’ parameters k1
and k10 between cells (see Figure 6B). Simply varying the

‘‘driving’’ parameters can explain the evolution of the variance

and correlation between the two proteins; the joint distribution

of active MEK and ERK is only slightly better captured when

we consider all the factors in the full extrinsic noise model.

Impact of Cell-to-Cell Variability on Cellular Information
Processing
We conclude our analysis by investigating the role that noise

plays in mediating the response of the MEK-ERK module to

external stimuli. We compute the mutual information between

the total amount of phosphorylated MEK and ERK at different

time points, simulating the system under extrinsic noise or vary-

ing only the parameters that seems to be related to most of the

cellular variability (k1, k2, and k10)—all other model parameters

are fixed to the inferred posterior mean values. We observe in

Figure 7A that the presence of extrinsic noise decreases the level

of transfer of information between the two species of interest.

Thus, in a heterogeneous population of cells the statistical

dependence between active MEK and ERK or, in other words,

the expected information flowing through the MEK-ERK module

is decreased. In light of the modest effect that within-module

extrinsic noise appears to have on overall patterns of cell-to-

cell variability in Figure 6, this profound change to the information

transmission reliability might seem surprising. But it does reflect

the complex behavior of the mutual information that can result

from the interplay between system dynamics and extrinsic noise,



Figure 4. Intrinsic Noise Alone Cannot Explain the Observed Variability between Cells

(A) In the top part of the figure, the evolution of the inferred marginal distributions over the cell population for the two noise models are displayed and compared to

the single-cell data distributions (boxplots). The lines represent the median of the distributions, while the shaded regions indicate the regions delimited by 5th and

95th percentiles (lighter regions) and the one delimited by 25th and 75th percentiles (darker regions). The medians and percentiles shown here are the average of

themedians and percentiles computed for 1,000 sets of parameters sampled from the posterior distribution. The logarithmof the evidence is shown for both noise

models; these are strongly supportive of the extrinsic noise models. In the bottom part of the figure, the inferred joint distributions of the total amount of

phosphorylated MEK and ERK over the cell population (contour green line) for the two noise models are displayed and compared to the single-cell data dis-

tributions (gray dots) for two time points (4 and 50 min).

(B) Temporal evolution of the predicted variances over the cell population for the intrinsic noisemodel alone (dotted lines), the intrinsic noisemodel combined with

a variation in initial conditions between cells (dashed lines), the intrinsic noise together with extrinsic noise (dash-dot lines), and the extrinsic noise alone (gray

continuous line) show that the contribution of intrinsic noise is negligible. The squared dots represent the measured variance of the concentration of the two

proteins over the cell populations.
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Figure 5. Prediction of the Impact of Growth Factor on Cell-to-Cell Variability

(A) Evolution of the inferred distributions of the total amount of phosphorylated ERK and MEK in response to stimulation by EGF with two levels of intensity. The

hyper-parameters for the initial conditions and the reaction rates are fixed to the previously estimated values (using the single-cell data in response to NGF

stimulus), whereas the hyper-parameters describing the impact of the stimulus and upstream signals on the kinase are inferred here separately. The single-cell

data distributions (boxplots) are compared to the inferred distributions (the lines represent the median of the distributions, while the shaded regions indicate the

regions delimited by 5th and 95th percentiles for the lighter regions and the one delimited by 25th and 75th percentiles for the darker regions).

(B) The predictions for the behavior of the total amount of phosphorylated ERK and MEK under the extrinsic noise model (left columns) are compared to

experimental measurements (right columns) for different level of NGF intensity. The solid lines indicate the median value, while the shaded regions indicate the

regions delimited by 5th and 95th percentiles (lighter zones) and by 25th and 75th percentiles (darker zones).
and which has been demonstrated theoretically elsewhere (Mc

Mahon et al., 2015). In other words, variability in the upstream

signals is faithfully transmitted (active ERK is approximately pro-

portional to active MEK) if we ignore variability in the other fac-

tors. But when this is taken into account, this relationship be-

comes less well defined and at the population level the flow of

information through MEK-ERK is radically decreased.

To follow on from this, we analyze the level of cell-to-cell vari-

ability in the system’s output (i.e., the total amount of phosphor-

ylated ERK) as a function of how variable the inputs (captured by

the transient and sustained upstream intensities, k1 and k10, and

their respective variances over the cell population s2k1 and s2k10 )

are. We simulate system output for given values of s2k1 and s2k10
and compute the ratio

l
�
sk1 ;sk10 ; t

�
=
s
�
sk1 ;sk10 ; t

�
s
�
s�
k1
;s�

k10
; t
� ;

where sðsk1 ; sk10 ; tÞ is the SD of the output at time t (see Fig-

ure 7B). Note that s�k1 =
ffiffiffiffiffiffiffi
mk1

p
and s�k10 =

ffiffiffiffiffiffiffiffi
mk10

p
are the maximum

values of these SD, where mk1 and mk10 are the means over

the cell population for, respectively, k1 and k10. The ratio

lðsk1 ;sk10 ; tÞ quantifies the change in the level of cell-to-cell vari-

ability in the system’s output as the noise level in the input is

decreased.

In the first instance, we assume that only the input signal

strengths (k1 and k10) vary between cells. The evolution of

lðsk1 ;sk10 ; tÞ over time when varying the variances s2k1 and s2k10
is shown in Figure 7C (left column). Before t = 8 min,

lðsk1 ;sk10 ; tÞ increases with s2k1 , whereas s2k10 has no impact on
2530 Cell Reports 15, 2524–2535, June 14, 2016
lðsk1 ; sk10 ; tÞ. Conversely, after t = 24 min, lðsk1 ;sk10 ; tÞ increases
with s2k10 but s2k1 no longer affects output variability. Thus vari-

ability in active ERK abundance across the cell population is

initially strongly influenced by the variability in pulse height, k1,

and subsequently by the variability in the sustained or back-

ground signal, k10.

To investigate further the effect of the variability in all model

parameters on cellular information processing, we also simulate

the system under extrinsic noise (varying all model parameters

between cells) and compute once more lðsk1 ; sk10 ; tÞ for different
signal variabilities. It is apparent from Figure 7C (right column)

that, under the extrinsic noise model, the level of cell-to-cell vari-

ability in the system’s output remains substantially high even

when the variability in the system’s input has been decreased

considerably (l x 0.45 when sk1 and sk10 are divided by 20).

Again the presence of extrinsic noise weakens the efficiency of

signal transduction.

DISCUSSION

In this study, we have used quantitative image cytometry to

elucidate the causes of population heterogeneity in the MAPK

signaling cascade and presented a comprehensive analysis of

cell-to-cell variability in the activation dynamics of the MEK-

ERK system to environmental stimuli. With a reliable model for

the (de-)phosphorylation mechanisms in hand, we were able to

dissect the nature of the cell-to-cell variability inherent in the

data. Recent models for ERK phosphorylation proposed in the

literature (Ortega et al., 2006; Sturm et al., 2010; Harrington

et al., 2013; Ferrell and Ha, 2014; Voliotis et al., 2014) allow for

very rich dynamics, and a priori it is therefore impossible to



Figure 6. Factors Contributing to Cell-to-Cell Variability

(A) Evolution of the predicted variances when only some of the model parameters vary from one cell to another: either the parameters that describe the effect of

the upstream signals (continuous lines), the parameters controlling the initial conditions (dashed lines), or the reaction rates (dotted lines). The light gray

continuous line is the predicted variance when all model parameters differ between cells. The squared dots represent themeasured variance of the concentration

of the two proteins over the cell populations.

(B) Comparison of the observed (black dots) and the simulated joint distribution of the concentration of ppERK and ppMEK at different time points. The lines

indicate the contour of the joint distribution when the system is simulated under the full extrinsic noise model (yellow) or only varying the parameters k1 and k10
between cells (green).
make an appeal to the large number of MEK, ERK, and other

molecules present in the eukaryotic cell, in order to rule out a

role for intrinsic noise. The statistical framework developed for

this study, however, gives a clear verdict in favor of extrinsic

noise as the dominant factor for the observed cell-to-cell vari-

ability in the MEK-ERK system.

With the primary role of extrinsic noise established, we

analyzed the contributions to cell-to-cell variability that arise

from the different extrinsic sources of noise. Upstream of MEK

many potential sources of noise and cell-to-cell variability have

been identified in the literature, and our framework captures their

contribution. In this study, the focus has been on the contribu-

tions to noise that arise from within the MEK-ERK module—

this should be taken as akin to establishing the noise character-

istics of, e.g., a transistor in electronics. We do find that there is

considerable extrinsic variability in the module dynamics. How-

ever, the overall contribution of these within-module extrinsic

sources of noise to the total dynamics quantitatively studied

here are smaller than the upstream sources’ contributions.

We then investigated how this extrinsic noise interferes with

signal transduction. Our analysis shows that the overall joint dis-

tribution of phosphorylated MEK and ERK can be understood

largely in terms of the upstream noise. The full model that ac-

counts for extrinsic variability both upstream and within-module

can be argued to capture more of the nuances seen in the empir-
ical data but otherwise does not differ very much. However,

these two scenarios have profoundly different impact on the abil-

ity of the MEK-ERK module to transmit upstream information

to the activity profile of phosphorylated ERK: without extrinsic

noise in the core module, variable (including noisy) signals would

be faithfully reproduced downstream. But the extrinsic variability

in the module parameters distorts these signals and leads to a

drastic reduction in the mutual information between incoming

signal and ERK activity.

Our results can be interpreted in two ways: we may simply re-

gard the MEK-ERK module as poorly engineered as its behavior

depends on the cellular context, or we may view this as a bet

hedging (Stumpf et al., 2002; Kussell and Leibler, 2005) strategy,

which poises different cells to respond differentially to stimula-

tion, thereby reducing the risk of an inappropriate population

wide response to noisy signals. In development and tissue ho-

meostasis (Rué and Martinez Arias, 2015) (and in regenerative

medicine), it may be important to find ways to regulate popula-

tion-level behavior; e.g., using inter- and intra-cellular feedback

mechanisms that control cell-to-cell variability further (Michailo-

vici et al., 2014).

The study presented here is based on experiments carried out

in PC12 cell lines (Greene and Tischler, 1976), which, unlike

in vitro setups, provide the cell physiological context. The activity

of upstream and downstream processes affecting ERK may
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Figure 7. Information Processing of the MEK/ERK Module

(A) Mutual information between ppMEK and ppERK when the system is simulated under the full extrinsic noise model (yellow) or only varying the parameters k1
and k10 between cells (green).

(B) The variability in the impact of reactions upstream ppMEK is summarized by the variances s2k1 and s2k10 . The level of cell-to-cell variability in the total con-

centration of ppERK at time t depends on s2k1 and s2k10 and is denoted by sðsk1 ; sk10 ; tÞ.
(C) Illustration of the behavior of lðsk1 ; sk10 ; tÞ for decreasing values of sk1 and sk10—the red corresponding to the smallest and the yellow to themaximumSD . This

subfigure is divided in two parts: in the left column, only parameters k1 and k10 vary between cells (all other model parameters are fixed to their mean value),

whereas in the right column the full extrinsic noise model is considered where all model parameters differ between cells. Each panel corresponds to a fixed value

of sk1 , while each line corresponds to a fixed value of sk10 .
depend on cell type; this has, for example, been shown for nu-

clear shuttling, where even subtle differences between different

cell lines can affect, e.g., the activity of nuclear ERK (Harrington

et al., 2012). Our deliberate focus on the core MEK-ERK dy-

namics is less prone to such strong cell-type specificity over

the timescales considered, whereas the potential of feedback

from either ERK or any of its many downstream targets onto

the MAPK cascade or proteins further upstream should be care-

fully considered in different cell types. The additional richness in

behavior that such feedback (Ortega et al., 2006; Sturm et al.,

2010) or explicit consideration of nuclear shuttling (Harrington

et al., 2013) of ERK and MEK can induce warrants further inves-

tigation (Ozaki et al., 2010); here, over the time course consid-

ered, and in light of the data available such effects are marginal,

but this may change as longer or more complex temporal stimu-

lation patterns are considered. At the single-cell level, both

feedback and shuttling are therefore clearly worth of further

investigation.

It is important to keep in mind that no model will ever be

able to contain all the constituent parts of any biological sys-

tem of any real-world relevance. Therefore, extrinsic noise will

always be an issue for modeling molecular and cellular sys-

tems. There are practical limitations to the current approach;

notably it is not possible to fully describe correlations among

the different extrinsic sources of noise (the number of param-

eters that we would have to estimate is simply too large); for
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example, interactions between kinases and phosphatases

(Swain and Siggia, 2002) in MAPK may shape the response

dynamics and such interactions are hard to capture in the

extrinsic noise model. We believe, however, that the in silico

approach developed here can serve to highlight such factors

and may therefore be a guide to deciding which system as-

pects ought to be modeled explicitly. By pinpointing the sour-

ces of extrinsic noise, which are typically not obvious a priori,

sound statistical modeling is able to provide deeper mecha-

nistic insights and highlight where a model ought to be

extended, or whether this is indeed necessary.

EXPERIMENTAL PROCEDURES

Experimental Data Collecting Process

The concentrations of molecular species were measured using quantitative

image cytometry (QIC) (Ozaki et al., 2010; Saito et al., 2013). PC12 cells

were seeded at a density of 104 cells per well in 96-well poly-L-lysine-coated

glass-bottomed plates (Thermo Fisher Scientific). 24 hr after seeding, the

medium was replaced with DMEM containing 25 mM HEPES and 0.1% of

BSA. 18 hr after serum starvation, the stimulus is applied by replacing

the starvation serum with a medium containing the stimulant (5 or 0.5 or

0.1 ng/ml). Our setup carries out stimulation in an incubator and achieved

1-min interval stimulation at 37�C under 5% CO2 in saturated air humidity.

The cells are then fixed with 4% paraformaldehyde for 10 min and immuno-

stained. Cells were subjected to QIC analysis with mouse anti-ppERK1/2

Sigma-Aldrich M8159 antibody and rabbit anti-pMEK1/2 Cell Signaling Tech-

nology 9121. Note that anti-pMEK antibody detects both singly (pS217 or



pS221 alone) and doubly (pS217/221) phosphorylated MEK. Mouse mono-

clonal anti-ERK antibody (#4696, Cell Signaling Technology) and rabbit

polyclonal anti-ERK antibody(#9102, Cell Signaling Technology) were used

in Figure S2.

All images were analyzed with Cell Profiler (Kamentsky et al., 2011). The nu-

clear region was identified based on Hoechst imaging, and the cellular region

was identified based on CellMask-stained images going out from the nuclear

region. Total cellular signal intensity in nuclear regions and cellular regions

were measured for ppERK and pMEK, respectively. We used these intensities

as the concentrations of molecules. We used the cellular region in pixels as the

cell size and the intensity of CellMask in the cellular region as a measure of cell

volume.

The antibody against pMEK used detects both MEK1 and MEK2, all iso-

forms that phosphorylates ERK. In this study, we assume that the total phos-

phorylated MEK corresponds to doubly phosphorylated MEK. It is noted that

no current technology is available to quantify the amounts of singly and doubly

phosphorylated MEK. The antibody against ppERK detects both ERK1 and

ERK2, all isoforms that are expressed in PC12 cells. To the best of our knowl-

edge, there is no functional difference between the isoforms for both MEK and

ERK at least in PC12 cells. Therefore, we did not make distinction between iso-

forms in this study.

Parameter Inference and Model Evidence

We use a Bayesian approach in order to infer the parameters of the system

(see Supplemental Experimental Procedures for a detailed list of themodel pa-

rameters) and rank the candidate mechanistic models. Bayesian parameter

inference is centered around the posterior probability distribution, pðq j x�Þ,
which strikes a compromise between prior knowledge, pðqÞ, about parameter

vectors, q, and the capacity of a parameter to explain the observed data, x�,
measured by the likelihood pðx� j qÞ, via

pðq j x�Þ= pðqÞ pðx� j qÞR
p
�
~q
�
p
�
x� j ~q�d~q :

Here,weevaluate the posterior usinga sequentialMonteCarlo (SMC) sampler

proposed byDelMoral et al. (2006), which is easily parallelized. The output of the

algorithm is a set of weighted parameter vectors fqðiÞ;uðiÞg1%i%N. Here the

parameter vector associated to the highest weight is called the inferred param-

eter vector. Technical details about our implementation of the SMC sampler al-

gorithm are given in Supplemental Experimental Procedures.

The SMC sampler algorithm also enables us to evaluate themodel evidence

(Kirk et al., 2013), which is the probability to observe the data x� under the

model M (given the alternative models considered),

pðx� jMÞ=
Z

pðq j x�;MÞpðq jMÞdq :

The model evidence allows us to rank candidate models in terms of their

ability to explain the observed data x*: the best model is the one with the high-

est model evidence. In addition, the Bayes factor assesses the plausibility of

two candidate models M1 and M2:

BF1;2 =
pðx� jM1Þ
pðx� jM2Þ :

Whenever BF1,2 is larger than 30, the evidence in favor of modelM1 is consid-

ered very strong (Jeffreys, 1961). We use our own implementation of the SMC

sampler algorithm in Python as well as an interface to simulate the models in a

computational efficient manner using a graphics processing unit (GPU) accel-

erated ordinary differential equation (ODE) solver (Zhou et al., 2011) and a C++

ODE solver for stiff models (Hindmarsh et al., 2005).

Likelihood Functions

At each time point t˛T= f0; 2; 4;.50g, the total amount of doubly phosphor-

ylated MEK and ERK are measured in Nt different cells. We denote by x�i;t and
y�i;t the concentration of the two proteins in the i-th cell, 1%i%Nt, and by fx�t gt˛T
and fy�t gt˛T the observed average trajectories. In addition, we denote by xtðqÞ
and ytðqÞ the solution of the system of ODE given the parameter vector q at

time t.

Assuming an independent Gaussian measurement error for each time point

with constant variance v, the likelihood function for the average data measure-

ments is

p
��

x�t ; y
�
t

�
t˛Tjq

�
=
Y
t˛T

f
�
x�t ; xtðqÞ; v

�
f
�
y�t ; ytðqÞ; v

�
;

where fð:;m; vÞ is the probability density function of a normal distribution of

meanm and variance v. The variance v is inferred simultaneously with the other

parameters.

In order to derive the likelihood function in the intrinsic noisemodel efficiently

(Golightly and Wilkinson, 2015), we use the linear noise approximation (LNA).

The LNA provides a system of ODEs, which describes how the means and

the variances of the molecular species vary over time. These equations are

produced using the StochSens package (Komorowski et al., 2012). With

mx
t ðqÞ, my

t ðqÞ, vxt ðqÞ, and vyt ðqÞ denoting the solutions of the ODEs describing

the means and variances for the parameter q at time t, the likelihood

pðfx�i;t ; y�i;tgi;t jqÞ is equal to

Y
t˛T

YNt

i =1

f
�
x�i;t ;m

x
t ðqÞ; vxt ðqÞ

�
f
�
y�i;t ;m

y
t ðqÞ; vyt ðqÞ

�
:

Extrinsic noise is modeled by considering that each cell has a different set

of parameters. The distribution of each parameter across the cell population

is assumed to be log-normal. We assume that these distributions are

independent and denote by mq and sq
2 the vector of the means and variances

of these distribution, respectively. Due to computational cost, we do not

consider any correlation between the parameters. There is no closed-form

expression for the probability pðfx�i;t ; y�i;tgi;t
		mq; s

2
q Þ, and we use the so-called

Unscented Transform (UT) (Silk et al., 2011), which, given the first two mo-

ments mq and s2q of the distribution in the parameter space, provides an

approximation of the evolution of the means and variances of the two species

of interest.

We denote by mx
t ðmq; s

2
q Þ and my

t ðmq; s
2
q Þ the resulting mean behaviors of

the two species at time t, and by vxt ðmq; s
2
q Þ and vyt ðmq; s

2
q Þ the associated var-

iances. Assuming that the concentration of the doubly phosphorylated MEK

and ERK proteins are log-normally distributed, we obtain that the likelihood

pðfx�i;t ; y�i;tgi;t
		mq;s

2
q Þ is

Y
t˛T

YNt

i =1

j
�
x�i;t ;m

x
t

�
mq; s

2
q

�
; vxt

�
mq; s

2
q

��
j
�
y�i;t ;m

y
t

�
mq; s

2
q

�
; vyt

�
mq; s

2
q

��
:

Here jð:;m; vÞ is the probability density function of a log-normal distribution

with meanm and variance v. The Supplemental Experimental Procedures con-

tains additional technical details on the computation and the UT algorithm.

Mutual Information

The mutual information between two species (ppERK and ppMEK) is

computed based on measurements of the protein concentrations in single-

cells at different time points (Mc Mahon et al., 2015). For each time point,

we estimate the mutual information using a kernel density estimate of the joint

distribution. We use a Gaussian kernel with a diagonal covariance matrix and

marginal variances equal to 1.06sN–1/5 where s is the marginal variance of the

data and N is the number of data points (Silverman, 1986).
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Supplemental Figures

Figure S1: Measurement of the evolution of the joint protein distributions of phosphorylated MEK and
phosphorylated ERK. (Related to Figure 2B) The joint distribution of total phosphorylated MEK and ERK
every two minutes. Each dot corresponds to a single cell.
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Figure S2: Elucidating the origin of cell-to-cell variability. (Related to Figure 2) (A) Estimation of exper-
imental noise (Uda et al., 2013). Correlation of signal intensity of the total amount of ERKs measured by the
two different antibodies. Each dot denotes the signal intensity of a single cell. We measured the total amount of
ERKs by double-staining with mouse monoclonal and rabbit polyclonal antibodies. The correlation coefficient, r
was 0.92. The cell-to-cell variation and experimental noise correspond to the variation along the major axis (σc)
and that orthogonal to the major axis (σe), respectively. Copyright permission from Science. (B) In addition to
the experimental measurements for the total amount of doubly phosphorylated ERK and MEK our assay also ob-
tained measurements for cell-size, cell volume and Hoechst intensity in each cell. We computed the correlation
and partial correlations between these 5 measurements using the R package GeneNet (Schäfer et al., 2001). Partial
correlation is a much more powerful measure of statistical dependencies than correlation as has been discussed in
detail by several authors (Kolaczyk, 2009; Schäfer and Strimmer, 2005; Thorne et al., 2013); it allows to measure
dependences between each pairs of variables conditional on all other variables. Here, we compute the partial cor-
relation between every pair of variables given the three other variables as controlling variables. For example, the
partial correlation between the total amount of doubly phosphorylated ERK and MEK is the correlation between
the residuals resulting from the linear regression of the total amount of doubly phosphorylated ERK and MEK
respectively given the cell size, the cell volume and the Hoechst intensity. Both plots are on the same scale, see
colour bar.
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Figure S3: Prediction of the impact of NGF intensity on cell-to-cell variability under the extrinsic noise
model. (Related to Figure 5) Predicted total amounts (medians and predicted 90% credible intervals) of doubly
phosphorylated ERK (orange) and MEK (blue) under the extrinsic noise model are shown for decreasing values of
the hyper-parameters µk1 and µk10 . The reference hyper-parameters, µ∗k1 and µ∗k10 , are the one inferred from the
data.
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S1 Description of the mechanistic models and the parameters
ERK activation requires phosphorylation at both its tyrosine and threonine phosphorylation sites by its cognate
kinase MEK (Ferrell and Bhatt, 1997a), and two mechanisms for phosphorylation and dephosphorylation have been
proposed (Ferrell and Bhatt, 1997b; Gunawardena, 2007; Toni et al., 2012), which are here referred to as processive
and distributive. In the processive (P) mechanism, the kinase binds the protein and catalyzes the phosphorylation at
both sites before dissociating from the doubly phosphorylated substrate protein. In the distributive (D) mechanism
phosphorylation occurs in two steps where the kinase binds to the protein twice in order to phosphorylate the
two site successively. Previous studies (Toni et al., 2012) have shown that in vivo phosphorylation (as well as
dephosphorylation) occurs in a distributive way. In this section, we describe the four mechanistic models and
confirm that this distributive mechanism best captures the observed average behavior in our data.

S1.1 Systems of ordinary differential equations to model processive and distributive
phosphorylation and dephosphorylation mechanisms

In this section we derive the mathematical equations for different potential mechanistic models of the ERK (de-
)phosphorylation process. In the following M denotes doubly phosphorylated MEK, which acts as a kinase, and
E, pE and ppE denote un-, singly and doubly phosphorylated ERK, respectively; Pt represents the phosphotase
activity. The phosphorylation and dephosphorylation processes of ERK involves these 5 species as well as the
following protein complexes: E ·M , pE ·M , ppE · Pt and pE · Pt.

The mechanistic models are described by the following reactions (see also Figure S4):

Phosphorylation

Processive: E +M
k3−⇀↽−
k4
E ·M k5−→ pE ·M k6−→ ppE +M

Distributive: E +M
k3−⇀↽−
k4
E ·M k7−→ pE +M

k8−⇀↽−
k9

pE ·M k6−→ ppE +M

Dephosphorylation

Processive: ppE + Pt
k
′
3−⇀↽−
k
′
4

ppE · Pt k
′
5−→ pE · Pt k

′
6−→ E + Pt

Distributive: ppE + Pt
k
′
3−⇀↽−
k
′
4

ppE · Pt k
′
7−→ pE + Pt

k
′
8−⇀↽−
k
′
9

pE · Pt k
′
6−→ E + Pt

The reaction rates are shown above or below the corresponding reactions.
In the derivation of the mechanistic models we incorporate the known experimental and biophysical constraints.

First, since the concentration of active MEK depends on the upstream signals, its evolution is described by two
additional reactions: a production reaction and a degradation reaction, which are given by

Ø
g(k1,T,k10,t)−−−−−−−−→M

M
k2−→ Ø,

where g is given by

g(k1, T, k10, t) = k10 +
k1

exp(t− T ) + 1
.

In addition, some of the binding and un-binding reactions are reversible, whereas the phosphorylation and
dephosphorylation reactions are not. The last assumption concerns the phosphorylation of ERK at the second
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Figure S4: MAPK Signalling. (Related to Figure 1) (A) The RAS-RAF-ERK signal transduction cascade in
response to a neural growth factor (NGF), which activates the membrane-bound GTPase (RAS); this leads to the
activation of the RAF kinase and subsequently to the phosphorylation of MEK; active MEK in turn phosphorylates
ERK. (B) Processive and distributive phosphorylation and dephosphorylation processes of ERK. Pt denotes the
cognate ERK phosphatase. The reaction rates are shown next to their associated reactions. (C) The impact of the
NGF stimulus and the upstream reactions on the evolution of the concentration of active MEK are modelled using
a time dependent function which depends on three parameters: k1 describes the pulse height, k10 the background
signal and T the time at which the influence of the upstream reactions drops down. In addition active MEK is
degraded with rate k2.



site in the processive mechanism. We describe both this second phosphorylation and the unbinding of the double
phosphorylated ERK to the active MEK in a single reaction. Moreover, since we work on time-scales where
transcriptional responses can be ignored, we fix the total amounts (i.e. the sum of free and complex bound forms)
of Pt, denoted by Pttot as well as the total amount of E, including all isophorms, denoted by Etot (see Ozaki et
al., 2010).

By considering all possible combinations of processive (P) and distributive (D) phosphorylation and dephos-
phorylation reactions we can construct four possible models: DD, DP, PD and PP, where, for example, DP means
distributive phosphorylation and processive dephosphorylation. The evolution of the concentrations (here denoted
by [A]t for the concentration of species A at time t) of the 9 species is described by a set of ordinary differential
equations.

Distributive phosphorylation - Distributive dephosphorylation (DD)

d[M ]t
dt

= g(k1, T, k10, t)− k2[M ]t − k3[E]t[M ]t + k4[E.M ]t + k6[pE.M ]t + k7[E.M ]t

− k8[pE]t[M ]t + k9[pE.M ]t

d[E]t
dt

= −k3[E]t[M ]t + k4[E.M ]t + k′6[pE.P t]t

d[E.M ]t
dt

= k3[E]t[M ]t − k4[E.M ]t − k7[E.M ]t

d[pE]t
dt

= k7[E.M ]t − k8[pE]t[M ]t + k9[pE.M ]t + k′7[ppE.P t]t − k′8[pE]t[Pt]t + k′9[pE.P t]t

d[pE.M ]t
dt

= −k6[pE.M ]t + k8[pE]t[M ]t − k9[pE.M ]t

d[ppE]t
dt

= k6[pE.M ]t − k′3[ppE]t[Pt]t + k′4[ppE.P t]t

d[Pt]t
dt

= −k′3[ppE]t[Pt]t + k′4[ppE.P t]t + k′6[pE.P t]t + k′7[ppE.P t]t − k′8[pE]t[Pt]t + k′9[pE.P t]t

d[ppE.P t]t
dt

= k′3[ppE]t[Pt]t − k′4[ppE.P t]t − k′7[ppE.P t]t

d[pE.P t]t
dt

= −k′6[pE.P t]t + k′8[pE]t[Pt]t − k′9[pE.P t]t



Distributive phosphorylation - Processive dephosphorylation (DP)

d[M ]t
dt

= g(k1, T, k10, t)− k2[M ]t − k3[E]t[M ]t + k4[E.M ]t + k6[pE.M ]t + k7[E.M ]t

− k8[pE]t[M ]t + k9[pE.M ]t

d[E]t
dt

= −k3[E]t[M ]t + k4[E.M ]t + k′6[pE.P t]t

d[E.M ]t
dt

= k3[E]t[M ]t − k4[E.M ]t − k7[E.M ]t

d[pE]t
dt

= k7[E.M ]t − k8[pE]t[M ]t + k9[pE.M ]t

d[pE.M ]t
dt

= −k6[pE.M ]t + k8[pE]t[M ]t − k9[pE.M ]t

d[ppE]t
dt

= k6[pE.M ]t − k′3[ppE]t[Pt]t + k′4[ppE.P t]t

d[Pt]t
dt

= −k′3[ppE]t[Pt]t + k′4[ppE.P t]t + k′6[pE.P t]t

d[ppE.P t]t
dt

= k′3[ppE]t[Pt]t − k′4[ppE.P t]t − k′5[ppE.P t]t

d[pE.P t]t
dt

= k′5[ppE.P t]t − k′6[pE.P t]t

Processive phosphorylation - Distributive dephosphorylation (PD)

d[M ]t
dt

= g(k1, T, k10, t)− k2[M ]t − k3[E]t[M ]t + k4[E.M ]t + k6[pE.M ]t

d[E]t
dt

= −k3[E]t[M ]t + k4[E.M ]t + k′6[pE.P t]t

d[E.M ]t
dt

= k3[E]t[M ]t − k4[E.M ]t − k5[E.M ]t

d[pE]t
dt

= k′7[ppE.P t]t − k′8[pE]t[Pt]t + k′9[pE.P t]t

d[pE.M ]t
dt

= k5[E.M ]t − k6[pE.M ]t

d[ppE]t
dt

= k6[pE.M ]t − k′3[ppE]t[Pt]t + k′4[ppE.P t]t

d[Pt]t
dt

= −k′3[ppE]t[Pt]t + k′4[ppE.P t]t + k′6[pE.P t]t + k′7[ppE.P t]t − k′8[pE]t[Pt]t + k′9[pE.P t]t

d[ppE.P t]t
dt

= k′3[ppE]t[Pt]t − k′4[ppE.P t]t − k′7[ppE.P t]t

d[pE.P t]t
dt

= −k′6[pE.P t]t + k′8[pE]t[Pt]t − k′9[pE.P t]t



Processive phosphorylation - Processive dephosphorylation (PP)

d[M ]t
dt

= g(k1, T, k10, t)− k2[M ]t − k3[E]t[M ]t + k4[E.M ]t + k6[pE.M ]t

d[E]t
dt

= −k3[E]t[M ]t + k4[E.M ]t + k′6[pE.P t]t

d[E.M ]t
dt

= k3[E]t[M ]t − k4[E.M ]t − k5[E.M ]t

d[pE.M ]t
dt

= k5[E.M ]t − k6[pE.M ]t

d[ppE]t
dt

= k6[pE.M ]t − k′3[ppE]t[Pt]t + k′4[ppE.P t]t

d[Pt]t
dt

= −k′3[ppE]t[Pt]t + k′4[ppE.P t]t + k′6[pE.P t]t

d[ppE.P t]t
dt

= k′3[ppE]t[Pt]t − k′4[ppE.P t]t − k′5[ppE.P t]t

d[pE.P t]t
dt

= k′5[ppE.P t]t − k′6[pE.P t]t

In order to simulate these ODE systems one needs to determine the initial conditions for the concentrations of
the 9 molecular species. We assume that the initial concentrations of the complexes E.M , pE, pE.M , ppE.P t
and pE.P t are equal to 0. In addition, the initial conditions of the species E and ppE are constrained so that
[E]t+[ppE]t = Etot and the molecular concentration of ppE andM are determined by the observation. Therefore,
if we denote by ppE0 and M0 the initial concentrations of the two observed molecular species, we have the
following initial conditions:

[M ]0 = M0

[E]0 = Etot − ppE0

[ppE]0 = ppE0

[Pt]0 = Pttot

S1.2 Model parameters
In the rest of this supplemental material and in the manuscript, the term ”model parameter” includes reaction rates,
the 4 parameters describing the impact of upstream signals on active MEK (T, k1, k2 and k10) and the 4 parameters
related to the initial molecular concentration (M0, ppE0, Etot and Pttot). In the following table, we summarise
the number of parameters for each model.

Model Reaction rates Parameters related to Parameters related to Total number
upstream signals initial concentrations of parameters

DD 12 4 4 20
DP 10 4 4 18
PD 10 4 4 18
PP 8 4 4 16

The model parameters are inferred using a Bayesian approach, therefore, a prior distribution over the parameter
space need to be specified. We used uniform priors for each parameter based on the broader prior range proposed
by Toni et al. (2012). Below we summarise the prior ranges used for each of the parameters (when performing
parameter inference based on the average data, we setM0 = 636 and ppE0 = 188 according to the observed data).



Parameter Lower limit Upper limit Parameter Lower limit Upper limit
k1 0 100 k10 1 2
T 200 400 k2 2.10−3 3.10−3

k3 0 1 k′3 1 1000
k4 0 1 k′4 1 105

k5 0 105 k′5 0 105

k6 100 1000 k′6 0 100
k7 1 500 k′7 0 10
k8 0 1 k′8 0 1000
k9 0 10 k′9 0 105

Etot 500 1.8.104 M0 0 1000
Pttot 200 104 ppE0 0 500

S1.3 Observed species
Quantitative image cytometry enables us to quantify the concentration of doubly phosphorylated ERK and MEK.
More precisely, the total amount of free and complex bound forms of respectively doubly phosphorylated ERK
and MEK are measured, i.e.

total amount of doubly phosphorylated ERK = ppE + ppE.P t

total amount of doubly phosphorylated MEK = M + E.M + pE.M .

In the following and in the manuscript, we denote by

xt = [ppE]t + [ppE.P t]t

and
yt = [M ]t + [E.M ]t + [pE.M ]t .

The quantities involved here are the solutions of the system of differential equations described above and typically
depend on a vector of model parameter θ (see subsection S1.2).

S1.4 Model selection: distributive phosphorylation and dephosphorylation best explains
the average behaviour

We use Bayesian parameter inference and model selection to determine which mechanism best captures the ob-
served average behavior. Assuming an independent Gaussian measurement error for each time point with constant
variance, we obtain the likelihood derived in Experimental Procedure. The best fits to the data for the four mod-
els are shown in Figure S5A. Although both the DD (distributive phosphorylation and dephosphorylation) and
PD (processive phosphorylation and distributive dephosphorylation) models provide good fits to the data, the DD
model receives much higher support by the Bayesian model ranking procedure (see Figure S5B). We will therefore
base our analysis of the origins of cell-to-cell variability on this DD model with 20 model parameters including
12 reaction rates, 4 parameters describing the impact of the NGF stimulus and upstream signals and 4 parameters
controlling the initial concentrations of the species involved in the ERK-MEK system.
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Figure S5: The distributive phosphorylation and dephosphorylation mechanism best explains the average
behavior. (Related to Figure 1) (A) Fits to the average data (dots) for the four mechanistic models. The lines
represent the median of the evolution of the average concentration of the two species (total amount of doubly phos-
phorylated ERK in orange and total amount of doubly phosphorylated MEK in blue) and the error bars designate
the 0.025 and 0.975 quantiles for a set of 1000 parameters sampled from the posterior distribution. Both the DD
and the DP models provide good visual fits. (B) Model ranking through the evidence shows that the DD model has
the highest log-evidence and is therefore more strongly supported by the average data.



S2 Details on the implementation of the SMC sampler algorithm
Parameter inference is performed using the Sequential Monte Carlo sampler algorithm proposed by Del Moral et al.
(2006), which is emerging as a powerful alternative to conventional Markov chain Monte Carlo (MCMC) meth-
ods (Robert and Casella, 2004). The algorithm sequentially generates samples from the probability distributions,
p(θ)1−φp(θ|x∗)φ, for φ varying from 0 to 1, by sampling parameter vectors from the prior distribution, p(θ), and
exploiting the likelihood function in order to guide the set of parameter vectors toward a region of high posterior
probability. The exact version of the algorithm we use is detailed below (see Algorithm 1). We use N = 104 par-
ticles per population. To determine the next value of φ at the beginning of each population (step 5), we ensure that

the effective sample size (ESS), which is equal to
(∑N

n=1 ω
(n)
a

)−1
and only depends on the previous weighted

population {(θ(n)a−1, ω
(n)
a−1)}1≤n≤N as well as on φ and φold, is between 0.5 and 0.9. In addition, to perturb the

particles (step 10), we use an MCMC kernel which consists of 5 steps of Metropolis Hasting perturbations with an
adaptive multi-variate normal random-walk proposal (Del Moral et al., 2006).

Algorithm 1: The SMC sampler
Input: No. of particles per population N .
Output: Set of weighted particles {θ(n)p , ω

(n)
p }1≤n≤N .

1 Initialise a = 1, φ = 0;
2 Sample particles θ(n)1 from prior ;
3 Set weights ω(n)

1 = 1
N ;

4 while φ < 1 do
5 Set φold = φ; a = a+1;
6 Determine next value of φ;
7 Resample particles {θ(n)a−1} from weighted multinomial distribution {(θ(n)a−1, ω

(n)
a−1)};

8 Reset weights ω(n)
a−1 = 1

N , ∀n = 1, . . . , N ;
9 for 1 ≤ n ≤ N do

10 Draw θ
(n)
a ∼ Ka(· | θ(n)a−1), where Ka is a MCMC kernel;

11 Update particle weight ω̃(n)
a = ω

(n)
a−1 · p(θ

(n)
a−1|x∗)φ−φold ;

12 end
13 Normalise particle weights ω(n)

a = ω̃
(n)
a /

∑N
m=1 ω̃

(m)
a .

14 end



S3 The intrinsic noise model
The Linear Noise Approximation (LNA) is used to define a likelihood function in the case of the intrinsic noise
model. It is a Gaussian approximation to Markov Jump processes defined by the Chemical Master Equation
(Komorowski et al., 2009). Biochemical reactions are modelled through a stochastic dynamic model and the LNA
provides us with equations for the average behaviour over the population of cells as well as the evolution of the
variance and covariances with time. With mx

t (θ), my
t (θ), vxt (θ) and vyt (θ) denoting the solutions of the ODEs

describing the means and variances for the parameter θ at time t, the likelihood p({x∗i,t, y∗i,t}i,t|θ) is equal to

∏
t∈T

Nt∏
i=1

Φ(x∗i,t;m
x
t (θ), vx(θ))Φ(y∗i,t;m

y
t (θ), vy(θ))

where Φ(·;m, v) is the probability density function of a normal distribution of mean m and variance v.

S3.1 Investigating the precision of the Linear Noise Approximation
In order to investigate the accuracy of the Linear Noise Approximation, we generated 100 trajectories simulating
the DD model with the Gillespie algorithm (which took around 12 CPU days per trajectory), computed the evolu-
tion of the mean and the variance over the 100 trajectories and compared it to the solution of the ODE equations
provided by the LNA. As can be seen in Figure S6A, the Linear Noise approximations of the evolution of the
means and the variances are very accurate.

S3.2 Efficient sampling of the parameter space
In the main manuscript, we demonstrate that we can confidently implicate extrinsic noise as the dominant factor
giving rise to cell-to-cell variability in the MEK/ERK module and that intrinsic noise does not explain the level
of observed cell-to-cell variability. To substantiate this further (and to ensure that we explore the parameter space
more widely during the parameter inference step of the intrinsic noise) we use Latin hyper-cube sampling (McKay
et al., 1979) to generate a set of 106 parameter vectors using the Matlab function lhsdesign. and systematically
analyse the evolution of the molecular concentrations of MEK and ERK for each of these parameters. Only 20
parameter vectors out of the 106 lead to stable solutions for which the obtained variances of doubly phosphorylated
ERK and MEK is higher than 105 (at either 6 or 8 minutes after stimulation; but for none of these parameters do
we observe a variance of doubly phosphorylated ERK that is anywhere close to the experimental observations.
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Figure S6: Accuracy of likelihood approximations. (Related to Figures 3 and 4) (A)The evolution of
the mean and variance for the two molecular species of interest. The black lines corresponds to the mean and
variances over the trajectories simulated using the Gillespie algorithm and the red lines are the approximation
provided by the LNA. (B) Comparison of the distribution of the evolution of the protein concentrations (for all the
9 species) for one set of hyper-parameters given by the UT method and by a Monte-Carlo approximation with 1000
particles. Each plot is associated with one of the 9 species. The continuous lines correspond to the Monte-Carlo
approximation and the dashed lines correspond to the UT approximation. The red lines represent the median, the
blue lines represent the 0.25 and 0.75 quantiles and the black lines represent the 0.025 and the 0.975 quantiles of
the distributions.



S4 The extrinsic noise model

S4.1 Using Unscented Transform to derive a likelihood function for the extrinsic noise
model

To mathematically describe the cell-to-cell variability due to extrinsic noise a different parameter vector is asso-
ciated with each cell. Recall that for each time t ∈ T = {0, 2, 4, . . . 50}, we measure the total amount of doubly
phosphorylated MEK and ERK, denoted respectively by x∗i,t and y∗i,t, in cells 1 ≤ i ≤ Nt. Let denote by θi,t the
vector of parameters associated to the i-th cell measured at time t. With a single measurement per cell, it is not
possible to infer every single parameter θi,t. Instead, we study the distribution of the parameters {θi,t}i,t; here, we
consider a log-normal distribution with mean µθ and covariance matrix Σθ.

We aim at inferring the hyper-parameters µθ and Σθ of the constructed hierarchical model given the observed
data {x∗i,t, y∗i,t}i,t. Note that the model contains 20 parameters (see section S1.2) therefore µθ is of length 20 and
Σθ is a 20 × 20 symmetric matrix. Due to the prohibitive computational cost of inferring these 210 values, we
simplify the model by assuming that the covariance matrix Σθ is diagonal; we denote by σ2

θ the vector containing
the diagonal elements. The likelihood function is defined as follows

p({x∗i,t, y∗i,t}i,t|µθ, σ2
θ) =

∏
t

∏
i

∫
1(x∗i,t,y

∗
i,t)=f(θi,t,t)

p(θi,t|µθ, σ2
θ)dθi,t (1)

where f(θi,t, t) describes the simulated concentration of the two species of interest at time t when simulating the
model with parameter θi,t; as described above p(θi,t|µθ, σ2

θ) is the density of a log-normal distribution with mean
µθ and covariance matrix Σθ = diag(σ2

θ). This likelihood function can not be computed in closed-form and needs
to be estimated. We propose to use the Unscented Transform (UT) (Julier, 2002) to approximate the two moments
of the distribution p({x∗i,t, y∗i,t}i,t|µθ,Σθ). We denote by mx

t (µθ, σ
2
θ) (resp. my

t (µθ, σ
2
θ)) and vxt (µθ, σ

2
θ) (resp.

vyt (µθ, σ
2
θ)) the mean and the variance of this distributions as a function of the hyper–parameters µθ and σ2

θ .
The UT is a mathematical tool, which allows us to approximate the moments of the output of a non-linear

function given the moments of the input. The first step of the UT algorithm is to determine a set of weighted
particles {ξj}j , called sigma points, which capture both the mean µθ and the variances σ2

θ . Since we assume a
log-normal distribution over the parameter space, we consider the variable θ̃, which is distributed according to a
normal distribution with mean µ̃θ = log(µθ)− 1/2 log(σ2

θ/µ
2
θ + 1) and variance σ̃2

θ = log(σ2
θ/µ

2
θ + 1). Denoting

by D the dimension of the parameter space, the sigma-points are defined as follows:

ξ0 = µ̃θ

ξj = µ̃θ + α
√
D + κ [σ̃θ]j j = 1, · · · , D

ξj = µ̃θ − α
√
D + κ [σ̃θ]j j = D + 1, · · · , 2D,

where [σ̃θ]j represents a vector full of zeros except on the j-th element which is equal to the j-the element of the
vector σ̃θ. The sigma-point weights {wmj , wvj }0≤j≤2D are given by,

wm0 =
α2(D + κ)−D
α2(D + κ)

wv0 =
α2(D + κ)−D
α2(D + κ)

+ 1− α2 + β

wmj = wvj =
1

2α2(D + κ)
j = 1, · · · , 2D .

The parameters κ, α and β may be chosen to control the positive definiteness of the covariance matrices, spread
of the sigma-points and error in the kurtosis respectively (Silk, 2013). Here we use κ = 0, α = 0.7 and β = 2.



Once the sigma-points have been determined, the ODE system is solved for each sigma-points separately. More
precisely, for each 0 ≤ j ≤ 2D, we solve the ODE system with the parameter exp(ξj), resulting in solutions xj,t
and yj,t. Assuming a log-normal distribution in the molecular concentration space, the means and variances of the
distribution at each time point can then be computed as

mx
t (µθ, σ

2
θ) =

2D∑
j=0

wmj log(xj,t)

my
t (µθ, σ

2
θ) =

2D∑
j=0

wmj log(yj,t)

vxt (µθ, σ
2
θ) =

2D∑
j=0

wvj (log(xj,t)−mx
t (µθ, σ

2
θ))2

vyt (µθ, σ
2
θ) =

2D∑
j=0

wvj (log(xj,t)−my
t (µθ, σ

2
θ))2 .

Therefore the likelihood in equation (1) is approximated as follows

p({x∗i,t, y∗i,t}i,t|µθ, σ2
θ) =

∏
t∈T

Nt∏
i=1

Ψ
(
x∗i,t;m

x
t (µθ, σ

2
θ), vxt (µθ, σ

2
θ)
)

Ψ
(
y∗i,t;m

y
t (µθ, σ

2
θ), vyt (µθ, σ

2
θ)
)

where Ψ(·) is the pdf of a log-normal distribution.
In Figure S6B we compare the approximation of the likelihood function p({x∗i,t, y∗i,t}i,t|µθ, σ2

θ) given by the
UT algorithm to a Monte-Carlo approximation. In the Monte-Carlo approximation, 1000 set of parameters are
sampled from log-normal distributions (with mean µθ and variance σ2

θ ). For each parameter set, we solve the
system of ODE to obtain trajectories of every species in the system and then we compute the median and quantiles
of the obtained trajectories.

S4.2 Extrinsic noise: identification of model parameters that significantly vary between
cells

Under the extrinsic noise model, all model parameters differ between cells. In each cell every parameter, k, is drawn
from a log-normal distribution with mean µk and variance σ2

k (called hyper-parameters). Our Bayesian inference
procedure based on the single-cell data allows us to obtain posterior distributions for every hyper-parameters. For
the DD model, there are 20 model parameters and therefore 40 hyper-parameters.

To investigate which parameters contribute most to the observed cell-to-cell variability, we analyse the pos-
terior distribution of the coefficient of variation for each parameter (σk/µk for each k) shown in Figure S7. The
coefficients of variation take value between 0 and 1. We distinguish 3 types of posterior distributions: (i) poste-
rior distributions with a support that covers more than 60% of [0, 1] (framed in blue), (ii) posterior distributions
close to 0 (posterior framed in yellow has 0.25th percentile lower than 0.05 and a 0.75th percentile lower than
0.3), and (iii) the other posteriors distributions which are more tightly constrained and significantly different to 0
(framed in red). The parameters that contribute most to the observed cell-to-cell variability are those for which the
posterior distribution of the coefficient of variation is consistently and significantly different from zero. Indeed,
a posterior distribution of a coefficient of variation very close to 0 indicates that the model parameter does not
need to vary between cells; a posterior of a coefficient of variation not constrained and including most of the [0, 1]
support demonstrates that the variation of this model parameter between cells is not crucial to explain the level of
cell-to-cell variability. Therefore only the parameters framed in red in Figure S7 appear to play an important role
in the cell-to-cell variability. These parameters are k1, k2, k10, ppE0 and M0.
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Figure S7: Posterior distribution of coefficient of variation. (Related to Figures 4, 5 and 6) The posterior
distribution obtained using SMC sampler for the coefficient of variation of each parameter are shown here. We
distinguish 3 types of posterior distributions: (i) posterior distributions with a support that covers more than 60%
of [0, 1] (framed in blue), (ii) posterior distributions close to 0 (posterior framed in yellow has 0.25th percentile
lower than 0.05 and a 0.75th percentile lower than 0.3), and (iii) the other posteriors distributions which are more
tightly constrained and significantly different to 0 (framed in red).
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