
 1 

 

Supplementary Information 

 

A Local Learning Rule for Independent Component Analysis 

 

Takuya Isomura and Taro Toyoizumi 

 

 

S1 Supplementary Tables, Figures, Movies, and Source codes 

S2 Supplementary Notes 

 

 

 

 

 

S1 Supplementary Tables, Figures, Movies, and Source codes 

 



 2 

 

 

Foldiak 

R
-Foldiak 

Linsker 

R
-Linsker 

C
ichocki 

A
m

ari 

B
ell-Sejnow

ski 

EG
H

R
 

 

W

䥼 ∝
 〈a v x

T – D
iag[v] W

〉 

W

䥼 ∝
 〈a fF (u) x

T〉 – b W
 

W

䥼 ∝
 〈a v x

T – g(u) x
T〉 

W

䥼 ∝
 〈c

L (K
) W

–T – g(u) x
T〉 

W

䥼 ∝
 〈I – g(u) u

T〉 

W

䥼 ∝
 〈I – g(u) u

T〉 W
 

W
䥼 ∝

 〈W
–T – g(u) x

T〉 

W

䥼 ∝
 〈(E

0  – E(u)) g(u) x
T〉 

D
ynam

ics of W
 

K
䥼 ∝ 〈a v s T A

T A – D
iag[v] K

〉 

K

䥼 ∝ 〈a fF (u) s T〉 A
T A – b K

 

K

䥼 ∝ 〈a v s T – g(u) s T〉 A
T A 

K
䥼 ∝ 〈c

L (K
) K

–T – g(u) s T〉 A
T A 

K

䥼 ∝ 〈I – g(u) u
T〉 A 

K

䥼 ∝ 〈I – g(u) u
T〉 K

 

K

䥼 ∝ 〈K
–T – g(u) s T〉 A

T A 

K

䥼 ∝ 〈(E
0  – E(u)) g(u) s T〉 A

T A 

D
ynam

ics of K
 = W

 A 

 J

䥼 ∝ 〈a D
iag[fF ’(s)] J s s T〉 – b J 

 J

䥼 ∝ –(c
L (K

) J
T + 〈Λ J s s T〉) A

T A 

J

䥼 ∝ –(J
T + 〈Λ J s s T〉) A 

J

䥼 ∝ –(J
T + 〈Λ J s s T〉) 

J

䥼 ∝ –(J
T + 〈Λ J s s T〉) A

T A 

J

䥼 ∝ 〈{(U
0  – U

(s)) Λ 

– 1/N
 g(s) g(s) T} J s s T〉 A

T A 

D
ynam

ics of K
 = I + ε J 

T
able S1. D

ynam
ics of IC

A
 rules. 

 



 3 

 

 

Figure S1. The absence of spurious solutions and relaxation time of the EGHR with 

sources conforming to Laplace (A) and uniform (B) distributions. We numerically 

confirmed that there was no local minimum. We considered a two-dimensional source 

(dim s = 2) and transform matrix A that is defined as a rotation and scaling matrix A = 

(A11, A12; –A12, A11). We allowed W to learn according to the EGHR to ensure that the 

elements of u = Wx were independent of each other. The learning time constant was 

defined as τW = 2 × 102. We defined the relaxation time as the time needed by the rule to 

perform ICA. ICA ability was evaluated using the maximum value of the ratio of first to 

second maximum values for each row and column of matrix K = WA. Thus, for the ith 

row, we compared |Kik/Kil| with threshold eth = 0.01, where |Kik| and |Kil| are the 

maximum and second maximum absolute values in the ith row. We also compared 
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|Kkj/Klj| with threshold eth, where |Kkj| and |Klj| are the maximum and second maximum 

absolute values in the jth column We defined the relaxation time as the time at which all 

|Kik/Kil| and |Kkj/Klj| for all i, j first become smaller than eth. This was evaluated once 

every 100 steps. Parameters A11, and A12 were moved within –2 ≤ A11 ≤ 2, and –2 ≤ A12 

≤ 2 in increments of 0.05 steps. Relaxation times were calculated 100 times for each 

parameter set and the means are shown in graphs. The upper bound of the simulation 

time was defined by T = 4 × 107. In all cases, W started to form an identical matrix and 

converged to one of the ICA solutions before the T step. 
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Figure S2. Dimension dependency of EGHR relaxation time. (A) Dimension 

dependency of relaxation time of Laplace (red) and uniform (blue) distributions with 

rotation matrix A. We assumed transform matrix A to be a rotation matrix that was 

rotated for all possible axes (N(N – 1)/2 axes) with randomly selected angles θk from 

–π/4 ≤ θk < π/4, where N is the common dimension of sources, inputs, and output. Note 

that k is the index of one of the N(N – 1)/2 axes. The relaxation time was calculated 

using the same criterion as in Fig S1. A learning time constant of τW = 2 × 104 was used. 

The upper bound of the simulation time was T = 1 × 109. Red boxes represent the 

median of the relaxation time distributions for a Laplace distribution, while blue boxes 

represent those for a uniform distribution. Further, W was started from an N × 

N-dimensional identical matrix. (B) Dimension dependency of the relaxation time of 

Laplace (red) and uniform (blue) distributions. We assumed A to be a random matrix, 

where each element of A was randomly selected from a normal Gaussian distribution, 
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Aij ~ N(0, 1). Note that only a matrix A whose determinant was larger than exp(–N/2) 

was used for the simulations. A learning time constant of τW = 2 × 103 was used. Other 

parameters are the same as in (A). The results reveal that although relaxation time 

increased with both distributions as source dimension increased, it was within a finite 

time and the rate of the increase was slower than an exponential increase. 
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Figure S3. Robustness of the EGHR to a choice of nonlinear function g. We generate a 
two-dimensional source obeying p(si) ∝ exp(–β |si|α) (α > 0, β > 0) and assume A to be a 

rotation matrix, A = (cosπ/6, –sinπ/6; sinπ/6, cosπ/6). Note that β was defined so that the 

variance of si was one. We investigate how the choices of g, the ones designed for α = 1 

and ∞, influence the relaxation time of EGHR to one of the ICA solutions for a range of 

α. Relaxation time was calculated using the same criterion in Fig S1. A learning time 

constant of τW = 1 × 105 was used. The upper bound of simulation time was T = 1 × 108, 

and W was started from an identical matrix. The red circles represent relaxation times 

when we used a non-linear function gL(ui) that was optimized for a Laplace distribution 

(thus α = 1; see the red arrow in the figure). Blue circles represent relaxation times 

when we used a non-linear function gU(ui) that was optimized for a uniform distribution 

(α = ∞; blue arrow). Filled circles indicate ICA was successful with the non-linear 

function before the T-th step, while open circles indicate that ICA was not achieved 

before the T-th step. The details of gL(ui) and gU(ui) are described in Methods. When the 

source obeys a Gaussian distribution (α = 2; a dashed line), both gL(ui) and gU(ui) fail to 

achieve ICA, since any rotation matrix W makes the elements of u independent of each 

other when α = 2. 
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Supplementary movie legends 

 

Supplementary Movie 1. Performance of the EGHR in undercomplete condition. The 

EGHR successfully separates sources even if the number of sources (more than two) 

dynamically changes. 

 

 

Supplementary Movie 2. Blind source separation results using movies. Top: Four 

original images as hidden signal sources. Middle: Four superposed images provided as 

input to the model. Bottom: The final states of the outputs of the neural network 

reconstructed the original movies well. We retrieved these movies from 

MotionElements (https://www.motionelements.com) and processed them accordingly. 

 

 

 

 

Supplementary source codes 

 

Supplementary Source Code 1. A MATLAB source code of EGHR that demonstrates 

2-dimensional ICA (see the Figure 1B legend and Methods for details). 
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S2 Supplementary Notes 

 

S2.1 Lemma 
S2.1.1 〈f(si)g(si)〉p0(si) = 〈f′(si)〉p0(si). 

[Proof] 

When we assume that f(si) is an arbitrary function of si and g(si) := –∂/∂si log p0(si) = 

– p0′(si)/p0(si), we obtain 

〈f(si) g(si)〉p0(si) = ∫ f(si) g(si) p0(si) dsi 

  = –∫ f(si) p0′(si) dsi = –[f(si) p0(si)] + ∫ f′(si) p0(si) dsi 
  = 〈f′(si)〉p0(si).         (S1) 

From Eq. (S1), when we suppose zi := –log p0(si) and zi′ = ∂zi/∂si = g(si), we obtain the 

following equations: 

〈zi′ si〉p0(si) = 〈1〉p0(si) = 1, 

〈zi zi′ si〉p0(si) = 〈zi + zi′ si〉p0(si) = 〈zi〉p0(si) + 1, 

〈zi′2 si
2〉p0(si) = 〈zi′′ si

2 + 2 zi′ si〉p0(si) = 〈zi′′ si
2〉p0(si) + 2, 

〈zi′2〉p0(si) = 〈zi′′〉p0(si).         (S2) 

 

S2.1.2 When a function φ(s1, …, sN) is an odd function and p(si) is an even function of si, 
〈φ(s1, …, sN)〉p(x) = 0. 

[Proof] 

〈φ(s1, …, sN)〉p(x) = 〈φ(s1, …, sN)〉p0(s) 

  = ∫…∫ φ(s1, …, sN) p0(s1)…p0(sN) ds1…dsN 

  = ∫…∫ {∫ φ(s1, …, sN) p(si) dsi} p(s1)…p(sN) ds1…dsN 

  = ∫…∫ {0} p(s1)…p(sN) ds1…dsN = 0.       (S3) 

 
S2.1.3 〈|si|α+2〉N(si; 0, 1) = (α + 1) 〈|si|α〉N(si; 0, 1). 

[Proof] 
We define 〈•〉N(si; 0, 1) to be the expectation over the normal Gaussian distribution N(si; 

0, 1), i.e., 〈•〉N(si; 0, 1) = ∫ • N(si; 0, 1) dsi. We obtain 
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〈|si|α+2〉N(si; 0, 1) = ∫ |si|α+2 · (2π)–1/2 exp (–si
2/2) dsi 

  = ∫ –|si|α si · {(2π)–1/2 exp (–si
2/2)}′ dsi 

  = –[|si|α si · (2π)–1/2 exp (–si
2/2)] 

    + ∫ {α |si|α–1 sgn(si) si + |si|α} · (2π)–1/2 exp (–si
2/2) dsi 

  = ∫ (α + 1) |si|α · (2π)–1/2 exp (–si
2/2) dsi 

  = (α + 1) 〈|si|α〉N(si; 0, 1).         (S4) 

Similarly, from Eq. (S4), 

〈|si|α+4〉N(si; 0, 1) = {(α + 2) + 1} 〈|si|α+2〉N(si; 0, 1) 

  = (α + 3) (α + 1) 〈|si|α〉N(si; 0, 1).        (S5) 
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S2.2 Linear stability of the EGHR 

The aim of this section is to determine the necessary and sufficient condition for ICA 

solution W = A-1 to become a stable equilibrium point of the EGHR. The ICA solution is 

stable if and only if all terms in d2L, the second differential form of the cost function of 

the EGHR, are non-negative. Let us define a matrix K as K = WA, so that u is rewritten 

as u = Ks. We suppose zi := –log p0(si), zi′ = ∂zi/∂si = g(si), and zi′′ = ∂2zi/∂si
2 = g′(si). 

First, we consider an analogy between the EGHR and Amari rule [15]. The cost 
function of the Amari rule LA is defined by LA = DKL[q(u)|| p0(u)] = 〈log q(u) – log 

p0(u)〉 = E(u) – H[q(u)], and the expectations of its first and second differential forms at 

W = A–1 are dLA = 0 and d2LA = ∑i (1 + 〈si
2zi′′〉)dKii

2 + 1/2∑i≠j(〈si
2〉〈zi′′〉dKij

2 + 2dKijdKji + 

〈si
2〉〈zi′′〉dKji

2) [32]. Therefore, the necessary and sufficient conditions for the Amari 

equation to become linearly stable are 〈si
2zi′′〉 > –1 and 〈si

2〉〈zi′′〉 > 1. Similarly, dL, the 

first differential form of L, is calculated as 

dL = 

€ 

∂L
∂Kijj=1

N

∑
i=1

N

∑ dKij 

  = 〈

€ 

1
2j=1

N

∑
i=1

N

∑ ∂
∂Kij

(E(u) – E0)2 dKij〉 

  = 〈

€ 

1
2j=1

N

∑
i=1

N

∑ ∂
∂E

(E(u) – E0)2 

€ 

∂E
∂ui

 

€ 

∂ui
∂Kij

 dKij〉 

  = 〈

€ 

j=1

N

∑
i=1

N

∑ (E(u) – E0) g(ui) sj dKij〉 

  = tr(〈(E(u) – E0) g(u) sT〉 dKT).        (S6) 

Eq. (S6) is a differential form of the EGHR. As described in Methods, the expectation 

of Eq. (S6) at W = A–1 (thus, K = A–1A = I) is zero if we adequately choose E0 (see Eq. 

(11)). The second order differential form of L, d2L, is then calculated as 

d2L = 

€ 

∂(dL)
∂Kkll=1

N

∑
k=1

N

∑ dKkl 

  = 〈

€ 

∂
∂Kkll=1

N

∑
k=1

N

∑
j=1

N

∑
i=1

N

∑ (E(u) – E0) g(ui) sj dKij dKkl〉 

  = 〈

€ 

l=1

N

∑
k=1

N

∑
j=1

N

∑
i=1

N

∑ {

€ 

∂
∂Kkl

(E(u) – E0) g(ui) sj + (E(u) – E0)

€ 

∂g(ui)
∂Kkl

sj} dKij dKkl〉 



 12 

  = 〈

€ 

l=1

N

∑
k=1

N

∑
j=1

N

∑
i=1

N

∑ {

€ 

∂E
∂uk

€ 

∂uk
∂Kkl

g(ui) sj + (E(u) – E0)

€ 

∂g(ui)
∂uk

€ 

∂uk
∂Kkl

sj} dKij dKkl〉 

  = 

€ 

l=1

N

∑
k=1

N

∑
j=1

N

∑
i=1

N

∑ 〈g(uk) sl g(ui) sj + (E(u) – E0)

€ 

∂g(ui)
∂uk

sl sj〉 dKij dKkl.    (S7) 

If K = 0 and g(0) = 0, we obtain d2L = (E(0) – E0)zi′′|ui=0〈si
2〉∑i∑jdKij

2, which is 

non-positive when (E(0) – E0)zi′′|ui=0 < 0. Therefore, K = 0 is an unstable equilibrium 

point if p0(si) is peaked at si=0 and zi = –log p0(si) is convex. On the other hand, if K = I, 

then u = s and 

〈g(ui) g(uk) sj sl + (E(u) – E0)

€ 

∂g(ui)
∂uk

sj sl〉 

  = 〈g(si) g(sk) sj sl + δik (E(s) – E0)

€ 

∂g(si)
∂si

sj sl〉      (S8) 

hold. 

Case 1. For i ≠ k, the second term is zero. Thus, Eq. (S8) is calculated as 
〈g(si)g(sk)sjsl〉, which becomes 〈g(si)si〉

2 for (i = j ≠ k = l) or (i = l ≠ j = k), and becomes 

zero otherwise since 〈si〉 = 〈g(si)〉 = 0 for all i. Hence, using 〈g(si)si〉 = 1 (see S2.1.1), Eq. 

(S8) is represented as δijδkl + δilδjk for i ≠ k. 

Case 2. For i = k, Eq. (S8) becomes 

〈g(si)2 sj sl + (E(s) – E0)

€ 

∂g(si)
∂si

sj sl〉.       (S9) 

Case 2-1. When i = k and j ≠ l, Eq. (S9) becomes zero because either sj or sl is 

invariably independent on other variables and (E(s) – E0)∂g(si)/∂si is an even function of 

s1, …, sN, so that (g(si)2sjsl + (E(s) – E0)∂g(si)/∂sisjsl) is definitely an odd function for sj 

and sl and its expectation is zero (see S2.1.2). 

Case 2-2. When i = k and j = l, Eq. (S9) becomes 

〈g(si)2 sj
2 + (E(s) – E0)

€ 

∂g(si)
∂si

sj
2〉 

  = 〈zi′2 sj
2〉 + 

€ 

m=1

N

∑ 〈zm zi′′ sj
2〉 – (N 〈zi〉 + 1) 〈zi′′ sj

2〉,     (S10) 

which is an even function of s1, …, sN. 
Case 2-2-1. When i = k = j = l, using the relationship of 〈zi′2si

2〉 = 〈zi′′si
2〉 + 2 (see 

S2.1.1), Eq. (S10) becomes 
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〈zi′2 si
2〉 + (N – 1) 〈zi〉 〈zi′′ si

2〉 + 〈zi zi′′ si
2〉 – (N 〈zi〉 + 1) 〈zi′′ si

2〉 

  = 〈zi′′ si
2〉 + 2 + 〈zi zi′′ si

2〉 – (〈zi〉 + 1) 〈zi′′ si
2〉 

  = 2 + 〈zi zi′′ si
2〉 – 〈zi〉 〈zi′′ si

2〉 

  = 2 + cov(zi, zi′′ si
2).        (S11) 

We define ρ := cov(zi, zi′′si
2). 

Case 2-2-2. When i = k ≠ j = l, using the relationship of 〈zi′2〉 = 〈zi′′〉 (see S2.1.1), Eq. 

(S10) becomes 

〈zi′′〉 〈si
2〉 + (N – 2) 〈zi〉 〈zi′′〉 〈si

2〉 + 〈zi zi′′〉 〈si
2〉 + 〈zi si

2〉 〈zi′′〉 

    – (N 〈zi〉 + 1) 〈zi′′〉 〈si
2〉 

  = 〈zi zi′′〉 〈si
2〉 + 〈zi si

2〉 〈zi′′〉 – 2 〈zi〉 〈zi′′〉 〈si
2〉 

  = cov(zi, zi′′) 〈si
2〉 + cov(zi, si

2) 〈zi′′〉.      (S12) 

We define ω := cov(zi, zi′′) 〈si
2〉 + cov(zi, si

2) 〈zi′′〉. 

Accordingly, d2L is represented as 

d2L = ∑i≠k (δij δkl + δil δjk) dKij dKkl + ∑i=k=j=l (2 + ρ) dKij dKkl + ∑i=k≠j=l ω dKij dKkl 

  = ∑i≠k (dKii dKkk + dKik dKki) + ∑i (2 + ρ) dKii
2 + ∑i≠j ω dKij

2 

  = ∑i (1 + ρ) dKii
2 + ∑i ∑k dKii dKkk + ∑i≠j (ω dKij

2 + dKij dKji) 

  = ∑i (1+ρ) dKii
2 + (∑i dKii)2 + 1/2 · ∑i≠j (ωdKij

2 + 2dKij dKji + ωdKji
2).   (S13) 

From a condition where a discriminant of a quadratic equation in the third term is 

negative, all coefficients of d2L are non-negative if ρ > –1, ω > 0, and 1 – ω2 < 0 hold. 

Therefore, the necessary and sufficient conditions where W = A–1 becomes a stable 

equilibrium point are ρ > –1 and ω > 1. 

 

S2.3 The absence of spurious solutions of the EGHR with Gaussian sources 

In this section, we show the absence of spurious solutions of the EGHR if sources 

obey a Gaussian distribution. Note that, while ICA is not defined for Gaussian sources, 

the EGHR can still perform input whitening. Furthermore, we show that there is no 

spurious solution as long as the source distribution is nearly Gaussian in the next 

section. 

Assuming that si obeys a normal Gaussian distribution, p0(si) = N(si; µ = 0, σ2 = 1), zi, 

zi′, zi′′, and E0 are calculated as zi = ui
2/2 + 1/2·log2π, zi′ = g(ui) = ui, zi′′ = 1, and E0 = N 
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〈si
2/2 + 1/2·log2π〉 + 1 = N/2 + N/2·log2π + 1, respectively. Then K

．
 can be rewritten as 

K
．

 ∝ –〈(E(u) – E0) u sT〉 = –K 〈(∑k zk – E0) s sT〉 

  = –K 〈(1/2 · ∑k uk
2 – N/2 – 1) s sT〉.      (S14) 

Here, ∑k uk
2 is calculated as ∑k uk

2 = ∑k (∑l Kklsl)2 = ∑k (∑l Kkl
2sl

2 + ∑l≠m KklKkmslsm). 
When i = j, 〈(1/2·∑k uk

2 – N/2 – 1)sisj〉 is calculated as 

〈(1/2 · ∑k ∑l Kkl
2 sl

2 – N/2 – 1) si
2〉 

  = 〈1/2 · ∑k Kki
2 si

4〉 + 〈1/2 · ∑k ∑l≠i Kkl
2 sl

2 si
2〉 – (N/2 + 1) 〈si

2〉 

  = 3/2 · ∑k Kki
2 + 1/2 · ∑k ∑l≠i Kkl

2 – (N/2 + 1) 

  = ∑k Kki
2 + 1/2 · ∑k ∑l Kkl

2 – (N/2 + 1).      (S15) 

The condition where Eq. (S15) becomes zero for all i is ∑k Kki
2 = 1 for all i. On the 

other hand, when i ≠ j, 〈(1/2·∑k uk
2 – N/2 – 1) si sj〉 is calculated as 

〈1/2 · ∑k ∑l≠m Kkl Kkm sl sm si sj〉 

  = 〈1/2 · ∑k (Kki Kkj si sj si sj + Kkj Kki sj si si sj)〉 

  = ∑k Kki Kkj.         (S16) 

The condition where Eq. (S16) becomes zero for all i, j (i ≠ j) is ∑k Kki Kkj = 0 for all i, j 

(i ≠ j). Taken together, Eq. (S14) is rewritten as 

K
．

 ∝ –K (KT K + 1/2 tr(KT K) I – (N/2 + 1) I) 

  = –K KT K – 1/2 tr(KT K) K + (N/2 + 1) K 

  = –(K KT – I) K – 1/2 (tr(KT K) – N) K.      (S17) 

The first term of Eq. (S17) helps to decorrelate the elements of u, while the second term 

only scales u. Therefore, the condition of K
．

 = 0 is KTK = I or K = 0. It is easy to see that 

K = 0 is an unstable equilibrium point from Eq. (S17). On the other hand, the KTK = I 

solution indicates that K is a rotation matrix R. From an analysis of the linear stability, it 

turns out that K = R resides at a valley of L, and K = 0 resides at a peak of L (see S2.2). 

There is no other peak or valley of L. Therefore, the global minimum of L is given when 

K = R, with which input whitening is achieved. 

 

S2.4 The absence of spurious solutions of the EGHR with the non-Gaussian 

sources with small non-Gaussianity 
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In this section, we proposed an approach to calculate the curvature of L when the 

sources obey a probability distribution similar to Gaussian distribution. We show that 

there is no spurious solution if the sources are distributed close to a Gaussian 

distribution. 
Step 1. We define the general form of a source distribution by p0(si) ∝ exp(γ1si

2 + γ2 

si
4 + γ3si

6 + ···). Assuming that γ1 = –1/2, γ2 = ε, and γ3, γ4, … are order O(ε2) or less, 

where ε is a small constant, we obtain the first order approximation of p0(si) with ε as 

p0(si) ∝ exp(–si
2/2) (1 + ε si

4) 

  ∝ N(si; 0, 1) (1 + ε si
4).       (S18) 

The integral of N(si; 0, 1)(1 + εsi
4) can be regarded as the expectation of (1 + εsi

4) over 

N(si; 0, 1), which is calculated as 

Z = ∫ N(si; 0, 1) (1 + ε si
4) dsi = 〈1 + ε si

4〉N(si) = 1 + 3 ε,     (S19) 

where 〈•〉N(si) is the expectation over N(si; 0, 1). Thus, p0(si) can be further approximated 

as 

p0(si) = N(si; 0, 1)

€ 

1+εsi
4

1+ 3ε
 ≈ N(si; 0, 1) (1 + ε si

4 – 3 ε).     (S20) 

The kurtosis of p0(si) is calculated as 〈si
4〉/〈si

2〉2 – 3 = 24ε; therefore, p0(si) will be a 

super-Gaussian distribution if ε is positive, while it will be sub-Gaussian if ε is negative. 

We then consider z(ui) for the general prior p0(si) as z(ui) = –log p0(ui). We assume that 

z(ui) is an even function. The derivative is represented as g(ui) = z′(ui). In addition, we 

define φ(s) = ∏k (1 + εsk
4 – 3ε) ≈ 1 + ε (∑k sk

4 – 3N), which indicates the difference of 

p0(s) from N(s; 0, I). Using K = WA and φ(s), Eq. (1) is rewritten as 

K
．

 ∝ –〈(E(u) – E0) g(u) sT〉p0(s) ATA 

  = –〈(E(u) – E0) g(u) sT φ(s)〉N(s) ATA 

  = –〈(E(u) – E0) g(u) uT φ(s)〉N(u) K–T ATA.      (S21) 

From the relationship of s = K–1u, φ(s) is expanded as 

φ(s) = 1 + ε {∑k (∑l (K–1)kl ul)4 – 3N} 

  = 1 + ε [∑k {∑l (K–1)kl
4 ul

4 + ∑l≠m (K–1)kl
3 ul

3 (K–1)km um 

    + ∑l≠m (K–1)kl
2 ul

2 (K–1)km
2 um

2 + ···} – 3N].     (S22) 
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We define a matrix C by C := 〈(E(u) – E0)g(u)uTφ(s)〉N(u). If and only if C is zero, K
．

 

becomes zero. Because E(u) is an even function, the diagonal elements of C become 

Cii = 〈(E(u) – E0) g(ui) ui 

    · [1 – 3Nε + ε ∑k {∑l (K–1)kl
4 ul

4 + ∑l≠m (K–1)kl
2 ul

2 (K–1)km
2 um

2}]〉N(u) 

  = (1 – 3Nε) 〈(E(u) – E0) g(ui) ui〉N(u) + ε 〈(E(u) – E0) g(ui) ui ∑k {∑l (K–1)kl
4 ul

4 

    + ∑l≠m (K–1)kl
2 ul

2 (K–1)km
2 um

2}〉N(u),      (S23) 

and its non-diagonal elements (i ≠ j) are 

Cij = 〈(E(u) – E0) g(ui) uj · [1 – 3Nε + ε ∑k {∑l≠m (K–1)kl
3 ul

3 (K–1)km um}]〉N(u) 

  = (1 – 3Nε) 〈(E(u) – E0) g(ui) uj〉N(u) 

    + ε 〈(E(u) – E0) g(ui) uj · ∑k {(K–1)ki
3 ui

3 (K–1)kj uj + (K–1)kj
3 uj

3 (K–1)ki ui}〉N(u) 

  = (1 – 3Nε) 〈(E(u) – E0) g(ui) uj〉N(u) 

    + ε ∑k {c1 (K–1)ki
3 (K–1)kj + c2 (K–1)kj

3 (K–1)ki},     (S24) 

where we set c1 = 〈(E(u) – E0)g(ui)ui
3uj

2〉N(u) and c2 = 〈(E(u) – E0)g(ui)uiuj
4〉N(u). When 

we assume the covariance matrix of u, 〈uuT〉, is a diagonal, 〈(E(u) – E0)g(ui)uj〉N(u) 

becomes zero. In this condition, Cij becomes zero if and only if ∑k {c1 (K–1)ki
3 (K–1)kj + 

c2 (K–1)kj
3 (K–1)ki} = 0 holds for all i ≠ j. Whereas, if ui and uj are correlated, 〈(E(u) – E0) 

g(ui) uj〉N(u) is not equal to zero; therefore, u must be decorrelated in order for Cij to be 

zero. Accordingly, because u should obey a normal Gaussian distribution to reach an 

equilibrium point, a necessary condition for K
．

 = 0 is that K becomes proportional to a 

rotation matrix R. 

Step 2. In this step, we assume K is closed to a rotation matrix (K = R) and determine 

the optimal rotations that gives K
．

 = 0. Note that N(u; 0, I) = N(s; 0, I) holds in this case 

because rotation of a whitened Gaussian distribution is also white. In the following, we 

first consider the case where A is a rotation matrix, and later generalize the results to 

non-rotational A. Moreover, we assume that E0 satisfies 

0 = (1 – 3Nε) 〈(E(u) – E0) g(ui) ui〉N(u) + ε 〈(E(u) – E0) g(ui) ui ∑l ul
4〉N(u).   (S25) 

In this case, Eq. (S21) is rewritten as K
．

 ∝ –E[C K], where E[●] indicates temporal 

averaging of ● with averaging time constant > τW. Importantly, although K deviates 

from a rotation matrix because K+K
．
Δt is not always a rotation matrix, its average E[K] 

continues to be a rotation matrix (see S2.3). Since we suppose E[K] to be a rotation 
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matrix, the degree of freedom of E[K] is N(N – 1)/2. We define a rotation in an si–sj 

plane to be θij (1 ≤ i < j ≤ N) and the corresponding rotation matrix as Rθij. Here, Rθij is 

the same as the identity matrix I except that the (i, i)th, (i, j)th, (j, i)th, and (j, j)th 

elements are cosθij, –sinθij, sinθij, and cosθij, respectively. Therefore, any rotation can be 

written as the product of various Rθij for any pair of axes. Let us suppose K = RθijBθij 

holds, where Bθij is any rotation matrix except a rotation in an si–sj plane. Then, R
．
θij can 

be written as 

R
．
θij = K
．

 (Bθij)–1 ∝ –E[C Rθij],       (S26) 

and Eq. (S26) is approximated as 

R
．
θij RθijT ∝ –E[C].        (S27) 

The elements of R
．
θij except for those of (i, i), (i, j), (j, i), and (j, j) are fixed to be zero. 

Since R
．
θij

ii = –sinθijθ
．

ij, R
．
θij

ij = –cosθijθ
．

ij, R
．
θij

ji = cosθijθ
．

ij, and R
．
θij

jj = –sinθijθ
．

ij hold, the (i, 

i)th, (i, j)th, (j, i)th, and (j, j)th elements of R
．
θij RθijT are respectively given by 

(R
．
θij RθijT)ii = ∑k R

．
θij

ik Rθijik = –sinθijθ
．

ij cosθij + (–cosθijθ
．

ij) (–sinθij) = 0, 

(R
．
θij RθijT)ij = ∑k R

．
θij

ik Rθijjk = –sinθijθ
．

ij sinθij + (–cosθijθ
．

ij) cosθij = –θ
．

ij, 

(R
．
θij RθijT)ji = ∑k R

．
θij

jk Rθijik = cosθijθ
．

ij cosθij + (–sinθijθ
．

ij) (–sinθij) = θ
．

ij, 

(R
．
θij RθijT)jj = ∑k R

．
θij

jk Rθijjk = cosθijθ
．

ij sinθij + (–sinθijθ
．

ij) cosθij = 0.   (S28) 

Thus, from Eqs. (S27) and (S28), we obtain 

E[Cij] = E[ε∑k(c1Kik
3Kjk + c2KikKjk

3)] ∝ θ
．

ij, 

E[Cji] = E[ε∑k(c1KikKjk
3 + c2Kik

3Kjk)] ∝ –θ
．

ij.      (S29) 

From Eq. (S29), E[∑kKik
3Kjk] = –E[∑kKikKjk

3] holds. Therefore, we obtain 

θ
．

ij ∝ ε(c1 – c2)E[∑k Kik
3 Kjk] and 

θ
．

ij ∝ –ε(c1 – c2)E[∑k Kik Kjk
3].       (S30) 

Then, Kik and Kjk can be expanded as 

Kik = ∑l Rθijil Bθijlk = cosθij Bθijik – sinθij Bθijjk, 

Kjk = ∑l Rθijjl Bθijlk = sinθij Bθijik + cosθij Bθijjk,      (S31) 

and Kik
3Kjk and Kjk

3 Kik can be calculated as 
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Kik
3 Kjk = (cosθij Bθijik – sinθij Bθijjk)3 (sinθij Bθijik + cosθij Bθijjk) 

  = (cos2θij Bθijik2 – 2sinθij cosθij Bθijik Bθijjk + sin2θij Bθijjk2) 

    · (sinθij cosθij (Bθijik2 – Bθijjk2) + (cos2θij – sin2θij) Bθijik Bθijjk), 

Kjk
3 Kik = (sinθij Bθijik + cosθij Bθijjk)3 (cosθij Bθijik – sinθij Bθijjk) 

  = (sin2θij Bθijik2 + 2sinθij cosθij Bθijik Bθijjk + cos2θij Bθijjk2) 

    · (sinθij cosθij (Bθijik2 – Bθijjk2) + (cos2θij – sin2θij) Bθijik Bθijjk).    (S32) 

Because θij = 0, π/2 are sufficient conditions for K to be an ICA solution, by substituting 

θij = 0, π/2 into Eq. (S30), we obtain  

θ
．

ij|θij=0 ∝ ε(c2– c1)E[∑kBθijik3 Bθijjk] = 0, 

θ
．

ij|θij=π/2 ∝ ε(c2– c1)E[∑kBθijik Bθijjk3] = 0.      (S33) 

Therefore, E[∑k Kik
3Kjk] and E[∑k Kjk

3Kik] are calculated as 

E[∑k Kik
3 Kjk] = E[∑k{(cos2θij Bθijik2 + sin2θij Bθijjk2) sinθij cosθij (Bθijik2 – Bθijjk2) 

    – 2sinθij cosθij Bθijik Bθijjk (cos2θij – sin2θij) Bθijik Bθijjk}] 

  = E[sinθij cosθij ∑k {(cos2θij Bθijik2 + sin2θij Bθijjk2) (Bθijik2 – Bθijjk2) 

    – 2Bθijik2 Bθijjk2 (cos2θij – sin2θij)}] 

  = 

€ 

1
4

E[sin2θij ∑k{((1+cos2θij) Bθijik2 + (1–cos2θij) Bθijjk2) (Bθijik2 – Bθijjk2) 

    – 4Bθijik2 Bθijjk2 cos2θij}] 

  = 

€ 

1
4

E[sin2θij∑k{(Bθijik4–6Bθijik2Bθijjk2+Bθijjk4)cos2θij + Bθijik4 – Bθijjk4}], 

E[∑k Kjk
3 Kik] = E[∑k {(sin2θij Bθijik2 + cos2θij Bθijjk2) sinθij cosθij (Bθijik2 – Bθijjk2) 

    + 2sinθij cosθij Bθijik Bθijjk (cos2θij – sin2θij) Bθijik Bθijjk}] 

  = E[sinθij cosθij ∑k {(sin2θij Bθijik2 + cos2θij Bθijjk2) (Bθijik2 – Bθijjk2) 

    + 2Bθijik2 Bθijjk2 (cos2θij – sin2θij)}] 

  = 

€ 

1
4

E[sin2θij ∑k {((1–cos2θij) Bθijik2 + (1+cos2θij) Bθijjk2) (Bθijik2 – Bθijjk2) 

    + 4Bθijik2 Bθijjk2 cos2θij}] 

  = 

€ 

1
4

E[sin2θij∑k{(–Bθijik4+6Bθijik2Bθijjk2–Bθijjk4)cos2θij + Bθijik4 – Bθijjk4}].   (S34) 

From Eq. (S34), E[Bθijik4] = E[Bθijjk4] hold since E[∑kKik
3Kjk] = –E[∑kKikKjk

3]. 

Consequently, from Eq. (S30), we obtain 
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θ
．

ij ∝ 

€ 

1
4
ε(c1 – c2)E[sin2θijcos2θij∑k(Bθijik4–6Bθijik2Bθijjk2+Bθijjk4)] 

  = 

€ 

1
8
ε(c1 – c2)E[sin4θij∑k(Bθijik4 – 6Bθijik2Bθijjk2 + Bθijjk4)].    (S35) 

By assuming θij is independent of Bθij, Eq. (S35) can be approximated as 

θ
．

ij ∝ 

€ 

1
8
ε(c1 – c2)sin4θij E[∑k(Bθijik4 – 6Bθijik2Bθijjk2 + Bθijjk4)].    (S36) 

Numerical calculations suggest that E[∑k(Bθijik4 – 6Bθijik2Bθijjk2 + Bθijjk4)] is 

positive-definite when K is a rotation matrix. Therefore, if and only if θij = kπ/4 (k = 0, 1, 

…, 7), θ
．

ij becomes zero. Notably, if θij = 0 is stable θij = kπ/4 (k = 2, 4, 6) are also stable, 

while θij = kπ/4 (k = 1, 3, 5, 7) are unstable. If θij = 0 is unstable, the exactly opposite 

occurs. Therefore, if θij = 0 is stable, which depends on the sign of ε (c1 – c2), only ICA 

solutions give equilibrium points of θijs, which means that there is no spurious solution 

of EGHR for the source distribution near Gaussian. Furthermore, for any transform 

matrix A, ATA is a positive definite matrix, so that even when A is not a rotation matrix, 

there is no spurious solution of EGHR for the source distribution near Gaussian. 

Step 3. Lastly, we evaluate the sign of ε(c1 – c2) to determine whether these ICA 
solutions are stable or unstable. Indeed, the sign of (c1 – c2) = 〈(E(u) – E0)g(ui)(ui

3 uj
2 – 

ui uj
4)〉N(u) depends on the form of z(ui). If we assume z(ui) = ui

2/2 – δui
4, g(ui) is 

calculated g(ui) = ui – 4δui
3 and E0 can be supposed as E0 = N/2 + 1 + O(δ) + O(ε), 

where O(δ) and O(ε) are functions of δ and ε, respectively. Because of the symmetry of 
indexes i and j, 〈(E(u) – E0) (ui

4 uj
2 – ui

2 uj
4)〉N(u) is calculated as zero. Therefore, (c1 – 

c2) is calculated as 

(c1 – c2) = 〈(E(u) – E0)g(ui)(ui
3 uj

2 – ui uj
4)〉N(u) 

  = 〈{∑m (um
2/2 – δum

4) – N/2 – 1 – O(δ) – O(ε)} (ui – 4δui
3) (ui

3 uj
2 – ui uj

4)〉N(u) 

  = –4δ〈{∑m (um
2/2 – δum

4) – N/2 – 1 – O(δ) – O(ε)} (ui
6 uj

2 – ui
4 uj

4)〉N(u).   (S37) 

If we assume δ is small, Eq. (S37) is approximated as 

(c1 – c2) = –2δ〈(∑m um
2 – N – 2) (ui

6 uj
2 – ui

4 uj
4)〉N(u) + δ(O(δ)+O(ε)) 

  = –2δ{〈ui
8 uj

2 – ui
6 uj

4〉N(u) + 〈ui
6 uj

4 – ui
4 uj

6〉N(u) 

    + (N–2)〈um
2〉N(u)〈ui

6uj
2 – ui

4uj
4〉N(u) – (N–2)〈ui

6uj
2 – ui

4uj
4〉N(u)} + δ(O(δ)+O(ε)).

          (S38) 
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From S2.1.3, we get 〈ui
4〉N(u) = 3〈ui

2〉N(u) = 3, 〈ui
6〉N(u) = 5〈ui

4〉N(u) = 15, and , 〈ui
8〉N(u) = 

7〈ui
6〉N(u) = 105. Therefore, since i ≠ j, we obtain 

(c1 – c2) = –2δ{105 – 15·3 + 15·3 – 3·15 

    + (N–2)(15 – 3·3) – (N–2)(15 – 3·3)} + δ(O(δ)+O(ε)) 

  = –120δ + δ(O(δ)+O(ε)).       (S39) 

Accordingly, from Eqs. (S36) and (S39), we obtain 

θ
．

ij ∝ –15δε sin4θij E[∑k(Bθijik4 – 6Bθijik2Bθijjk2 + Bθijjk4)].     (S40) 

Because δε can be a positive definite scalar if we choose so and ATA is a positive 

definite matrix, Eq. (S40) always converges to K = I or its permutations or sign-flips, 

i.e., these are the only stable equilibrium point and there is no other stable equilibrium 

point on K = R. Taken together with the result from S2.3, we conclude that K = I is the 

only stable equilibrium point and there is no other stable equilibrium point. 
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S2.5 Simplification of conventional local ICA rules 

In this section, to speed up numerical simulations in Fig. 3B, we analytically simplify 

the conventional local ICA rules, assuming that A and W are rotation matrices. 

 

S2.5.1 The Linsker rule 

In the Linsker rule [20] (see also Eq. (5)), the dynamics of the inner states v is 

represented as τv v
．
 = –v + u + Qv, where u = Wx holds. If we assume that a change of x 

(therefore, a change of sources) is sufficiently slower than that of v, v
．
 converges to 0 

before x changes. An equilibrium state of v can then be rewritten as –v + u + Qv = 0 
and solved as v = (I – Q)–1Wx. In the equilibrium state, 〈vxT〉 = 〈(I – Q)–1WxxT〉 = 〈(I – 

Q)–1WxxTWTW–T〉 = (I – Q)–1〈uuT〉W–T. Moreover, if (I – Q) = 〈uuT〉 holds, 〈vxT〉 

becomes W–T. Therefore, if (I – Q) rapidly converges to a 〈uuT〉 (a > 0), the Linsker rule 

is equal to the Bell-Sejnowski rule [20]. To achieve such a condition, the learning rule 
of Q must follow τQ Q

．
 = –(Q – (I – a 〈uuT〉)). 

To compare the EGHR with the Linsker rule, we consider the case where the sources 

are not much slower than v and the sampling time is discrete. If we assume a discrete 

sampling time Δt and that Q quickly converges to a fixed point, Eq. (5) can be rewritten 

as 

τW W
．

 = 〈a v xT – g(u) xT〉, 

τv (v(t+Δt) – v) = Δt (–v + u + Q v), 
Q = I – a 〈u uT〉 = I – a K KT.       (S41) 

From the second and third equations, we obtain a solution of v as 

v(t+Δt) – v = Δt/τv (u – a K KT v), 

v(t) = (I – a K KT Δt/τv) v(t–Δt) + Δt/τv u(t–Δt), 

v(t) = Δt/τv ∑k=0
∞ (I – a K KT Δt/τv)k u(t–(k+1) Δt).     (S42) 

In order for Eq. (S42) to converge, |I – aKKTΔt/τv| < 1 should hold. If K is proportional 

to a rotation matrix, that is, K = cR (c > 0), this condition can be further simplified as |1 

– ac2Δt/τv| < 1. As (ac2Δt/τv) is a positive scalar, we get c’s condition for v to converge 

as 1 – a c2 Δt/τv > –1, or equivalently, 
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0 < c < 

€ 

2τv
aΔt

.        (S43) 

This indicates that a large a is likely to make v unstable if K is started from large initial 
conditions. The Hebbian term 〈avxT〉 in the first equation in Eq. (S41) with a general K 

can then be calculated as 

a 〈v(t) x(t)T〉 = a Δt/τv ∑k=0
∞ (I – a K KT Δt/τv)k 〈u(t–(k+1)Δt) x(t)T〉 

  = a Δt/τv ∑k=0
∞ (I – a K KT Δt/τv)k K 〈s(t+(k+1)Δt) s(t)T〉 KT W–T 

  = a Δt/τv ∑k=0
∞ (I – a K KT Δt/τv)k ρ((k+1)Δt) K KT W–T.    (S44) 

For a strict solution, we need to calculate ∑k=0
∞(I – αKKTΔt/τv)kρ((k + 1)Δt) numerically, 

where ρ((k + 1)Δt) := 〈si(t + (k + 1)Δt)si(t)T〉 is the auto-correlation of a signal train 

generated from Eq. (7). From Eq. (S44), we define Eq. (17) as the reduced Linsker 

(R-Linsker) rule. The numerical calculation in Fig. 3B uses this R-Linsker rule to speed 

up simulations. 

Next, we qualitatively explore how the ICA solutions disappear depending on 
parameter values. Approximating the auto-correlation function by ρ(t – t′) ≈ exp(–|t – 

t′|/τs) for an analytical simplification, we obtain 

a 〈v(t) x(t)T〉 = a Δt/τv ∑k=0
∞ (I – a K KT Δt/τv)k exp(–(k+1)Δt/τs) K KT W–T 

  = a Δt/τv exp(–Δt/τs) ∑k=0
∞ (I – a K KT Δt/τv)k exp(–Δt/τs)k K KT W–T 

  = a Δt/τv exp(–Δt/τs) {I – (I – a K KT Δt/τv) exp(–Δt/τs)}–1 K KT W–T 

= 

€ 

τv (exp(Δt /τs) −1)
aΔt

K −TK −1 + I
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
−1

W–T.      (S45) 

Therefore, the R-Linsker rule is simplified as 

τW W
．

 = 

€ 

τv (exp(Δt /τs) −1)
αΔt

K −TK −1 + I
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
−1

W–T – 〈g(u) xT〉.    (S46) 

The coefficient matrix of W–T is defined by CL(K) := {τv (exp(Δt/τs) – 1)/aΔt K–T K–1 + 
I}–1 (see Table S1). For small Δt, CL(K) ≈ {(τv/τs)/a K–T K–1 + I}–1. Indeed, CL(K) W–T 

dramatically decreases as (τv/τs)/a increases while 〈g(u) xT〉 does not. This indicates that 

the ICA solutions (i.e., equilibrium points) disappear if (τv/τs)/a is too large. 

 

S2.5.2 The Foldiak rule 

The Foldiak rule [19] was originally described as shown in Eq. (6). To speed up the 
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computation to plot the 2-dimensional velocity map in Fig. 3B, we consider a reduced 

version of the original Foldiak rule, assuming the following conditions: (1) s, x, u, v are 

all two dimensional vectors and the lateral interaction matrix is described by Q=[0, q; q, 
0] with q ≤ 0, (2) A is a rotation matrix and W is a rotation matrix up to scaling factor, 

(3) sources are much more slowly changing than v, so that v = fF(u + Qv – h) holds, (4) 
h and q converge to a fixed point, so that 〈vi〉 = b and 〈vivj〉 = b2 for i ≠ j, (5) s, x, and u 

are symmetric about 0 and v is symmetric about 〈v〉 = b1, and (6) neuronal nonlinearity 

fF(x) is an odd and monotonically increasing nonlinear function up to constant factor b. 

We first transform the variables to clarify the symmetry of variables. Let us define 

mean subtracted output yi = vi – b and odd nonlinear function f(x) = fF(x) – b. With this 
notation the Foldiak rule is described by τW W

．
 = a〈yxT〉 – W, where y is given by a 

solution of yi = f(ui + qyj + qb – h) for i ≠ j, and h and q converge to a fixed point 
according to h

．
 ∝ 〈yi〉 and q

．
 ∝ – 〈y1y2〉, so that 〈yi〉 = 0 and 〈y1y2〉 = 0 at the fixed point. 

For the reasons described below, we can set h = q = 0 in this case to simplify the 
system. Let us start by showing that h = q = 0 is a solution of 〈yi〉 = 0 and 〈y1y2〉 = 0. The 

first equation directly follows from 〈f(ui)〉 = 0 for symmetric u and odd function f. To 

show that 〈f(u1)f(u2)〉 = 0, we compute 〈F(u1)G(u2)〉 = ∑n=1
4 〈F(u1)G(u2)〉n for either odd 

or even functions F and G. The average 〈 〉n (n=1, 2, 3, 4) describes the 2-dimensional 

integration over s1 and s2 restricted in the nth quadrant. It is easy to see that 

〈F(u1)G(u2)〉2 ≡ 

€ 

ds1−∞

0
∫ ds20

∞

∫ p(s1)p(s2)F(c(s1cosθ – s2sinθ))G(c(s1sinθ + s2cosθ)) 

           =

€ 

ds10

∞

∫ ds20

∞

∫ p(s1)p(s2)F(c(–s1cosθ – s2sinθ))G(c(–s1sinθ + s2cosθ)) 

           = σF

€ 

ds10

∞

∫ ds20

∞

∫ p(s1)p(s2)G(c(s2cosθ – s1sinθ))F(c(s2sinθ + s1cosθ)) 

           = σF 〈G(u1)F(u2)〉1,       (S47) 

where c is a constant scaling factor, θ is the angle of the rotation by K = WA, and σF is 

the parity of F, taking 1 and –1 if F is even and odd function, respectively. Similar 
calculations for 〈F(u1)G(u2)〉n (n = 3 and 4) together yield 

〈F(u1)G(u2)〉 = (1 + σFσG) 〈F(u1)G(u2)〉1 + (σF + σG) 〈G(u1)F(u2)〉1.    (S48) 

Hence, we find that 〈f(u1)f(u2)〉 = 0 by setting F = G = f and σf = –1. This result confirms 

that h = q = 0 is a solution of the Foldiak rule, i.e., 〈yi〉 = 0 and 〈y1y2〉 = 0. 



 24 

We next show that this h = q = 0 solution is stable. To demonstrate the linear stability, 

we express the derivative of the output by dyi = f’(ui)[f(uj) dq – b dq – dh] for i ≠ j, 

which is evaluated at h = q = 0. Using this expression, perturbations of h and q, i.e., dh 

and dq, develop according to 

€ 

d ˙ h 
d ˙ q 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  = 

€ 

− ʹ f (ui) ʹ f (ui) f (u j ) − b ʹ f (ui)

ʹ f (ui) f (u j ) + ʹ f (u j ) f (ui) − ʹ f (ui) f 2(u j ) + ʹ f (u j ) f 2(ui) − b ʹ f (ui) f (u j ) − b ʹ f (u j ) f (ui)

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

dh
dq
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

= 

€ 

− ʹ f (ui) −b ʹ f (ui)
0 − ʹ f (ui) f 2(u j ) + ʹ f (u j ) f 2(ui)

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

dh
dq
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .     (S49) 

Note that we used 〈f’(ui)f(uj)〉 = 0 for i ≠ j in the second line from Eq. (S47). The 

eigenvalues of the linearized dynamics in Eq. (S49) are –〈f’(ui)〉 and –〈f’(ui) f2(uj)+ f’(uj) 

f2(ui)〉, which are both negative because f is monotonically increasing. Altogether, these 

results show that h = q = 0 is a stable solution. 

Finally, we show that h and q must be both zero when the Foldiak rule achieves an 

ICA solution W = A–1. In this case, u1 = s1 and u2 = s2 are independent inputs and 

outputs are given by yi = f(si + qyj + qb – h). To keep the outputs independent, q must be 

zero because any none-zero q would introduce some dependency between the two 
outputs. If q = 0, then, h = 0 is the unique solution to 〈yi〉 = 0 for monotonically 

increasing f. 

Altogether, h = q = 0 is a stable solution of the Foldiak rule throughout the learning in 

this case, and h = q = 0 must hold when it eventually achieves the ICA solution. 

Although it is possible to initialize h and q to a non-zero value, the output y becomes 

multi-stable if |q| is large. Hence, it is most natural to initially set h = q = 0, following 

the original proposal [19]. Accordingly, Eq. (6) can be simplified as Eq. (18). We define 

Eq. (18) to be the reduced Foldiak (R-Foldiak) rule. The numerical calculation in Fig. 

3B is based on this R-Foldiak rule. 

 

S2.6 Equilibrium points of conventional ICA rules 

S2.6.1 The Bell-Sejnowski, Amari, and Cichocki rules 

Let us show that W = A–1 is an equilibrium point of the Bell-Sejnowski, Amari, and 

Cichocki rules based on a previous study [32]. We can confirm this by checking W
．

 after 
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substituting W = A–1 into each equation. Let us start checking this for the 

Bell-Sejnowski rule. From Eq. (2), an equilibrium state of W is given by 

W–T = 〈g(u) xT〉p(x).        (S50) 

If W = A–1, u = Wx becomes u = s and 〈g(u)xT〉p(x) becomes 〈g(s)sT〉p0(s) AT. Note that 

〈g(s)sT〉p0(s) is a diagonal matrix since s1, …, sN are independent of each other, and its 

diagonal elements are one, i.e., 〈g(s)sT〉p0(s) = I (see S2.1.1). As W = A–1 satisfies Eq. 

(S50), W = A–1 is one of the solutions to the Bell-Sejnowski rule. 

The equilibrium points of the Amari and Cichocki rules are calculated similarly. The 

difference among the Bell-Sejnowski, Cichocki, and Amari rules is only the 

multiplication of some regular matrix from the right, which does not remove an 

equilibrium point. Therefore, W = A–1 is also an equilibrium state of the Amari and 

Cichocki rules. 

 

S2.6.2 The Linsker rule 

As shown in S2.5.1, the Linsker rule becomes equal to the Bell-Sejnowski rule when 

the input is much slower than the dynamics of v [20]; therefore, W = A–1 is also an 

equilibrium state of the Linsker rule. However, when sources obey a rapidly changing 

super-Gaussian distribution (e.g., a Laplace distribution), the Linsker model does not 

always have a stable equilibrium point depending on the time constant and distribution 

shape of the source. Indeed, the existence of ICA solutions for the R-Linsker rule (Eq. 

(S40)) depends on the parameters when the sources are not much slower than v. If we 
assume K = c I (c > 0), the second term on the right of Eq. (S46) becomes 〈g(u)xT〉 = 

〈g(cs)sT〉AT. If we assume sources obey a Laplace distribution, we obtain 〈g(cs)sT〉 = 

〈sgn(s)sT〉 = I, which is independent of c. The fixed point is then calculated as 

€ 

τv (exp(Δt /τs) −1)
c 2aΔt

+1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
−1

 

€ 

1
c

 = 1, 

c2 – c + 

€ 

τv (exp(Δt /τs) −1)
aΔt

 = 0, 

c = 

€ 

1
2
1± 1− 4τv (exp(Δt /τs) −1)

aΔt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .      (S51) 

Therefore, in order for K to converge to a non-zero finite value, the radial distance c 

should be started from 
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€ 

1
2
1− 1− 4τv (exp(Δt /τs) −1)

aΔt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  < c < 

€ 

2τv
aΔt

,     (S52) 

and the fixed point of c is 

c = 

€ 

1
2
1+ 1− 4τv (exp(Δt /τs) −1)

aΔt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .      (S53) 

Accordingly, in order for the fixed point to exist, τv/aΔt should be 

τv/aΔt < 

€ 

1
4(exp(Δt /τs) −1)

.       (S54) 

Note that a also controls the stability of the dynamics of v. If a is set too large, the 

dynamics of v does not converge. 

 

S2.6.3 The Foldiak rule 

The Foldiak rule (Eq. (6)) can perform ICA only when A is a rotation matrix. To 

calculate the Foldiak rule’s equilibrium point, we assume that W = A–1 holds and that Q 

and h have converged to the zero fixed point (see S2.5.2). From h
．
 = 0, the output 

satisfies 〈v〉 = b1. Thus, the last equation in Eq. (6) becomes τW W
．

 = a〈vxT〉 – W. If W = 

A–1, the output is given by v = fF(s). Therefore, 〈vsT〉 must be proportional to an identical 

matrix. In this case, the equilibrium condition is given by 0 = W
．

 = a〈vsT〉AT – A–1, or 

equivalently, A–1A–T = a〈vsT〉 ∝ I. Accordingly, in order for the Foldiak rule to achieve 

ICA, A must be proportional to a rotation matrix. Moreover, if a is chosen so that 
a〈fF(si)si〉 = 1, A–1 should be equal to AT, i.e., A must be a rotation matrix in order for the 

Foldiak rule to have the ICA solution. 

 

S2.7 Linear stability of conventional ICA rules 

S2.7.1 The Bell-Sejnowski, Amari, and Linsker rules 

Here, we repeat the linear stability analysis of the the Bell-Sejnowski, Amari, and 

Linsker rules [32] to apply it to the Cichocki and Foldiak rules in the following sections. 

Let us define K as K = WA and represent u as u = Ks. Linear stability is confirmed by 

showing that when K = WA = I + εJ is substituted into each ICA rule, where positive 

constant ε is small enough, the signs of the elements of K
．

 never change, regardless of 
the value of J. Specifically, the Amari rule (Eq. (3)) is rewritten as K

．
 ∝ 〈I – g(Ks)sTKT〉 

K (see Table S1). If we assume that W is near to A–1 as K = I + εJ, (ε << 1), the Taylor 

expansion of g(s + εJ s) is given by g(s + εJs) = g(s) + ΛεJ s + O(|εJ s|2), where Λ = 
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Diag[g′(s)] is a diagonal matrix of g′(s). Using the relationship of 〈g(s)sT〉 = I, Eq. (3) is 

further calculated as 

ε J
．
 ∝ 〈I – g(s + ε J s) sT (I + ε J)T〉 (I + ε J) 

  ≈ 〈I – (g(s) + Λ ε J s) sT (I + ε JT)〉 (I + ε J) 

  ≈ 〈I – (g (s) sT + Λ ε J s sT + g (s) sT ε JT)〉 (I + ε J) 

  ≈ –ε 〈Λ J s sT + g (s) sT JT〉 

  = –ε (〈Λ J s sT〉 + JT).        (S55) 

Because the (i, j)th element of 〈ΛJssT〉 is calculated as 〈ΛJssT〉ij = 〈∑k (ΛJ)iksksj〉 = ∑k 

〈ΛiiJiksksj〉 = 〈ΛiiJijsj
2〉 = 〈g′(si)sj

2〉Jij, the (i, j)th element of Eq. (S55) is calculated as 

J
．

ij ∝ –〈g′(si) sj
2〉 Jij – Jji.        (S56) 

When i = j, Eq. (S56) is calculated as J
．

ii ∝ –(〈g′(si)si
2〉 + 1) Jii; therefore, when 〈g′(si)si

2〉 

+ 1 > 0 holds, Jii converges to zero. When i ≠ j, Eq. (S56) is calculated as 

J
．

ij ∝ –〈g′(si)〉 〈si
2〉 Jij – Jji .       (S57) 

From Eq. (S57), the relationship of J
．

ji = –〈g′(si)〉〈si
2〉Jji – Jij also holds; therefore, we 

obtain 

J
．

ij + J
．

ji ∝ –(〈g′(si)〉 〈si
2〉 + 1) (Jij + Jji), 

J
．

ij – J
．

ji ∝ –(〈g′(si)〉 〈si
2〉 – 1) (Jij – Jji).      (S58) 

When 〈g′(si)〉〈si
2〉 > 1, J

．
ij + J
．

ji and J
．

ij – J
．

ji converge to zero with increasing t, i.e., Jij and 

Jji converge to zero. Because s1, …, sN independently obey an identical distribution, the 
necessary and sufficient conditions for J to converge are 〈g′(si)si

2〉 + 1 > 0 and 

〈g′(si)〉〈si
2〉 > 1. In this condition, W = A–1 is a stable equilibrium point of the Amari rule. 

The condition is the same as that studied by Amari using the second differential form of 

the cost function LA [32]. 

Moreover, the Bell-Sejnowski rule is represented as a multiplication of the Amari 

rule by a positive definite matrix W–1W–T from the right (for any matrix W, W–1W–T is a 

positive definite matrix); therefore, the conditions where W = A–1 is a stable equilibrium 

point of the Bell-Sejnowski rule is the same as that of the Amari rule. If the sources are 

sufficiently slow, the Linsker rule converges into the Bell-Sejnowski rule and is 

therefore linearly stable for the same conditions. 
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S2.7.2 The Cichocki rule 

Similarly, the linear stability of the Cichocki rule at W = A–1 is calculated. Eq. (4) is 

rewritten as 

K
．

 ∝ 〈I – g (K s) sT KT〉 A 

  ≈ –ε (〈Λ J s sT〉 + JT) A.       (S59) 

By comparing Eq. (S59) with Eq. (S55), the condition of linear stability depends on the 

eigenvalues of A and the initial condition of W. The Cichocki rule is stable at some ICA 

solutions if some of eigenvalues of A are positive, but its performance depends on the 

initial condition of W. In contrast, the Cichocki rule is stable at the all ICA solutions if 

all eigenvalues of A are non-negative and the sum of all eigenvalues is positive. 

 

S2.7.3 The Foldiak rule 

We assume the same assumptions with S2.5.2. Thus, the Foldiak rule is equal to Eq. 

(18) when W = A–1 and Eq. (18) is a good approximation of the original Foldiak rule 

when W is closed to A–1. Using K = WA, Eq. (18) is calculated as 

K
．

 ∝ a〈fF(Ks)sTATA〉 – K.        (S60) 

Transform matrix A is required to be a rotation matrix in order for the Foldiak model to 

achieve an equilibrium state at W = A–1 (see S2.6.3), so that ATA = I. By substituting K = 

I + εJ into Eq. (S60), we obtain 

ε J
．
 ∝ a 〈fF(s + εJ s) sT〉 – (I + ε J) 

  ≈ a 〈(f(s) + Λ εJ s) sT〉 – (I + ε J) 

  = a 〈f(s) sT + Λ εJ s sT〉 – (I + ε J) 

  = a (〈f(si) si〉 I + 〈Λ ε J s sT〉) – (I + ε J) 

  = ε a 〈Λ J s sT〉 – ε J,        (S61) 

where Λ = Diag[fF′(si)]. The (i, j)th element of J
．
 is calculated as 

J
．

ij ∝ (a 〈Λ J s sT〉ij – Jij) 

  = (a 〈∑k (Λ J)ik sk sj〉 – Jij) 

  = (a ∑k Jik 〈Λii sk sj〉 – Jij) 
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  = (a Jij 〈Λii sj
2〉 – Jij) 

  = (a 〈Λii sj
2〉 – 1) Jij.        (S62) 

When a〈Λii si
2〉 – 1 < 0 and a〈Λii〉〈si

2〉 – 1 < 0 hold, Jij converges to zero. Assuming fF(si) 

is a sigmoid function fF(si) = sig(γsi) and γ is large, 〈Λii si
2〉 becomes zero and 〈Λii〉〈si

2〉 

becomes 2〈δ(si)〉〈si
2〉 = 2p0(0)〈si

2〉 since 〈δ(si)〉 = ∫ δ(si)p0(si)dsi = p0(0). Therefore, if and 

only if ap0(0)〈si
2〉 is smaller than one, the Foldiak model is linearly stable. For example, 

when a source obeys a normalized uniform distribution, p0(0) and 〈|si|〉 are respectively 

calculated as p0(0) = 1/2

€ 

3  and 〈|si|〉 = 2·(

€ 

3 )2/2·(1/2

€ 

3 ) = 

€ 

3 /2, so that, since 
p0(0)〈si

2〉/〈|si|〉 = 1/3, Jij converges to zero. When a source obeys a normalized Gaussian 

distribution, p0(0) and 〈|si|〉 are respectively calculated as p0(0) = 1/

€ 

2π  and 〈|si|〉 = 2/

€ 

2π  ∫0∞ si exp(–si
2/2) dsi = 2/

€ 

2π  [–exp(–si
2/2)]0

∞ = 2/

€ 

2π , so that, since 
p0(0)〈si

2〉/〈|si|〉 = 1/2, J
．

ij is always equal to zero. When a source obeys a normalized 

Laplace distribution (p0(si) = 1/

€ 

2  exp(–

€ 

2 |si|)), if we use fF(si) = 4.444/(1+exp(–

€ 

2
si

3)), p0(0)〈si
2〉/〈|si|〉 is calculated as p0(0) 〈si

2〉/〈|si|〉 = –0.9447…; therefore, Jij converges 

to zero. 

 

S2.8 Performance of the conventional ICA rules in the undercomplete condition 

In contrast to the EGHR, conventional ICA rules do not straightforwardly work in the 

undercomplete condition (Fig. 5). Unlike the EGHR rule (see Methods), the optimal 

representation K = (I, I)T is not an equilibrium point of the Amari rule because when we 
substitute K = (I, I)T into the Amari rule, K

．
 is rewritten as K

．
 ∝ 〈I – g(Ks)(Ks)T〉 K ≠ 0; 

hence, K = (I, I)T never becomes an equilibrium point of the Amari rule. Moreover, K = 

(I, 0)T is not an equilibrium point of the Amari rule either. For the same reason, K = (I, 

I)T and (I, 0)T are not equilibrium points of the Bell-Sejnowski, Cichocki, or Linsker 

rules. Importantly, inputs are definitely correlated in the undercomplete condition. 

Because the Foldiak rule requires A to be a rotation and scaling matrix, it does not have 

ICA solutions in the undercomplete condition either. 

 

 


