
Supplementary Materials for “Mash: fast genome and metagenome 
distance estimation using MinHash” 
 

 
Figure S1. Absolute and relative error bounds for Mash Jaccard estimates given 
various sketch sizes. Increasing sketch sizes are progressively shaded from s=100 (light gray), 
s=1,000, s=10,000, and s=100,000 (black). Upper and lower bounds are drawn using the binomial inverse 
cumulative distribution function, with the same parameters from equation 8, such that for a given Jaccard 
index there is a 0.99 probability that the corresponding Jaccard estimate (a) or relative error (b) will fall 
within the bounds. These plots illustrate that relative error can grow quite large when estimating small 
Jaccard values. Thus, large sketch sizes are recommended when comparing divergent sequences with 
few shared k-mers. These plots only illustrate the error of the Jaccard estimate, and are independent of k-
mer size. Supplementary Figures 2 and 3 show the relationship between Jaccard and the Mash distance, 
which does depend on k-mer size. 
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Figure S2. Error bounds for Mash distance estimate using k=16 and k=21 and 
various sketch sizes. Increasing sketch sizes are progressively shaded from s=100 (light gray), 
s=1,000, s=10,000, and s=100,000 (black). Upper and lower bounds are drawn using the binomial inverse 
cumulative distribution function, such that for a given Mash distance (and corresponding Jaccard index) 
there is a 0.99 probability that the corresponding Mash distance estimate will fall within the bounds for k-
mer sizes of 16 (a) and 21 (b). This plot illustrates that larger Mash distances require large sketch sizes to 
be accurately estimated. However, with a suitably large sketch size, accurate Mash distance estimation is 
possible across a wide range of values. Choosing a smaller k-mer size can also improve accuracy for 
divergent sequences, but k-mer choice also depends on genome size (Supplementary Figure 3).  
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Figure S3. Effect of k-mer and genome size on the Mash distance. (a) The 
relationship between the Jaccard index and Mash distance for k-mer sizes of 15 (red), 21 (black), and 27 
(blue) based on equation 4. The x-axis is log scale. For a fixed Mash distance (e.g. 0.2), larger k-mer 
sizes result in lower Jaccard scores because fewer, long k-mers are shared between divergent 
sequences. Thus, it can be helpful to use a small k-mer size to avoid the higher error that comes with 
small Jaccard values. This panel assumes all k-mers are unique. However, (b) illustrates the effect of 
non-unique k-mers and genome size, and adjusts the expected Mash distance based on the number of 
random k-mers that will be shared by chance between two 1 Gbp genomes. Here, the x-axis shows a 
hypothetical Jaccard index, assuming all k-mers are unique, but the y-axis shows the Mash distance 
accounting for such collisions. From equation 1 it is expected that two random genomes of this size will 
share many short k-mers by chance, leading to a nonzero expected Jaccard index (equation 5). This is 
seen in the curve for k=15 (red), for which the Mash distance never exceeds ~0.03, which matches the 
expected Mash distance between two 1 Gbp genomes for k=15. Equation 2 can be used to choose a 
more appropriate value of k. In this case, both k=21 (blue) and k=27 (black) largely eliminate random 
collisions and produce the expected curves. Generally, the smallest choice of k that eliminates most 
chance k-mer collisions is best, because it maximizes sensitivity without skewing the resulting Mash 
distance. 
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Figure S4. Eukaryotic components of the RefSeq clustering, colored by taxonomic 
order. Most well-defined clusters are fungi. The heterogeneous cluster at top, second from right, contains 
most large genomes (e.g. >1 Gbp in size). This over-clustering is a result of skewed Mash distances due 
to the small choice of k=16 used for the all-RefSeq clustering, which was targeted at microbial genomes. 
Using a larger value of k (e.g. 21) removes the distance skew and provides more accurate distance 
estimates for large genomes (e.g. Figure 4). Also, given that distinct eukaryotic species often have ANI 
values >95%, a lower Mash distance threshold would be required to separate this cluster by species. 
 
  



 

 
Figure S5. Plasmid and organelle components of the RefSeq clustering, colored by 
taxonomic species. Closely related plasmids are often species-specific, as illustrated by the uniform 
coloring in many of the components. However, the sprawling cluster at top left includes plasmids from 
many different species of Enterobacteriaceae. 
 
  



 

 
Figure S6. Mash tree from Figure 4 supplemented with five additional mammals. 
Increased sketch sizes are needed to compensate for increased levels of divergence. With a default 
sketch size of 1,000 and k-mer size of 21, the inclusion of five additional genomes with increased 
divergence (treeshrew, mouse, rat, guinea pig, and rabbit) causes the tarsier genome to become 
misplaced (red). Increasing the sketch size to 5,000 corrects this misplacement. 
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Figure S7. Mash clustering of all HMP and MetaHit sample assemblies. Color key is 
the same as that in Figure 5, with gross body site clustering on the left (e.g. skin, mouth) and sub-site 
clustering on the top (e.g. nares, tongue). A few outliers can be seen that fail to cluster with the main 
groups. Upon further inspection, it was found that these samples failed to pass the HMP QC requirements 
based on attributes that include mean contig and ORF density, human hits, rRNA hits, and data size. 
Thus, the Mash clustering supported the earlier HMP determination that these samples were outliers. 
 



 
Figure S8. Raw COMMET output for the GOS dataset. An automatically generated 
COMMET plot for the GOS dataset. The same clustering is visible as in Figure 4 with a modified 
orientation and color palette. 
  



Table S1. Names and accessions for the 17 primate and 5 mammal genomes. 
Accession Scientific name Common name 
GCF_000004665.1 Callithrix jacchus Common marmoset 
GCF_000409795.2 Chlorocebus sabaeus Green monkey 
GCF_000151905.1 Gorilla gorilla gorilla Gorilla 
GCF_000001405.28 Homo sapiens Human 
GCF_000364345.1 Macaca fascicularis Crab-eating macaque 
GCF_000002255.3 Macaca mulatta Rhesus macaque 
GCF_000146795.2 Nomascus leucogenys Northern white-cheeked gibbon 
GCF_000181295.1 Otolemur garnettii Northern greater galago 
GCF_000258655.1 Pan paniscus Bonobo 
GCF_000001515.6 Pan troglodytes Chimpanzee 
GCF_000264685.2 Papio anubis Olive baboon 
GCF_000001545.4 Pongo abelii Orangutan 
GCF_000769185.1 Rhinopithecus roxellana Golden snub-nosed monkey 
GCF_000235385.1 Saimiri boliviensis boliviensis Black-capped squirrel monkey 
GCF_000164805.1 Tarsius syrichta Philippine tarsier 
GCA_000772465.1 Nasalis larvatus Proboscis monkey 
GCF_000165445.1 Microcebus murinus Gray mouse lemur 
GCA_000181375.1 Tupaia belangeri Tree shrew 
GCF_000001635.24 Mus musculus House mouse 
GCF_000001895.5 Rattus norvegicus Brown rat 
GCF_000151735.1 Cavia porcellus Guinea pig 
GCF_000003625.3 Oryctolagus cuniculus European rabbit 
 
 
Supplementary Note 1. Supporting data. 
The RefSeq Release 70 Mash sketch database and Escherichia accessions, ANI, Jaccard scores, 
and Mash v1.0 source code are available from http://mash.readthedocs.org/en/latest/data.html. 
 
Supplementary Note 2. Metagenomic heatmap R code. 
For COMMET, the default clustering method of complete was used, following the built-in R 
script. Clustering with the ward.D2 method did not significantly alter the sample clusters. 
Heatmaps were generated with the commands: 
# read color key 
key=read.table("key") 
labels=key[,1] 
labelColors=rgb(key[,2], key[,3], key[,4], maxColorValue=255) 
bodySiteColors=rgb(key[,5], key[,6], key[,7], maxColorValue=255) 
 
# read distance matrix 
x = read.table("mash.ltbl"); 
y=x[,2:dim(x)[2]] 
z = data.matrix(y) 
z[is.infinite(z)]=0 



rc = hclust(as.dist(z), method="ward.D2") 
 
# convert to similarity 
cr3 = data.matrix(y) 
cr3=100-(cr3*100) 
 
# define colors 
n=100 # number of steps between 2 colors 
mini=min(cr3[]) 
maxi=max(cr3[row(cr3)!=col(cr3)]) 
trueMax=max(cr3[]) 
q25=quantile(cr3[row(cr3)!=col(cr3)],0.25,1) 
q50=quantile(cr3[row(cr3)!=col(cr3)],0.5,1) 
q75=quantile(cr3[row(cr3)!=col(cr3)],0.75,1) 
 
mini=max(q25-1.5*(q75-q25),0) 
maxi=min(q75+1.5*(q75-q25),trueMax) 
diff=maxi-mini 
 
palette=colorRampPalette(c("lightyellow", "yellow", "red", "brown", 
"grey23"))(n = 5*n-1) 
 
 breaks=c(seq(mini,mini+diff/4-0.1,length=n), # for lightyellow 
   seq(mini+diff/4,mini+diff/2-0.1,length=n), # for yellow 
   seq(mini+diff/2,mini+3*diff/4-0.1,length=n), # for red 
   seq(mini+3*diff/4,maxi-5,length=n), # for brown 
   seq(from=maxi-5+0.1, to=trueMax, length=n)) 
 
library("gplots") 
heatmap.2(cr3, Rowv=rev(as.dendrogram(rc)), Colv=as.dendrogram(rc), 
labRow=as.matrix(labels), labCol=as.matrix(labels), scale="none", 
distfun=as.dist, col=palette, ColSideColors=labelColors, 
RowSideColors=bodySiteColors, trace="none", breaks=sort(breaks)) 

 


