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Supplementary Fig. 1!

Supplementary Figure 1.  Clk is  under strong strong post-transcriptional  control.  a.  Comparison of 
mRNA levels of the core Drosophila circadian components.  Previously published microarray data was used 
to compare expression levels of core circadian components in fly heads1; an average of six time points ± SE 
in LD conditions (ZT3, 7, 11, 15, 19, 23) were analyzed. b. Analysis of sequencing data of brain polyA+ 
RNA at four time points (ZT0, 6, 12, 18)2. c. Ratio of nascent to polyA+ RNAs3 at six time points with 
multiple replicas (ZT 2,6,10,14,18,22). In all panels, the arrow indicates the position of Clk in the bar graph. 	
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Supplementary Fig. 2!

Supplementary Figure 2. Ectopic expression of clock genes in ClkSV40 flies. a. Representative pictures of 
VRI immunostaining for  five different  insertions of  the ClkWT and ClkSV40  transgenes.  The flies  were 
entrained for three days in LD, and brains dissected at ZT15. Brains were visualized by confocal microscopy. 
b. TIM immunostaining of ClkSV40 and ClkWT flies. The flies were entrained for three days in LD, and 
brains dissected at ZT18. Brains were visualized by confocal microscopy. 	




DD 1-5 DD 1-10 

%R (n) Period % Rhythmic 
normal (n) 

% Rhythmic 
atypical (n) 

WT 3-1 90.2 (92) 23.98±0.09 91.4 (53) 8.6 (5) 

WT 1-1 92.8 (28) 23.47±0.13 91.7 (22) 8.3 (2) 

SV40 2-8 93.1 (29) 23.28±0.09 48 (12) 52 (13) 

SV40 3-1 90.2 (92) 23.14±0.07 55.9 (38) 44.1 (30) 

SV40 3-2 84.4 (90) 23.24±0.43 51.5 (35) 48.5 (33) 

SV40 3-3 75 (80) 23.57±0.11 69.2 (36) 30.8 (16) 

SV40 3-4 74.5 (47) 23.20±0.11 37 (10) 63 (17) 

SV40 3-5 51.7 (29) 22.70±0.14 16.7 (1) 83.3 (5) 

SV40 3-6 76 (23) 23.10±0.13 10 (1) 90 (9) 

SV40 3-7 93.1 (29) 23.18±0.16 71.4 (10) 28.6 (4) 

SV40 3-8 66.7 (30) 23.31±0.17 38 (8) 62 (13) 

SV40 3-9 86.7 (15) 23.16±0.10 60 (6) 40 (4) 

Supplementary Fig. 3!
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Supplementary  Figure  3.  ClkSV40  flies  display  variable  circadian  behavior.  a.  Locomotor  activity 
behavioral analysis of ClkSV40 and ClkWT flies. b. Comparison between the extent of ectopic expression and 
the  abnormalities  in  circadian  behavior  in  a  set  of  ClkSV40 lines.  In  order  to  minimize  effects  due  to 
differences in brain area, the number of events was normalized to the brain area. VRI stainings (performed at 
ZT15) were utilized for quantifying the number of circadian cells.	
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Supplementary Fig. 4!

Supplementary Figure 4. Characterization of clock cells in ClkSV40 flies. a,b. ClkSV40 flies have more 
CLKV5-positive cells than ClkWT flies but similar levels of CLKV5 per cell.  a. Relative number of CLKV5 
positive “events” per brain (calculated from confocal pictures taken every 3 µm) from two ClkWT and three 
ClkSV40 fly lines  (6  brains  from each line).  A statistically  significant  difference was observed between 
ClkWT and ClkSV40 flies (Student’s t-test, p=0.047015). b. Histogram of CLKV5-positive event intensities 
for ClkWT (sum of the data obtained for four independent transgene insertion) and ClkSV40 (sum of the data 
obtained for five independent transgene insertion) flies. c,d ClkSV40 flies have more VRI-positive cells and 
higher levels of VRI per cell  than ClkWT  flies.   c.  Relative number of VRI-positive “events” per brain 
(calculated from confocal pictures taken every 3 µm) from two ClkWT and three ClkSV40 fly lines (6 brains 
from  each  line).  A statistically  significant  difference  was  observed  between  ClkWT and  ClkSV40  flies 
(Student’s t-test, p=0.00519). d. Histogram of VRI-positive event intensities for ClkWT  (sum of the data 
obtained  for  four  independent  transgene  insertion)  and  ClkSV40  (sum  of  the  data  obtained  for  five 
independent transgene insertion) flies. The same transgenic lines have been used in the measurements of VRI 
and CLK presented in a and c.	
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Supplementary  Figure  5.  The  formulated  mathematical  model  predicts  a  role  for 
mRNA degradation rate in decreasing transcriptional noise. Graph representing the levels 
of noise in Clk expression relative to mRNA degradation rate for a fixed level of CLK.	
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Supplementary Figure 6. Characterization of the pdf-expressing in ClkSV40 flies. a. Quantification of 
the intensity of the PDF staining in the different cell groups in brains of ClkSV40 2-8 flies. sLNvs= small 
Lateral ventral neurons; lLNvs= large Lateral ventral neurons; extra= ectopic cells. We plotted the average of 
the indicated number of measurements (N). Error = standard error of the mean. b. Area measurement of the  
different types of pdf-expressing cells in brains of ClkSV40 2-8 flies.	
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Supplementary Figure 7. Characterization of pdf cells in ClkSV40 pupae. a. Representative example of 
two pupae brains of the ClkSV40 strain in which additional pdf-expressing cells were observed. The red bar 
represents 100μm. b. Number of pdf-positive cell bodies in the brains of pupae from ClkWT and ClkSV40 
flies.  Data  is  from  the  ClkSV40  (2-8)  and  ClkWT  (1-1)  fly  strains.  c.  Comparison  of  left  and  right 
hemispheres in ClkSV40 pupae based on PDF immunofluorescent staining.	
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Supplementary  Figure  8.  ClkSV40  flies  display  variable  VRI  expression  in  the  sLNvs.  VRI 
immunofluorescence (IF) in sLNvs at 4 time points (day 10 in DD), in ClkSV40 (line 2-8) /+;ClkAR and 
ClkWT (line 1-1) /+;ClkAR flies. PDF IF was used for detection of sLNvs.	
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Supplementary Figure 9. Complete blots Figure 3e	
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 SUPPLEMENTARY TABLE 1

Oligonucleotide sequences Utilized in this study 

Primer pairs for assessment of post-transcriptional control 
Exonic Primer Pair            Intronic Primer Pair 

Clock 5'-GGAAATCAATTGTTGCGTGA-3' 5'-ATACGGATACACAAGGGTTG-3' 
5'-GCAAACGAGAAGAACCGAAG-3' 5'-AGCAATAATCCCAAAACTCA-3' 

timeless 5'-CAGGTGGAAAATCAGGAAT-3' 5'-GCTGGCCGATTACAGGATAAC-3' 
5'-CGTCTAAGCTCCTTTTTGTC-3' 5'-AGTAAAACAGCGGCACACTCA-3' 

cycle 5'-ATGAACACGTACATCAACGA-3' 5'-AACGAGCTGTAAGTGTGTGC-3' 
5'-GAAGCTAGGCCGGTAATC-3' 5'-GTGTGGATTTCCCGTGTAAC-3' 

cryptochrome 5'-CCAAGAATGTGGGTTACAAT-3' 5'-CTTGTGAAAATGGAAAGAGG-3' 
5'-AGACGCACTTGCTCATGTA-3' 5'-ATATCTCTCTCCCAGCGATT-3' 

vrille 5'-GATCCCAGTAGCTCTCGTC-3' 5'-GTCTAATTCTCGCTCCCTCT-3' 
5'-GCTATGGAGATGGAATGATG-3' 5'-GAACTTTCTTTGTTCGTTGG-3' 

α-tub84B 5'-ACAACGAGGCTATCTACGAC-3' 5'-CTTCGACGCATAACTGTAGA-3' 
5'-AACTCAGTCAGATCCACGTT-3' 5'-AAAATCGATAATTGCAGAGC-3' 

Epsilon 14-3-3 5'-CGTACAAGAATGTGATTGGA-3' 5'-GCAATTAGGTGCAGAGTACC-3' 
5'-CGTTCAGTATATCCGAGCAG-3' 5'-AAACGAGATGGCTAGTGTGT-3' 

Sdh 5'-GATATGGACGAGCATTCTTC-3' 5'-ACCAGCGAGGTTATGTTAT-3' 
5'-CTCGGTGATGAGACATCC-3' 5'-TCCGATTAAGCGGTACTTAT-3' 

Primer pairs for gene expression 
Clk 1 5’- TGGAGTCTCTCGATGGTTTTA -3’ 5’- CGGTGTGGGATTCATAAAGAT -3’ 
Clk 2 5’- CGACAAGGATGATACAAAAAG -3’ 5’- ATGATTTTTCAGGAAGGCTA -3’ 
ClkV5 5’-CGAATCCCTTTCTCAACAGTC-3’ 5’-GGGTTAGGGATAGGCTTACC-3’ 
Clk only Endogenous 5’-CGAATCCCTTTCTCAACAGTC-3’ 5’-GGTATACGCTATTGACTACTGC-3’ 
vri 5’-CACGCTGGAACAGAAAGTGA-3’ 5’-TGTTGCTTTGAGCTTGGATG-3’ 
tim pre-mRNA 5’-AAAGGGTACATCTTGGAGA-3’ 5’-GAGCCAATGCTGTAAAAGAA-3’ 
tim 5’-GCAGCAAATGCAATCATC-3’ 5’-GTTCAGGCTCAAAGTGGTT-3’ 
cyc 5’-ACGTTGATGCTAGTCGATGT-3’ 5’-CGTCGTAGTTTTCATCTTCG-3’ 
cry 5’-GCGAATGTGATTTGGTTTC-3’ 5’-CGATTGTAACCCACATTCTT-3’ 
RP49 (Rpl32) 5’-TACAGGCCCAAGATCGTGAA-3’ 5’-CCATTTGTGCGACAGCTTAG -3’ 
RpS18 5’-CCTTCTGCCTGTTGAGGA -3’  5’-TGCACCGAGGAGGAGGTC -3’ 
H1 5’-CCACCAGCGACAGTTGAG-3’ 5’-TGGCGGATGTGACGGCGT-3’ 
18S rRNA 5’-TGGTCTTGTACCGACGACAG-3’ 5’-GCTGCCTTCCTTAGATGTGG-3’ 
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1. Steady state analysis for a stochastic transcription and
translation model

1.1. An analytical model of transcription and translation. Assume that
transcription events are independent and that given the mRNA state, translation
events are conditionally independent. Assume also that mRNA and protein decay
events are independent.

We characterize an mRNA molecule by a pair (s, l) ∈ R × [0,∞) = Θ, s being
time of transcription and l life time. Consider a single, potential, mRNA molecule
θ ∈ Θ. Denote by Iθ the indicator of whether it has existed.

Let P tθ be a random variable denoting the number of proteins translated from
this molecule which were active at time t (i.e translated before time t and degraded
after time t). First, we assume that this molecule did exist, i.e Iθ = 1. So the
conditioned distribution of P tθ | Iθ = 1 is Poisson. To see this, we may consider this
variable to be the number of successes in an infinite number of Bernoulli experi-
ments {Ba| a ∈ [s, l]}. Each of these experiments corresponds to a potential protein
translated by θ, and the experiment is successful if the protein was translated and
also active at time t. According to Lemma 3 in the appendix, this variable is Pois-
son with expectation that can be calculated according to the particular translation
and protein degradation model which we did not fix yet. Denote this parameter by
λtθ, so λ

t
θ = E [P tθ | Iθ = 1].

We drop the assumption Iθ = 1 in order to analyse P ttotal =
∑
θ P

t
θ , the total

number of proteins translated from all mRNA molecules which are active at time
t. Each term in the sum is zero with probability 1, but we may analyze P ttotal
using Lemma 4. Let ρ : Θ → R be the rate of existence of mRNA molecules
(i.e the rate of Iθ) as in Definition 1. The rate ρ is found by analysis of the
particular transcription and mRNA degradation model. According to Lemma 4
we have E [P ttotal] =

´
λtθρ (θ) dθ and V ar [P ttotal] =

´ (
λtθ + (λtθ)

2
)
ρ (θ) dθ. To

conclude, calculate Sti =
´

(λtθ)
i
ρ (θ) dθ for i = 1, 2 to find E [P ttotal] = St1 and

V ar [P ttotal] = St1 + St2.

1.2. Analysis of steady state. We now consider the steady state. Let αr be the
constant transcription rate, αp the translation rate per mRNA molecule and βr, βp
the rates of expontential degradation of mRNA and protein, respectively.

Let L be a random variable denoting the life time of an mRNA molecule. Then
the probability density function of L is PDF (l) = βre

−βrl. Considering an mRNA
molecule θ = (s, l), we have

ρ (s, l) = αr · PDF (l) = αrβre
−βrl

We find λts,l by analysis of constant rate translation and protein degradation. For
t ≤ s, we have λts,l = 0. For s ≤ t ≤ s+l, λts,l =

αp

βp

(
1− e−βp(t−s)). For l+s ≤ t, we

have exponential decay with no generation of new protein so λts,l = λls,l · e−βp(t−l).
Together,

λts,l =


0 t ≤ s
αp

βp

(
1− e−βp(t−s)) s ≤ t ≤ s+ l

αp

βp

(
e−βp(t−l) − e−βp(t−s)) s+ l ≤ t

SUPPLEMENTARY NOTES 1
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Now, we wish to calculate

Sti =

ˆ (
λts,l
)i
ρ (θ) dθ =

ˆ ∞
0

ˆ ∞
−∞

(
λts,l
)i · αr · PDFL (l) dsdl

for i = 1, 2. The result for i = 1 is E [P ttotal] = Sti =
αrαp

βrβp
as expected, and the

details are omitted.
Consider i = 2. P ts,l has the same distribution as P t−s0,l so λts,l = λt−s0,l and we

may integrate over t instead by substitution of variables:

Sti =

ˆ ∞
0

ˆ ∞
−∞

(
λt−s0,l

)2

·αr·PDFL (l) dsdl = αr

ˆ ∞
0

(ˆ ∞
−∞

(
λs0,l
)2
ds

)
PDFL (l) dl =

= αrEL

[ˆ ∞
−∞

(
λs0,L

)2
ds

]
Note that this expression is independent of t as expected in steady state. Let T (l)
be the nested integral.

We evaluate T (l) separately over the two intervals where λts,l is non zero. First,

ˆ l

0

(
λt0,l
)2
dt =

ˆ l

0

α2
p

β2
p

(
1− e−βpt

)2
dt =

α2
p

β2
p

ˆ l

0

(
1− 2e−βpt + e−2βpt

)
dt =

=
α2
p

β2
p

(
t+

2

βp
e−βpt − 1

2βp
e−2βpt

)∣∣∣∣∣
l

t=0

=

=
α2
p

β2
p

(
l +

2

βp
e−βpl − 1

2βp
e−2βpl − 2

βp
+

1

2βp

)
and secondly

ˆ ∞
l

(
λt0,l
)2
dt =

ˆ ∞
l

α2
p

β2
p

(
1− e−βpl

)2
e−2βp(t−l)dt =

α2
p

β2
p

(
1− e−βpl

)2 1

2βp

Together

T (l) =
α2
p

β3
p

(
1

2
− e−βpl +

1

2
e−2βpl + βpl + 2e−βpl − 1

2
e−2βpl − 3

2

)
=

=
α2
p

β3
p

(
e−βpl + βpl − 1

)
Taking expectation with respect to L (details omitted) we find

S2 = αr
α2
p

β3
p

(
βr

βr + βp
+
βp
βr
− 1

)
=

= αr
α2
p

β3
p

(
− βp
βr + βp

+
βp
βr

)
= αr

α2
p

β2
p

· −βr + βr + βp
βr (βr + βp)

=
αrα

2
p

βrβp (βr + βp)

To conclude,
E
[
P ttotal

]
=
αrαp
βrβp

and

V
[
P ttotal

]
= E

[
P ttotal

]
+

αrα
2
p

βrβp (βr + βp)
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If we may assume that βr � βp (i.e mRNA half life is much shorter than protein
half life) and that αp

βr
� 1 (i.e mean number of proteins generated from each mRNA

molecule is � 1) then the variance further simplifies to V [P ttotal] ≈
αrα

2
p

β2
rβp

. In this

case, the noise is
√
V
E ≈

√
βp

αr
.

1.3. Application to our experimental results.

1.3.1. In WT. The noise equation
√
V
E =

√
βp

αr
shows that by increasing the tran-

scription rate αr and increasing the mRNA degradation rate βr by the same factor,
the noise is decreased while the protein expression remains unchanged. This sug-
gests that the high rates αr and βr of Clk serve to decrease noise.

1.3.2. In the ClkSV40 system. The removal of post transcriptional control increases
βr. The vri feedback response achieves normal Clk protein levels by decreasing αr.
According to the noise equation, the noise is indeed increased.

2. Appendix

Let Bθ be independent non negative random variables for θ ∈ Θ when Θ ⊆ Rn is
an arbitrary index set. For A ⊆ Θ, let CA =

∑
θ∈ABθ. Assume that Pr [Bθ > 0] =

0 for all θ ∈ Θ and that E [CΘ] <∞.

Definition 1. ρ : Θ → R is the rate function of {Bθ} if it is a continous (or
measurable) function so that E [BA] =

´
A
ρ for all measurable A ⊆ Θ.

Definition 2. For a measurable ρ : Θ→ R, denote ρ̄ (A) =
´
A
ρ. This is a measure.

Lemma 3. Assume that Bθ are Bernoulli or Poisson variables and let ρ be the
rate function of {Bθ}. Then CΘ ∼ Poisson (ρ̄ (Θ)).

Lemma 4. Assume that there exist measurable functions ρI , λ : Θ → R so that
Bθ = IθQθ with Qθ ∼ Poisson (λ (θ)) and Iθ a Bernoulli variable with zero proba-
bility of success such that ρI is the rate function of {Iθ}. Then E [CΘ] =

´
Θ
ρI · λ

and V ar [CΘ] = E [CΘ] +
´

Θ
ρI · λ2 .

Both lemmas may be proven by a discretization of the problem (similarly to
Poisson limit theorem or Le Cam’s theorem). The result regarding the variance
stems from the limit

V ar [I ·Q]

p
−→
p→0

λ+ λ2

for I ∼ Bernoulli (p) with p > 0 and Q ∼ Poisson (λ).

http://en.wikipedia.org/wiki/Poisson_limit_theorem
http://en.wikipedia.org/wiki/Le_Cam%27s_theorem
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