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Department of Biostatistics, University of California, Los Angeles, CA, USA

dsenturk@ucla.edu

1. Estimation of FPCA model components

The mean functions of the functional trajectories are obtained by local linear smoothing; the

smooth covariance surfaces are estimated via a two dimensional local least squares algorithm. To

eliminate the effects of measurement error, the diagonal elements of the raw covariance matrix

are removed before the two-dimensional smoothing step. A nonparametric functional principal
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component analysis step will be employed on the smooth estimate of the covariance surface by a

standard discretization procedure to estimate the eigenfunctions and eigenvalues. In order to guar-

antee that the covariance matrix is non-negative definite, any eigenvalues with negative estimates

and their corresponding eigenfunctions are removed from the functional principal component de-

compositions of the covariances. For explicit expressions of the estimated mean, eigenfunctions

and eigenvalues, denoted by µ̂(t), φ̂k(t) and λ̂k, respectively, as well as the covariance surfaces,

readers are referred to Şentürk and Nguyen (2011) and Şentürk and others (2013). Bandwidths

for the smooths may be selected using cross-validation or generalized cross-validation (GCV)

(Yao, Müller and Wang, 2005). For a computationally efficient bandwidth choice in the proposed

smoothing procedures, we adopt the generalized cross-validation algorithm of Liu and Muller

(2008).

The estimates of the mean, eigenfunctions, eigenvalues for trajectories in covariance subset

v and cluster c, denoted by µ̂(c)(t), φ̂(v)
k (t), λ̂(v)

k and ξ̂
(c,v)
ik , respectively, are obtained similarly

based on trajectories in the specific subset and cluster in the iterative steps of the RFC algorithm.

For dense functional data, subject-specific scores can be estimated using the projection, ξ̂(c,v)ik =∫
{y(c,v)
i (t) − µ̂(c)(t)}φ̂(v)

k (t)dt; for sparse data applications, the best linear unbiased prediction

(BLUP) of the scores has been proposed by Yao, Müller and Wang (2005). The single-level

FPCA model can be considered a linear mixed effects model with fixed effects mean µ(c)(t)

and random effects ξ(c,v)ik . Random effects model matrices are the eigenfunctions corresponding

to the random effects scores. Under this framework, scores may be estimated using their best

linear unbiased predictions based on the conditional expectation of the scores given the data.

Let yip = yi(tip), p = 1, . . . , Ti denote an observation on the ith subject at time tip and let

yi = (yi1, . . . , yiTi
)T denote the Ti × 1 observation vector across all time points. Further let

µ̂
(c)
i = {µ̂(c)(ti1), . . . , µ̂(c)(tiTi

)}T, Φ̂
(v)

i denote the Ti × Kv matrix of estimated eigenfunctions

whose kth column is the vector {φ̂(v)
k (ti1), . . . , φ̂(v)

k (tiTi
)}T and let Λ̂

(v)
denote the Kv × Kv
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diagonal matrix Λ̂
(v)

= diag(λ̂(v)
1 , . . . , λ̂

(v)
Kv

). Then the Kv× 1 estimator vector for the single-level

functional principal component scores are given by

ξ̂
(c,v)

i = Λ̂
(v)

Φ̂
(v)

i

T
(

Σ̂
(v)

i + σ̂2
(v)
ITi×Ti

)−1

(yi − µ̂
(c)
i ),

where Σ̂
(v)

i = Φ̂
(v)

i Λ̂
(v)

Φ̂
(v)

i

T

and ITi×Ti
denotes the Ti × Ti identity matrix. When estimating

the BLUP eigenscore estimates in the leave-one-out procedure of the RFC algorithm, µ̂(c)
i , Φ̂

(v)

i

and Λ̂(v) are replaced with µ̂(c)
(−i), Φ̂

(v)

(−i) and Λ̂(v)
(−i).

For the multilevel extension, let yijp = yij(tijp), p = 1, . . . , Tij denote an observation on the

ith subject and the jth subunit at time tijp and let yi = {yi11, . . . , yi1Ti1 , . . . , yiJ1, . . . , yiJTiJ
}T

denote the be a (
∑
j Tij) × 1 observation vector across all time points. Further let µ̂(c)

i =

{µ̂(c)(ti11), . . . , µ̂(c)(ti1Ti1), . . . , µ̂(c)(tiJ1), . . . , µ̂(c)(tiJTiJ
)}T, η̂(c)

j = {η̂(c)
1 (ti11), . . . , η̂(c)

1 (ti1Ti1),

. . . , η̂
(c)
J (tiJ1), . . . , η̂(c)

J (tiJTiJ
)}T, Φ̂

(1,v)

ij denote the Tij × Kv matrix of estimated level 1 eigen-

functions with kth column equal to {φ̂(1,v)
k (tij1), . . . , φ̂(1,v)

k (tijTij
)}T. Similarly let Φ̂

(2,v)

ij denote

the Tij ×Lv matrix of estimated level 2 eigenfunctions with `th column equal to {φ̂(2,v)
` (tij1), . . . ,

φ̂
(2,v)
` (tijTij

)}T. The Kv × 1 level 1 and LvJ × 1 level 2 estimator vectors are then given by

ξ̂
(c,v)

i = D̂
(v)

i,ξ

(
Σ̂

(v)

T,i

)−1

(yi − µ̂
(c)
i − η̂

(c)
i ), ζ̂

(c,v)

i = D̂
(v)

i,ζ

(
Σ̂

(v)

T,i

)−1

(yi − µ̂
(c)
i − η̂

(c)
i ),

where D̂
(v)

i,ξ = {Λ̂
(1,v)

Φ̂
(1,v)

i1

T

, . . . , Λ̂
(1,v)

Φ̂
(1,v)

iJ

T

}, D̂
(v)

i,ζ = {Λ̂
(2,v)

Φ̂
(2,v)

i1

T

, . . . , Λ̂
(2,v)

Φ̂
(2,v)

iJ

T

} and

Σ̂
(v)

T,i denotes the estimated (
∑
j Tij)×(

∑
j Tij) block covariance matrix with the (j, j′) block equal

to Φ̂
(1,v)

ij Λ̂
(1,v)

Φ̂
(1,v)

ij

T

+ Φ̂
(2,v)

ij Λ̂
(2,v)

Φ̂
(2,v)

ij

T

+ σ̂2
(v)
ITij×Tij

when j = j′ and Φ̂
(1,v)

ij Λ̂
(1,v)

Φ̂
(1,v)

ij

T

when j 6= j′.

2. Description of the multilevel RFC algorithm

Similar to the single-level case, we assume that Yij(t) is sampled from a mixture of subprocesses

with cluster means and induced covariance subsets. Motivated by similar low data quality pat-

terns, and hence similar functional trajectories of number of averaged ERPs from sliding windows
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across electrodes, covariances at both levels of the multilevel deviations are grouped in the same

covariance subset. In addition, since mean functions within subjects across electrodes are quite

similar in our application, cluster membership of different electrode trajectories within a subject

are assumed to be the same, where clusters are determined more based on the shapes of the overall

means µ(t). Hence, conditional on cluster c and covariance subset v, the means and covariances

of the subprocesses are given by

E{Yij(t)} = µ(c)(t) + η
(c)
j (t), cov{Yij(s), Yij′(t)} = Σ(v)

B (s, t), j 6= j′, (2.1)

cov{Yij(s), Yij(t)} = Σ(v)
T (s, t) = Σ(v)

B (s, t) + Σ(v)
W (s, t) + σ2(v)

I(s = t), (2.2)

where Σ(v)
T (s, t) is the overall covariance function, Σ(v)

B (s, t) and Σ(v)
W (s, t) are the between and

within subunit covariance functions, respectively, and σ2(v)
I(s = t) represents the error variance

on the diagonal of Σ(v)
T (s, t). The between and within structures may be decomposed further

using their eigenvalues and eigenfunctions such that Σ(v)
B (s, t) =

∑
k λ

(1,v)
k φ

(1,v)
k (s)φ(1,v)

k (t) and

Σ(v)
W (s, t) =

∑
` λ

(2,v)
` φ

(2,v)
` (s)φ(2,v)

` (t).

The multilevel RFC adopts the same structure as the single-level algorithm. Details on the

multilevel RFC algorithm are described in the algorithm table below. Since we are interested

in clustering individuals largely by subject-level (level 1) differences and level 2 is mainly used

to incorporate dependencies within subjects across electrodes, initial clustering is performed by

applying k-means to the estimated level 1 scores (ξik) based on the entire sample (Step 1).

Cluster membership updates still utilize functional predictions based on the estimated non-

parametric truncated multilevel random effects model

ŷ
(c,v)
ij (tijp) = µ̂

(c)
(−i)(tijp) + η̂

(c)
j(−i)(tijp) +

Kv∑
k=1

ξ̂
(c,v)
ik φ̂

(1,v)
k(−i)(tijp) +

Lv∑
`=1

ζ̂
(c,v)
ijl φ̂

(2,v)
`(−i)(tijp), (2.3)

where the (−i) notation denotes that the observed multilevel functional data for subject i has been

left out while obtaining the estimates. In (2.3),Kv and Lv refer to the number of eigen components

selected for the between and within levels, respectively. First and second level eigenfunctions in
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Multilevel RFC Algorithm

1. Perform multilevel FPCA on the entire sample and cluster level 1 scores ξ̂ik to
obtain the initial mean cluster memberships c(0)i for i = 1, . . . , n.

2. For each subject i belonging to covariance subset v and assigned to mean cluster
c during iteration r:

(a) Estimate µ̂(c)
(−i)(t), η̂

(c)
j(−i)(t), c = 1, . . . , C, using all subjects assigned to

mean cluster c at iteration r while leaving out the ith subject.

(b) Estimate φ̂(1,v)
k(−i)(t), k = 1, . . . ,Kv, and φ̂

(2,v)
`(−i)(t), ` = 1 . . . , Lv, for covari-

ance subset v using all mean centered trajectories belonging to covariance
v while leaving out the ith subject.

(c) Estimate ξ̂(c,v)ik , ζ̂(c,v)
ijl , for c = 1 . . . , C and covariance subset v.

(d) Calculate predictions for c = 1, . . . , C and covariance subset v via

ŷ
(c,v)
ij (tijp) = µ̂

(c)
(−i)(tijp) + η̂

(c)
j(−i)(tijp) +

Kv∑
k=1

ξ̂
(c,v)
ik φ̂

(1,v)
k(−i)(tijp) +

Lv∑
`=1

ζ̂
(c,v)
ijl φ̂

(2,v)
`(−i)(tijp).

(e) Assign ith subject to mean cluster

c
(r+1)
i = arg min

c∈{1,...,C}

 J∑
j

 Tij∑
p=1

{
yij(tijp)− ŷ(c,v)

ij (tijp)
}2

1/2
 .

3. Repeat Step 2 until no curve is reclassified.

(2.3) are estimated based on subunit trajectories within subjects in covariance subset v, centered

by subtraction of their overall mean µ̂(c)
(−i)(t) and the subunit-specific mean deviation η̂(c)

j(−i)(t) for

subjects in cluster c. First and second level subject-specific scores are estimated as projections,

similar to the single-level case for dense functional data (Di and others, 2009) and via BLUP

estimates for sparse cases (Di, Crainiceanu and Jank, 2014), where explicit forms are provided in

Section 1 of the online Supplementary Material. In contrast to the single-level case, the criterion

in Step 2(e) also sums over J subunits within a subject.



6 K. Hasenstab and others

3. Comparison of clustering results in the data application

We compare the three clustering algorithms according to multilevel extensions of the Calinski-

Harabasz index (CHI) (Calinski and Harabasz, 1974), Davies-Bouldin Index (DBI) (Davies and

Bouldin, 1979) and Silhouette index (SI) (Rousseeuw, 1987). The CHI is an internal cluster eval-

uation metric that incorporates information on within-cluster variation and differences between

mean cluster estimates and global mean estimates across the entire sample. Higher CHI values

indicate better cluster quality. Define B =
∑C
c=1Nc

∑J
j=1

∫
t
[{µ(c)(t)+η(c)

j (t)}−{µ(t)+ηj(t)}]2dt

to be a separation measure between cluster means and the mean of the entire sample, where Nc

represents the number of subjects in cluster c. Define W =
∑C
c=1

∑
i∈c
∑J
j=1

∑Tij

p=1{y
(c,v)
ij (tijp)−

µ(c)(tijp) − η(c)
j (tijp)}2 to be a measure of within cluster similarity. The CHI is defined to be

{(n− C)B}/{(C − 1)W}.

The DBI is another internal cluster evaluation metric that assesses within cluster variation

and between cluster separation, where lower DBI values correspond to better clustering results

and greater cluster separation. Define Sc = (1/NcJ)
∑Nc

i=1

∑J
j=1 [

∑Tij

p=1{y
(c,v)
ij (tijp)− µ(c)(tijp)−

η
(c)
j (tijp)}2]1/2 to be a measure of within cluster variation for mean cluster c. Further define

Mc,c′ =
∑J
j=1(

∑Tij

p=1[{µ(c)(tijp) + η
(c)
j (tijp)} − {µ(c′)(tijp) + η

(c′)
j (tijp)}]2)1/2 to be a measure of

separation between two clusters c and c′. The DBI is then defined to be (1/nc)
∑nc

c=1 max
c6=c′
{(Sc +

Sc′)/Mc,c′}, c′ = 1, . . . , C, where the definition reduces to (Sc + Sc′)/Mc,c′ when C = 2.

The SI incorporates the average dissimilarity of individual trajectories across different clusters

and within the same cluster. SI values range from -1 to 1, where -1 indicates poor clustering results

and 1 indicates that the data is appropriately clustered. An SI of zero suggests trajectories are on

cluster borders. For subjects i, i′ in cluster c, define a(i) = {1/(Nc − 1)}
∑
i′∈c,i 6=i′

∑J
j=1[

∑Tij

p=1

{y(c,v)
ij (tijp) − y(c,v)

i′j (ti′jp)}2]1/2 to be a dissimilarity measure of the trajectories for subject i to

the trajectories of other subjects within the same cluster. For subject i in cluster c and subject i′

in cluster c′, define dc′(i) = (1/Nc′)
∑
i∈c′

∑J
j=1[

∑Tij

p=1{y
(c,v)
ij (tijp)− y(c′,v)

i′j (ti′jp)}2]1/2 and b(i) =
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min
c6=c′

dc′(i) to be a dissimilarity measure of the trajectories for subject i to the trajectories of other

subjects in other clusters. Define s(i) = {b(i)−a(i)}/ max {a(i), b(i)} and sc = (1/Nc)
∑
i∈c s(i).

The SI is defined to be (1/C)
∑C
c=1 sc. Note that the SI involves finding distances between

trajectories across pairs of subjects within and between clusters that may not be observed across

the same set of trials. Therefore, distances are calculated across the set of trials that are observed

for both subjects.

The results of the three internal cluster validation indices for the RFC, SFC and FC algorithms

are shown in Table 1. Indices show that RFC achieves a better cluster separation over the other

two algorithms within each group. Differences in the index values across the three algorithms

appear greater in the ASD group.

Table 1: Internal cluster validation indices for the RFC, SFC and FC algorithms within the TD
and ASD groups. A superscript h or l indicates that higher or lower index values, respectively,
correspond to better cluster quality.

TD ASD
RFC SFC FC RFC SFC FC

CHIh 5.26 4.37 2.80 3.83 2.16 1.64
DBIl 2.16 2.44 2.53 2.65 3.47 3.90
SIh 0.13 0.09 0.10 0.08 0.03 -0.01

4. Simulation studies

The goals of the simulations are to study the performance of the proposed RFC compared to

FC and SFC, and to study the performance of the algorithm under the second non-identifiability

condition outlined in Section 3.2 that the cluster mean functions lie in the same or different

covariance subset eigenspaces. As in the data applications, we consider two clusters and covariance

subsets with a total sample size of 35 subjects and J = 4 subunits. Response trajectories y(c,v)
ij (t)
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for cluster c and covariance group v are generated using the random effects model

y
(c,v)
ij (t) = µ(c)(t) +

Kv∑
k=1

ξ
(c,v)
ik φ

(1,v)
k (t) +

Lv∑
`=1

ζ
(c,v)
ijl φ

(2,v)
` (t) + ε

(v)
ij (t),

where subunit-specific mean functions η(c)
j (t) are taken to be zero for simplicity. The number

of eigen components are taken to be two at both levels (Kv = Lv = 2) where eigenscores

ξ
(c,v)
ik and ζ

(c,v)
ijl are independently sampled from N(0, λ(1,v)

k ) and N(0, λ(2,v)
` ), respectively. The

measurement error ε(v)ij (t) is sampled from N(0, σ2(v)) and observation times t are regular and

equally spaced in the interval T = [0, 1] with Tij = 40. The eigenvalues and error variance are

selected as λ(1,1) = (500, 200)/d, λ(2,1)
1 = (250, 100)/d, λ(1,2) = (700, 300)/d, λ(2,2) = (500, 250)/d,

σ2(1) = 10/d, σ2(2) = 50/d with the divisor d chosen specifically for the particular simulation case

considered. The means and eigenfunctions used are defined as follows: µ(1)(t) = 2 exp{−10(t −

0.3)2}+exp{−1(t−0.75)2}−1.5, µ(2)(t) = −3 exp{−10(t−0.35)2}−exp{(t−0.5)2}+2, φ(1,1)
1 (t) =

√
2 sin(πt), φ(1,1)

2 (t) =
√

2 cos(πt), φ(2,1)
1 (t) = 1t, φ(2,1)

2 (t) =
√

3(2t − 1), φ(1,2)
1 (t) =

√
2 sin(2πt),

φ
(1,2)
2 (t) =

√
2 cos(2πt), φ(2,2)

1 (t) =
√

5(6t2 − 6t+ 1), φ(2,2)
2 (t) =

√
7(20t3 − 30t2 + 12t− 1).

We study the performance of the RFC under five simulation scenarios. The first two cases

correspond to the second non-identifiability condition with cluster mean functions lying in the

eigenspace of the same covariance subset (case 1) and different covariance subsets (case 2). The

cluster and covariance subset memberships are not assumed to be identical. We set µ(1)(t) =

1.2φ(1,2)
1 (t) and µ(2)(t) = −µ(1)(t) for case 1 and µ(1)(t) = 1.2φ(1,1)

1 (t) and µ(2)(t) = 1.2φ(1,2)
1 (t)

for case 2. The last three simulation scenarios correspond to the assumptions of RFC, SFC and

FC, respectively: that the cluster and covariance subset memberships are not identical (case 3);

that there is a single covariance subset for the entire sample (case 4); and cluster and covariance

subset membership are set to be the same (case 5). In the first three cases, cluster and covariance

subset memberships are sampled independently with equal probability. For case 4, we utilize the

model components from v = 2 for the common covariance subset and set the covariance scale

d to 700 (d is taken to be 2000 for the other four cases which leads to comparable SNR in the
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entire sample across simulation scenarios).

Performance of the clustering algorithms is evaluated using three common measures of cluster

quality, the correct classification rate (CCR), the adjusted Rand index (ARI) and the normalized

mutual information (NMI). The correct classification rate measures the proportion of subjects

correctly classified in reference to the true external clustering. CCR is defined as the maximum

proportion of correctly classified subjects among all cluster label correspondences between the

current cluster output and the true external cluster reference. The second measure, ARI, quantifies

the degree of similarity between two partitions by comparing clustering results against an external

true clustering and takes into account the number of object pairs in the same set or in different

sets in the two partitions (Steinley, 2004). ARI corrects the original Rand index by enforcing a

constant expected value of 0 and an upper bound of 1 under the assumption of a generalized

hypergeometric model. The mutual information quantifies the information shared across a pair of

cluster partitions by accounting for the number of subjects assigned to the same cluster or different

clusters. NMI normalizes the mutual information using the geometric mean of the entropies from

each partition to bound the index between 0 and 1 (Strehl and Ghosh, 2002). Higher CCR, ARI

and NMI indicate higher cluster quality.

The means and percentiles of the CCR, ARI and NMI values from 200 Monte Carlo runs

for the RFC, SFC and FC algorithms under the five simulation cases are given in Table 2. We

also plot the medians of the cluster mean estimates across the 200 Monte Carlo runs along with

the true cluster means in Figure 1 for different algorithms and simulation cases. We conducted

a preliminary simulation study to select smoothing bandwidths for the mean function and the

covariance surface. The optimal bandwidths were selected using generalized cross-validation at

each iteration from candidates in [.05, .3] and [.15, .3] for the mean function and covariance surface,

respectively. Note that the interval of candidate bandwidths is larger for the two-dimensional

covariance smoothing to achieve stable estimates at the considered small sample size. We found
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that the selected bandwidths were similar across iterations, therefore we fixed the bandwidth

choice for the full simulation study at 0.05 and 0.15 for the mean and covariance smooths,

respectively, to reduce computation time. All three algorithms perform poorly in the first two

simulation cases of non-identifiability conditions (Figures 1(a)-(b)), since the cluster means lying

in the eigenspace of the covariance subsets is also a non-identifiable case for SFC and FC with

non-overlapping cluster and covariance subset memberships. RFC outperforms SFC and FC in

the third simulation case (Figure 1(c)), improving cluster quality by incorporating the known

covariance heterogeneity into the clustering of the mean trends. When the covariance groups are

highly similar (simulation case 4), all three algorithms perform equally well as expected (Figure

1(d)). In case (5), RFC is almost as effective in finding clusters as FC, where cluster and covariance

subset membership overlap. As in case (3), SFC is unable to recover clusters under the multiple

covariance subsets of case (5) (Figure 1(e)). Due to the small sample size, all three algorithms

perform poorly occasionally, as reflected in the lower CCR, ARI and NMI values for the 5th

percentile.
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Table 2: The correct classification rate (CCR), the adjusted Rand index (ARI) and the normalized
mutual information (NMI) means, medians and (5th, 95th) percentiles for the RFC, SFC and
FC algorithms over 200 Monte Carlo runs. While the first two simulation cases correspond to the
non-identifiability conditions, the last three correspond to the assumptions of RFC, SFC and FC
algorithms, respectively.

RFC SFC FC
Mean Percentile Mean Percentile Mean Percentile

Case 1 CCR 0.79 0.80 (0.54, 0.97) 0.84 0.86 (0.59, 1.00) 0.59 0.56 (0.51, 0.84)
ARI 0.38 0.34 (-0.02, 0.89) 0.51 0.50 (0.00, 1.00) 0.04 -0.01 (-0.03, 0.46)
NMI 0.38 0.37 (0.02, 0.83) 0.47 0.44 (0.02, 1.00) 0.07 0.01 (0.00, 0.50)

Case 2 CCR 0.78 0.80 (0.51, 1.00) 0.62 0.60 (0.51, 0.89) 0.58 0.57 (0.51, 0.69)
ARI 0.43 0.34 (-0.03, 1.00) 0.08 0.01 (-0.03, 0.58) 0.01 -0.01 (-0.03, 0.11)
NMI 0.43 0.27 (0.00, 1.00) 0.09 0.03 (0.00, 0.50) 0.04 0.01 (0.00, 0.16)

Case 3 CCR 0.90 1.00 (0.54, 1.00) 0.76 0.74 (0.51, 1.00) 0.58 0.57 (0.51, 0.81)
ARI 0.73 1.00 (-0.02, 1.00) 0.35 0.21 (-0.03, 1.00) 0.03 -0.01 (-0.03, 0.38)
NMI 0.72 1.00 (0.01, 1.00) 0.33 0.22 (0.00, 1.00) 0.06 0.01 (0.00, 0.45)

Case 4 CCR 0.93 1.00 (0.56, 1.00) 0.96 1.00 (0.57, 1.00) 0.97 1.00 (0.69, 1.00)
ARI 0.81 1.00 (-0.01, 1.00) 0.89 1.00 (-0.01, 1.00) 0.93 1.00 (0.10, 1.00)
NMI 0.80 1.00 (0.01, 1.00) 0.89 1.00 (0.02, 1.00) 0.93 1.00 (0.16, 1.00)

Case 5 CCR 0.98 1.00 (0.86, 1.00) 0.77 0.77 (0.54, 0.97) 0.99 1.00 (0.97, 1.00)
ARI 0.94 1.00 (0.49, 1.00) 0.33 0.27 (-0.02, 0.89) 0.97 1.00 (0.89, 1.00)
NMI 0.94 1.00 (0.49, 1.00) 0.36 0.33 (0.01, 0.84) 0.97 1.00 (0.84, 1.00)
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Fig. 1: The estimated cluster mean functions for the RFC, SFC and FC algorithms over 200
Monte Carlo runs overlaying the true cluster mean functions.
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