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Supplementary Note 

 
Clinical Samples and Cell Lines 
  
We collected a total of 99 fresh-frozen tumor samples from which 63 were qualified for 
copy number analysis by Affymetrix SNP 6.0 arrays. Due to the availability of the 
matched-normal, tumor content, and amount of DNA we sequenced 27 tumor/normal 
pairs. RNAseq was performed on 15 samples and 2 samples were whole genome 
sequenced. In addition to patient specimens, 65 cell lines were considered for copy 
number analysis and we sequenced the exome of two cell lines (where the matched 
normal was available).  
By analyzing the genotype identity using SNP calls derived from the SNP 6.0 arrays we 
had to eliminate 5 cell lines from the subsequent analysis that show identical genotypes. 
In this analysis we used Birdsuite1 to call the genotypes.  Among the 65 SNP arrays, 
raw data of 38 arrays including batch-matched normals were downloaded from the 
Sanger Institute (http://www.sanger.ac.uk/genetics/CGP/Archive/). SNP arrays of the 
remaining 27 cell lines were generated using our SNP array pipeline. Note that the 
entire dataset of the 27 previously uncharacterized SCLC cell lines is presented 
elsewhere since we only show copy number data for the genes: CREBBP, EP300, and 
SLIT2.  Information about the patient specimens and cell lines is presented in 
Supplementary Table 1. 
 
Pathological Review 
 
All SCLC samples showed a typical SCLC morphology including fragile nuclei with 
salt and pepper like chromatin, nuclear molding and scant cytoplasm. Further 
confirmatory immunohistochemistries (IHCs) in addition to the original diagnostic 
report were performed of the exome/genome sequenced samples if sufficient material 
was available. All samples showed some nuclear TTF1 staining and were positive for at 
least one neuroendocrine marker out of synaptophysin, chromogranin A or CD56. In 
addition p63 and CK5/6 staining was performed to exclude squamous cell 
differentiation. CK7 staining was either negative or showed a typical perinuclear 
condensed dot like staining pattern. Thus, all reassessed cases (22 of 27) were 
confirmed to be SCLC (Supplementary Table 8). SCLC was confirmed by IHC of two 
additional samples by the provider only and the remaining three samples were RB1 
mutated, making a misclassification of these samples unlikely (Supplementary Table 
8). 
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Detection of Somatic Mutations 
 
Our approach to identify somatic mutations for whole exome/genome sequencing 
consists of five major steps: 
 

1) Estimation of Local Copy Number, Purity, Overall Ploidy, Tumor 
Heterogeneity, and Background Sequencing Error: To determine the local copy 
number we refined a previously described method2 in order to correct for outliers 
and the uneven distribution of coverage across the genome that arises by exon-
capture. These efforts lead to substantially fewer fluctuations in the copy number 
profile. Genome wide copy numbers across all 29 samples are shown in 
Supplementary Figure 3a. 
 
The estimation of purity, ploidy, genome-wide allelic states, tumor heterogeneity, 
and the sequencing error relies on the analysis of all known SNPs (dbSNP-sites). In 
detail, we screened for SNPs that are heterozygous in the matched normal and 
computed a rescaled allelic fraction of these SNPs in the tumor, called theta-value in 
the following. The theta-value represents the genotypic state of the SNP in the 
tumor and has the following interpretation: values close to zero indicating 
heterozygous SNPs, whereas values close to the tumor purity showing that the SNP 
has lost its heterozygosity. States in between can, together with the copy numbers, 
discriminate the allelic architecture of the tumor. We next average the theta-value 
across copy number segments to remove sequencing noise and formulated a 
mathematical model that relates the observed theta-value and copy number to the 
underlying allelic state, absolute copy, and the overall tumor purity. Estimates of the 
absolute copy numbers of all 29 cases are shown in Supplementary Figure 4b and 
purity estimates are given in Supplementary Table 5. The genome-wide ploidy is 
computed from the absolute copy numbers by a weighted average. In total we found 
5 triploid and 2 near tetraploid cases (Supplementary Table 5). Fractions of the 
tumor that show theta-values lying between model predictions can be considered as 
heterogeneous. The genome-wide fraction of these regions serves as an estimate for 
the total tumor heterogeneity  (Supplementary Table 5). In Supplementary 
Figure 9 we show observed and predicted theta-values together with its 
reconstructed allelic states for two representative cases (one diploid and one 
triploid).   
 
To determine the overall sequencing error we screened for SNPs that show a 
variant, which are not in accordance with the two possibilities of the respective 
germline variant. The total amount of these aberrant signals is related to the total 
coverage of all SNPs. This yields an estimate of the sequencing errors at a global 
level.  
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2) Mutation Calling and Tumor-Normal Comparison: Since sequencing artifacts 
for single base substitutions are higher than for insertions and deletions (indels) 
different detection strategies are used for these two types of mutations. The metrics 
that have been determined in the first step are only used for substitution calling. 
Furthermore, we restricted mutation calling only to those portions of the genome 
with sufficient coverage and discard regions smaller than 15x coverage from the 
analysis. In case of single nucleotide substitutions, we compute the minimal 
possible allelic fraction at each sufficiently covered location from the local copy 
number, purity, and total ploidy. Then we test whether the observed allelic fraction 
of a putative variant exceeds this quantity. Here, single base quality scores and 
mapping quality are considered in the allelic fraction by computing a combined 
phred-score. Those bases that shows a combined quality score < 10 are discarded 
from the analysis. If a substitution is called in the tumor, we check if the variant is 
somatic by transforming the allelic fraction of the variant in the normal into a z-
score by using the global sequencing error and the coverage of the corresponding 
genomic position in the normal. If the z-score is smaller than 20, the variant is 
considered as mutation candidate. 
 
Since on one hand, sequencing errors of indels occur at a lower rate than for single 
base nucleotides but, on the other hand, their identification by the short-reads is 
more difficult, we chose the following detection strategy: indels that are present in 
more than five reads, have an allelic fraction above 5% in the tumor, and are 
completely absent in the normal are considered as candidate. Given the allelic 
fraction of the indel, we then test if the absence of the indel in the normal is 
compatible with chance. If this is not the case, the indel is called as mutation 
candidate. 
 
3) Filtering Mutation Candidates: Substitution candidates are filtered by testing if 
the allelic fraction of the variant is significantly different from the maximum 
between the sequencing error and the observed allelic fraction in the normal. This 
removes spurious calls at locations of low minimal allelic fraction (e.g., in amplified 
regions). As second filter, we examine mutation calls that are showing an extreme 
forward-backward bias (i.e., if the variant is only present in the forward-reads and 
absent in the backward read, or vice versa). Since the exon-capture enriches for a 
specific read-direction at the end of the exon, we cannot simply discard variants 
showing such an extreme forward-backward bias without risking of dropping a 
significant number of true mutations. On the other hand, a large number of false 
positives show an extreme forward-backward bias. To take this into account, we 
examine if an extreme forward-backward bias is also present in the wild-type allele. 
If this is the case, we keep the mutation as candidate. Finally, a combined mutation 
score is computed from the underlying statistical model and form filter 
characteristics. 
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4) Down-Sample Approach to Overcome Model Misspecifications: Since regions of 
high coverage are more sensitive to violations of model assumptions we apply a 
down-sample approach to gain more sensitivity. Model misspecifications can, e.g., 
arise by inaccuracies on the quantities of our statistical model or by tumor 
heterogeneity. At each position, where no substitution was detected we synthetically 
down-sample the coverage in the tumor to 15x and repeating the calling and filtering 
procedure. A mutation that is then detected is reported with the lowest possible 
mutation score of zero.  
 
5) Accounting for Tumor Heterogeneity and further Model Inaccuracies: The 
down-sample approach can further be used to assess possible tumor heterogeneity. 
To this end, the computed minimal allelic fraction is multiplied by a constant factor 
to lower the threshold globally. This factor is determined by the following 
procedure: we vary the factor form 1 to 0.7 (thus corresponding to 0% – 30% tumor 
heterogeneity) and count the number of mutations that show a mutation score of 
zero. We then chose the factor corresponding to the first local minimum of the 
mutation score count.  

   
 
Annotation of Somatic Mutations 
 
Annotation of the detected somatic mutations is based on the Consensus CDS database 
(CCDS) in order to obtain a consistent annotation of protein coding regions. We report 
only those mutations that are within the reading frame of a protein coding sequence plus 
its splice-site. To assess a potential functional impact of a mutation we include PFAM-
domains3 into the annotation. PFAM-domains are recomputed from our gene model in 
order to eliminate misclassifications due to different splice variants. Each mutation is 
annotated regarding the following parameters: 
 

1) Transcript accession number 
2) Position in the protein sequence 
3) Mutation type: missense, nonsense, silent, frame-shift indel, in-frame indel, 

splice-site 
4) Predicted amino acid change 
5) If a variant is at a dbSNP site 
6) PFAM-domain 

 
Detected somatic mutations including their validation status are listed in 
Supplementary Table 9. 
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Validation of Somatic Mutations and Frequently Mutated Genes 
 
Validation of Mutations Detected in the Discovery Screen 
 
Since the high mutation rate yielded more than 8,000 candidates for somatic mutations 
across the 29 samples we only validated an assorted set of genes by conventional 
dideoxy sequencing. Among these mutations in all identified driver genes driver are 
validated: TP53, RB1, PTEN, CREBBP, EP300, SLIT2, MLL, COBL, and EPHA7. To 
assess the false-discovery rate of our mutation-calling algorithm in an unbiased fashion 
we validated a total of 343 unselected mutations in 26 samples of a pediatric tumor and 
achieved a false-discovery rate of 9% (data will be published elsewhere). All of these 
samples of a pediatric tumor were processed by the same sequencing workflow and 
infrastructure.  
 
By the independence of the sequencing runs, mutations that are detected by exome 
sequencing and by whole genome sequencing are considered as being validated. In 
addition, two samples (S00050, S00356) were also run on exon sequencing at the Broad 
Institute. Due to a lack of a sufficient quantity of tumor DNA, whole genome 
amplification (WGA) was performed on those samples. This, however, should only 
increase the false-positive rate due to WGA artifacts. Concordant mutation calls can 
therefore still be considered as being validated. All validated mutations including their 
validation status and validation method are given in Supplementary Table 9. The 
number of overlapping and discordant mutations between all independent sequencing 
runs are shown for all four samples in Supplementary Figure 11. Note that due to the 
variability of the library, different sequencing coverage, different sources of low-level 
contaminations, and false-positive mutation calls, the overlap between two independent 
runs should not be considered as sensitivity of the mutation caller.  
 
 
Extended Mutation Screen 
 
In order to assess the mutation frequency of CREBBP, EP300, and SLIT2 we extended 
our sequencing efforts to an independent validation set.  
 
1) CREBBP/EP300: We sequenced the region around the histone acetylation domain 
(HAT-domain, exon 18-30) on 26 patient specimens and 45 cell lines with dideoxy 
sequencing. The observed clustering of the mutations in exon sequencing motivates the 
restriction to the location around the HAT-domain. All detected mutations are checked 
if they are absent in the matched normal in case of patient specimens. Since there is no 
matched normal available for almost all cell lines we only report variants that are not in 
the SNP-database in those cases. All discovered and validated mutations in 
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CREBBP/EP300 of the extended mutation screen are given in Supplementary Table 
10. 
 
2) SLIT2: We sequenced the full-length gene using a quantitative PCR based capture 
technique followed by 454 sequencing on the Roche GS FLX Titanium. 26 patient 
specimens and 34 cell lines were sequenced.  
 
Primers were designed using our in-house developed primer design pipeline PrimerXL 
(Levefer et al. manuscript in preparation) using tiling settings, taking into account SNP 
positions. We aim for a target annealing temperature of 60°C. Primers where controlled 
for quality by performing a qPCR reaction on human genomic DNA (Roche) using the 
Kapa 2G Robust mastermix  (Kapa biosystems). All qPCR reactions were performed 
according to manufacturers' protocols on a CFX384 qPCR instrument (Bio-Rad) in a 
5µl volume containing 0.25µM of primer and 10ng of input DNA. PCR assays 
successfully amplified the targeted sequence with a Cq of 24.1±0.7 on average. Primers 
were ordered in 23 fold, each set with a different MID tag attached to the 5' end. Then, 
we carried out target capture by performing a qPCR on tumor DNA. Amplicons were 
pooled for samples with different MIDs by inverted spinning of the PCR plate in 3 
pools (1 with 23 samples, 2 with 22 samples). 500µl of pooled PCR product was 
purified using the Qiaquick PCR purification kit (Qiagen) and DNA quality of the pools 
was assured by capillary electrophoresis on a Bioanalyzer 2100 machine using the DNA 
7500 kit (Agilent). Next, DNA was purified using the Roche High purification PCR 
cleanup microkit (Roche) and for library production we used the NEBNext DNA 
sample prep mastermix Set 2 (New England Biolabs). Emulsion PCR and sequencing 
was carried out according to manufacturers' protocol. Each pool of samples was 
sequenced on 1/8 of a 454 sequencing flow cell, generating a mean number of 
4370±1646 reads per sample with a maximum of 8353 and a minimum of 2208 reads. 
 
We mapped the 454 reads to the human reference genome (NCBI build 37/hg19) using 
BWA4 in BWASW5 mode. Recalibration of the read quality scores was done using the 
Genome analysis toolkit (GATK)6 and duplicate reads were removed using Picard tools 
(http://picard.sourceforge.net). An average coverage of 47.2±18.5 fold was achieved 
across the genomic targets in all samples, which is sufficiently high for reliable variant 
calls. A minimal coverage of 10 fold for 80% of the target locations was achieved in 
94% of the samples (Supplementary Table 11). Positions of the variants were 
extracted on all samples simultaneously from the mapped BAM files using Samtools7 
mpileup with default settings. All variants were then imported into the NXTVAT web 
tool (De Wilde, manuscript in preparation) to provide mutation filtering. We validated 
all detected variants that were not present in the SNP database by dideoxy sequencing 
(in case of patient specimens the matched-normal was additionally sequenced) and 
mapped validated mutations to NCBI build 36/hg18 using Galaxy.8 Annotations of the 
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detected mutations were done by same module we used in exon sequencing. All 
validated variants of SLIT2 are shown in Supplementary Table 12. 
 
 
Analysis of Significantly Mutated Genes 
 
To assess the significance of recurrently mutated genes we adapt a previously described 
procedure9 to account for requirements arising from a high mutational background. The 
method we propose consists of the following three major steps: 
 

1. Estimation of the expected background mutation rate for each gene 
2. Assessing the set of sufficiently expressed genes by RNAseq 
3. Q-value computation and correction for accumulation of synonymous mutations  

 
 
1) Estimation of the Expected Background Mutation Rate for Each Gene 
 
Similar to Ding et al.9 we first determine background mutation rates from synonymous 
mutations since these mutations are assumed to represent the neutral mutation rate. The 
mutation rates are then lifted to the background mutation rate of non-synonymous 
mutations by using the gene-specific codon usage. To this end, the global mutation rate 
ri for each sample i is determined, the 6 neighbor independent mutation rates (assuming 
strand symmetry): qA:T>C:G, qA:T>T:A, qC:G>G:C, qC:G>A:T, qA:T>G:C, qG:C>A:T, and the neighbor 
dependent rate qCpG>TpG:CpA accounting for the elevated mutation rate of 5-methylcytosine 
by spontaneous hydrolytic deamination. Then for each gene j the non-synonymous to 
synonymous ratio Rj is computed form the previously determined rates and the gene-
specific codon usage. Due to genes that are negatively selected, the theoretical value of 
Rj turns out of being slightly too small such that we correct the genome wide average of 
Rj by the observed non-synonymous to synonymous ratio over all samples and genes: 
leading to a global correction factor x. Together with the total amount of sequenced 
bases for each sample i and gene j: nij, the gene-specific expected background mutation 
rate lj is given by 
 
 
 
 
 
2) Assessing the Set of Sufficiently Expressed Genes by RNAseq 
 
Robust identification of genes that are frequently mutated across the tumor samples is 
massively hampered by the high abundance of passenger mutations (i.e., random 
mutations that are not contributing to tumor development or progression) as a result of 

�j = ⇥Rj

X

i

⇤inij .
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the high mutation rate. Due to the absence of negative selection pressure, genes that are 
not expressed in tumor cells accumulate more passenger events than genes that encode 
proteins of important cellular functions. To avoid that such genes are identified as being 
significantly mutated, we consider only those genes in the following that show in more 
than half of the RNAseq analyzed samples an expression larger than 1 FPKM 
(fragments per kilobase of exon per million fragments mapped). In case of different 
splice variants the maximal gene expression was chosen. This gene-based method has 
the advantage that the samples that were RNA sequenced do not necessarily have to 
match the exome/genome-sequenced samples. Expression values of all samples are 
shown in Supplementary Table 13. 
 
 
3) Q-value Computation and Correction for Accumulation of Synonymous Mutations 
 
In addition to the absence of gene expression, genes that show an extraordinary high 
number of silent mutations are rather passenger events. To incorporate the accumulation 
of silent mutations into the significance score, we first compute the probability that the 
observed number of samples that show only silent mutations nsj for gene j is larger than 
expected. Given the parameters determined in 1) this probability is given by 
 
 
 
 
where pois is the cumulative Poisson distribution. If nsj is larger than zero, the product 
between ps

j and nsj then defines an estimate for the expected gene-specific number of 
synonymous mutations. The correction factor cj defined by ratio between the gene-
specific expected number of silent mutations and lj/xRj: 
 
 
 
 
In case of a local mutation rate that is higher than the genome-wide level and which is 
reflected by an accumulation of synonymous mutations, the correction factor cj is larger 
than one. Given the number of mutated samples nj, the p-value for gene j is finally 
computed by 
  
 
 
To account for multiple hypothesis testing, the false discovery rate (q-values) is 
determined by the Benjamini-Hochberg method.10 Significantly mutated genes that have 
a q-value ≤ 0.1 including different modes of importance filtering (without filtering, 

psj = pois

✓
nsj ,

�j

⇥Rj

◆
,

cj = max

✓
1, nsjp

s
j
⇥Rj

�j

◆
.

pj = 1� pois (nj ,�jcj) .
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correcting for the accumulation of synonymous mutations, and filtering for gene 
expression) are shown in Supplementary Table 4.  
 
 
 
Analysis of RNAseq Data 
 
RNAseq is performed on cDNA libraries prepared from PolyA+ RNA extracted from 
tumor cells. We aim for a library with an insert size of 250bp that allows us to sequence 
95bp paired-end reads without overlap. RNAseq affords robust detection of expressed 
fusion transcripts in addition to enabling integrated analyses of orthogonal genomics 
datasets by providing gene expression data. 
 
Detection of Chimeric Transcripts 
 
For the analysis of RNAseq data, we have developed a pipeline that affords accurate 
and efficient mapping and downstream analysis of transcribed genes in cancer samples 
(manuscript in preparation). Briefly, paired-end RNAseq reads are aligned against the 
human reference genome (hg18) using spliced mappers such as TopHat11 or GSNAP.12 
Unique paired-end alignments that are within the expected mapping distance are used to 
estimate the transcriptional abundance of annotated genes or exons and are used to 
reconstruct alternatively spliced isoforms of known genes using Cufflinks.13 By 
contrast, uniquely aligning read pairs that are not in accordance with the expected 
mapping distance in combination with singleton reads (i.e., only one end can be 
mapped) are selected for a de-novo assembly using Velvet14 and Oases (a transcriptome 
assembler by Daniel Zerbino and Marcel Schulz, unpublished). The aim for this 
procedure is to accurately reconstruct rearranged transcripts. By comparing the 
assembled transcripts with the Refseq-database and with the reference genome, we 
query for those candidates that show a partial alignment onto two different genes. These 
alignments are thereby representing a putative chimeric transcript. For each candidate, 
we detect fusion-point spanning reads from the initially unmapped read pairs to localize 
the breakpoint within the transcript. To allow confident predictions of chimeric 
transcripts, we subsequently filter candidate chimeras by their read distribution around 
the potential fusion point. We finally consider fusion candidates for experimental 
validation where at least one read-pair is uniquely mapped to the human genome (to the 
two different genes), at least one 95bp read unambiguously spanned a junction between 
two exons of the two genes, and the coverage is at least 5x. 
 
Validation of Chimeric Transcripts 
 
Total RNA was extracted from frozen tumor sections containing more than 90% tumor 
cells, using Qiagen RNeasy Mini Kit (Qiagen), and 1μg RNA was reverse transcribed 
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using the SuperScript III Reverse Transcriptase kit (Invitrogen), according to the 
manufacturer’s instructions. cDNA was treated with RNA-H (Invitogen) and cleaned by 
using the Nucleo Spin Extract II Kit (Macherey-Nagel) according to the manufacturer’s 
instructions. Candidate-specific fusion-point encompassing primers were designed in 
order to amplify by RT-PCR the region over the fusion-point. All validated chimeric 
transcripts are shown in Supplementary Table 3 and Supplementary Figures 3, 12. 
 
Mutation Calling in RNAseq Data 
 
We implemented a mutation caller that allows us to identify missense, nonsense, and 
nonstop mutations in RNAseq data. Due to limitations of transcriptome sequencing and 
the spliced aligner we cannot detect splice-site mutations and indels. Since a detailed 
model of the minimal allelic fraction, as for genomic sequencing, is not available, we 
applied a different strategy to call mutations. We first estimated the sequencing error as 
described above (see page 7) and then, similar to the tumor normal comparison (see 
page 8), we transformed the observed allelic fractions into a z-value and called a 
mutation if the z-value exceeds 20. To obtain reliable mutation calls, we analyzed only 
portions of the transcriptome that are least 10x covered. Some highly expressed genes 
are showing a coverage of several 1000x, to prevent an explosion of false-positives in 
those regions (e.g., driven by low-level contaminations of the library or sequencing 
artifacts) we synthetically limited the coverage to 100x but keeping the allelic fractions 
as they were observed. In those 12 samples that were exome and transcriptome 
sequenced we called only 29% (650/2246) of the missense, nonsense, and nonstop 
mutations detected by exome sequencing. Matching mutations between transcriptome 
and genomic sequencing are highlighted in Supplementary Table 9. 
 
 
CREBBP and EP300 FISH Break Apart Assay 
 
Metaphase spreads were prepared by treating cells with colcemid (Roche, Switzerland) 
at a concentration of 0.1 µg/ml. The culture flasks were incubated at 37°C for 1 hour. 
Mitotic arrest was followed by treatment with 0.075M KCl. The cells were then 
repeatedly washed with modified Carnoy’s fixative (3:1 methanol to acetic acid and 
then dropped onto pre-cleaned slides and observed for metaphase spreads. Metaphase 
spreads were pre-treated with 2x SSC solution at 37C° for 60 min. and digested with 
Digest-All III (dilution 1:2) at 37°C for 6 min.; FISH probes were denatured at 73°C for 
5 min. and immediately placed on ice. Subsequently, the metaphase spreads and FISH 
probes were co-denatured at 85°C for 4 min. and hybridized overnight at 37°C. Post 
hybridization washing was done with 0.5x SSC at 75°C for 5 min., and the fluorescence 
detection was carried out using streptavidin-Alexa-594 conjugates (dilution 1:200) and 
anti-digoxigenin-FITC (dilution 1:200). Slides were then counterstained with 4’,6-
Diamidin-2’ phenylindoldihydrochlorid (DAPI) and mounted. The samples were 
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analysed under a 63x oil immersion objective using a fluorescence microscope (Zeiss, 
Jena, Germany) equipped with appropriate filters, a charge-coupled device camera and 
the FISH imaging and capturing software Metafer 4 (Metasystems, Altlussheim, 
Germany). Assessment of the experiments was done independently by two evaluators 
(R.M and S.P).  
 
Rearrangement of either of the genes was defined a-priori as following: A split of a 
signal pair, resulting in a single red and single green signal for at least one allele is 
referred to as a translocation. A loss of a signal, resulting in either a single red or single 
green signal for at least one allele is referred to as a rearrangement through deletion. A 
wild-type allele displays a juxtaposed red and green signal (mostly forming a yellow 
signal). 
 
 
 
Analysis of Significantly Amplified or Deleted Regions 
 
Many algorithms to detect significantly amplified or deleted regions in cancer samples 
have been proposed recently, e.g., GISTIC,15,16 JISTIC,17 and RAE.18 In case of GISTIC 
and JISTIC a global threshold is used to discriminate between amplifications and 
deletions which ignores the variability in tumor purity. RAE takes this into account by 
using a variable threshold. We implemented a novel algorithm that is entirely 
distribution driven by transforming raw copy numbers (un-segmented) for each sample 
to ranks across genomic positions (manuscript in preparation). Since the rank 
transformation is invariant to monotonous transformations the method automatically 
corrects for differences in tumor purity, array saturation effects, and differences in the 
baseline level. In brief, the user provides upper and lower quantiles to distinguish 
between deletions and amplifications. These quantiles control the focality of the 
identified peaks in a manner that a very narrow quantile adjustments lead to highly focal 
peaks. Ranks that are accounting for amplifications are independently processed from 
deletions. Next, rank sums are computed for each genomic position and subsequently 
smoothed to remove the noise from the data. As smoothing algorithm we used a kind of 
segmentation procedure to facilitate peak finding by the resulting piecewise constant 
function. The additional advantage of rank sums is that the underlying statistical model 
for the null hypothesis can analytically be determined. Here, long-range correlations due 
to the local constant nature of copy numbers are taken into account by a linear 
propagation of the correlations into the final statistics. Adjustment of multiple 
hypothesis testing on the identified segments is carried out by the Benjamini-Hochberg 
approach10. To filter out only reliable copy number alterations, we subsequently 
removed samples having the strongest impact on each identified peak region and 
repeated the analysis. Only those peaks are finally considered as driver copy number 
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alterations that are still significant after removal of the corresponding sample. All 
identified copy number alterations in SCLC are given in Supplementary Table 2. 
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Supplementary Figure 1. Analysis of broad copy number alterations. a) Copy 
number analysis of the 63 human SCLC samples using our rank-sum based algorithm. 
Here, thresholds are adjusted to extract broad copy number events (upper quantile: 40% 
; lower quantile: 40%). b) A comparison of the region containing the lineage 
transcription factor SOX2 between squamous cell carcinoma and SCLC. 
 

Nature Genetics: doi:10.1038/ng.2396



 17 

 
 
 

1

2

3

4

5

6

7

8

9

10

11

12
13

14
15

16
17

18
19

1 0.07 3e-09 2e-42

2e-42 3e-09 0.07 1

q-values amplifications

q-values deletions

Mycl1

E2f2

Mycn

Crebbp

 
 
Supplementary Figure 2. Copy number analysis of 15 primary SCLC mouse 
tumors. Thresholds are chosen to identify focal events (upper quantile: 15%; lower 
quantile: 15%) and a significance level of 5% is used (vertical dashed lines).  
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CREBBP-RHBDF1 
RNAseq_transcript:<CCCCCCCCGGCCGGGCCCTGGCCGGCCCGGCCGCCCGTGCCCGGGGCTGTTTTCGCGAGCAGGTGAAA
ATGGCTGAGAACTTGCTGGACGGACCGCCCAACCCCAAAAGAGCCAAACTCAGCTCGCCCGGTTTCTCGGCGAATGACAGCACA

GGCCTGCCTTGCTCTGCCAGGAACCATGAGTGAGGCCCGCAGGGACAGCACGAGCAGCCTGCAGCGCAAGAAGCCACCCTGG
CTAAAGCTGGACATTCCCTCTGCGGTGCCCCTGACGGCAGAAGAGCCCAGCTTCCTGCAGCCCCTGAGGCGACAGGCTTTCCTG>

   MPRIP-TP53 
RNAseq_transcript:<TGGTGCAGGGGCCGCCGGTGTAGGAGCTGCTGGTGCAGGGGCCACGCGGGGAGCAGCCTCTGGCATTC
TGGGAGCTTCATCTGGACCTGGGTCTTCAGTGAACCATTGTTCAATATCGTCCGGGGACAGCATCAAATCATCCATTGCTTGGGAC

GGCAAGGGGGACAGAACGTTGTTTTCAGGAAGTAGTTTCCATAGGTCTGAAAATGTTTCCTGACTCAGAGGGGGCTCGACGCTAG

GATCTGACTGCGGCTCCTCCATGGCAGTGACCCGGAAGGCAGTCTGGCTGCTTGGACCTGATGTTTCTGAGTTGCCGGGTGACA
CAGGATCTGTCTTTCTTCAAGAAGTCAGGGTTGCTTTTAGATTTCATTATATCATATCCGGACACCGTGGCACTGTCAGGGGACTTC>

a

b

Translation<MAENLLDGPPNPKRAKLSSPGFSANDSTGLPCSARNHEStop
CREBBP RHBDF1

Translation<...KDRSCVTRQLRNIRSKQPDCLPGHCHGGAAVRSStop
MPRIP TP53

 
 

Supplementary Figure 3. Validation of CREBBP-RHBDF1 and MPRIP-TP53 
fusions. Dideoxy validation sequencing results including the sequence across the 
fusion-point of the chimeric transcripts a) CREBBP-RHBDF1 and b) MPRIP-TP53. The 
fusion-point is marked by a black rectangle in the electropherograms. 
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Supplementary Figure 4. Copy number status of genome/exome sequenced 
samples. a) A cross-platform comparison of copy numbers derived from whole genome 
sequencing (WG), whole exome sequencing (WE), and SNP 6.0 arrays. Centromeres 
are marked by vertical red lines in the genome annotation shown at the upper part of a 
and b. b) Absolute copy number segments inferred from whole exome sequencing. 
Arrows mark samples having a ploidy larger than two.  
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Supplementary Figure 5. Mutation spectrum of SCLC. a) Distribution of detected 
mutations by exome sequencing. b) A comparison of context independent transversion 
and transition rates (an overall strand symmetry is assumed) between rates derived from 
molecular evolution19 and rates derived from the SCLC exome sequencing. All rates are 
scaled such that their overall sum is one for comparability reasons. The elevated rate of 
the C:G>A:T transversion that can be linked to the exposure of carcinogens in tobacco 
smoke.20-22 
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Supplementary Figure 6. Distribution of gene expression. Distribution of the median 
expression values. Median expression of bona-fide tumor suppressor genes such as 
TP53, RB1, and PTEN together with a selection of identified driver genes in SCLC is 
indicated in the overall expression profile. 
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Supplementary Figure 7. Mutational status of SLIT2, CREBBP, and EP300. Copy 
number and mutation status of a) SLIT2 and b) CREBBP/EP300 across all samples 
analyzed.  
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Supplementary Figure 8. Transdifferentiation of an adenocarcinoma to SCLC. a) 
Mutation analysis of the TP53 (V73fs) and RB1 (R251*) mutation between SCLC and 
lung adenocarcinoma (ADC) from the identical patient. Three years prior diagnosis of 
SCLC, an ADC tumor was surgically resected. b) Immune histochemistry of the ADC 
and SCLC tumor. To clearly discriminate the histology of the two tumors, 7 makers 
including: p63, CK5/6, CK7, TTF1, CD56, chromogranine A (chromoA), and 
synaptophysin (synapto) were stained. 
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GTGAATGGGACAGATTGCCATATGGATGAAGACACTGAACAAGCTGTAAAACTCTTG
GCGACATGTGCCCGGGGGGATTGTCCCATATTAACACCACCTGGGCTGTGGCAATT
GTGCTCTGTCTGTGCAGTGGCACTGAGGAGCCCAACAGGATGTTGGCCAGCTCTCA
GCACTCAGAGCCAGTGAGATGGCCCTCTCGCTGCTGGCTCGGTAGGTCCTGTTTTC
ATACTAACTTGGAACCTGGACATTTTTGACACACCTTCCATTCTATTGGTCCAAGATTA
CTTCATTCTCATCAGTGCCTTCATATTCTTAGTAAATAAGTGCCATCTGTTATTTACAAA!

S00830: chr3:71164157; chr3:71249957  

CTCCTACCTAAAAGGACTTTACAACTTTGAGTTCCCTGTTAATGCCTACTCAGTCTTTA
ATGCTCAATTCCATTATCACCTCCAATGGGAAGCCTAAAGTGACAAAGCCAACTGTTC
TGATGTGTTTAATTTCTCTCTTTTCAAATGCTCATCAGGCTATCATGTTGAAAACTTGA
TAAATTGTTAATTGAATAAATAGATAAATAATTGCACAAACTAAAGAATACAGAGCTTCT
TATGAGAAAAGCTCTACTATTAAGCTTGTATGAGAATATGGTTATCTTTCTGAATATTAAT 

S00841:chr6:51387729 ; chr6:51076977  

a

b

 
 
Supplementary Figure 9. Validation of genomic rearrangements. Validation 
sequencing of the rearrangements detected by whole genome sequencing. The genomic 
breakpoint is marked by a black rectangle in the electropherograms of the 
rearrangement in sample a) S00830 and b) S00841. 
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Supplementary Figure 10. Reconstruction of allelic states. Observed and modeled 
theta-values in case of a diploid a) and a triploid b) tumor. The different allelic states are 
indicated by distinct colors and the distribution of the threta-values between tumor (red) 
and normal (blue) is shown in the right panel. A cross marks model predictions of the 
theta-values. 
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Supplementary Figure 11. Comparison between genome and exome sequencing. a) 
Overlap between mutation calls from whole exome sequencing (WE) and whole 
genome sequencing (WG). The total overlap between the two cases differs due to 
variations in the library. b) A comparison of mutation calls between exome sequencing 
of whole-genome amplified DNA (WGA) and non-amplified DNA (WE). The presence 
of WGA introduced artifacts is supported by the large proportion of oligonucleotide 
changes, which are present in the discordant set between WGA and non-WGA samples. 
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GPR160-NCEH1 

RNAseq_transcript:<TGTAGTTTGAGCTTATTTTTTAGGCTGGCATCTTGAGTAAACTGTTGTCCAAGGGCAGCAGCCAGATTTCCA

CCAGCACTGTCACCAGAAATGCAAATTCTGCCTGGATCAACCATATACTTCTGTAAGACTTCTGGCTTCAGGAAATACTTTGTGGCC

CGTGCTCAGGAAAATAAACCTTTGGAACTAGCCTGTATTCAATGGAAACAATGACAGCATTCAATTCCTCAGCCATTGCTGTACACA

GCTCATCATAATACCTGATTTTTGCACTTGCCAAGGCCCAGCCTCCTCCGTGGATATAAACGACGCTGCGTTTCAGTGGCTCTTCG

GGCTTCGGAGGGCCTTCAAACACTCTGACTTCCACACCATCAAAGTCTGTGTCGGTCACCTTCACTTGGGCAGAAGACCACGCG

CTTTTTTTGCCAAAAGAAACAATGATAAAATTCAGTGCCAGCAGGTGATGGCTCAGTCCCAGGTAGTGGATCAGGTTACTCGGAGA

CATTTGCGCAAGTGTAGGACGAAGCGAGAGCGGTTCCTTCCAGCCGAACCTGCCTCCGGAGGCCCGGTCCGTGCGTTCGTCTC

CGGACTGCAGGGGGCGGCCCTGCCACCACCTCGAGGCCACCCGAGGATCGATGGCTGTCGGCTCCGCAAGGTTGAGGCCCCG

ACACCTGCAGCGCCCGTGCCCAGGTGACCGCCCGAGGGAGGGGCGAG> 

 
 
 
Supplementary Figure 12. Validation of GPR160-NCEH1. Same as in 
Supplementary Figure 9 but for the GPR160-NCEH1 chimeric transcript. 
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