
Appendix A. Supplementary Procedures

Appendix A.1. Derivation of Equation 3.8

The perceived speeds of the two gratings, v̂1 and v̂2 are normally distributed
random variables (Equations 3.4 and 3.5) and thus can be written as

v̂1 = v1 + a(v1)σ
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where s1 and s2 are independent standard Gaussian random variables (∼ N (0, 1)).
At the PSE, v̂1 = v̂2 i.e. v2 = v1 + a(v1)σ
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a (weighted) sum of independent normal random variables plus a constant and
therefore it is itself a normal random variable with mean v1+a(v1)σ
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2 . Since the logarithm of the prior is assumed locally linear
in the model, a(v1) = a(v2) and Equation 3.8 follows directly.

Appendix A.2. Model validation dataset

Following up to the present study, additional data was collected by Dan
Berbec as part of his Honours project under the supervision of Peggy Seriès
(Berbec, 2013), with the view to looking at different aspects of the topic of
speed priors. This dataset consists of a larger number of subjects (21) than our
dataset; however it includes significantly fewer sessions (at most 6 staircases
for each reference speed and contrast condition) per subject, particularly in the
conditions with the highest two reference speeds (which show the greatest vari-
ability and thus require more data for an accurate estimate of CDB). Although
some experimental parameters, such as reference speeds, differ from our exper-
iment and thus this dataset cannot be pooled with that of the present study, it
was useful for validating our method of fitting the Bayesian model of Stocker &
Simoncelli (2006).

Appendix A.3. PSE Variability

Here we derive a lower bound on the variance of the test speed v2 at the
PSE. We first note that the psychometric function (Equation 3.6) presented in
Stocker & Simoncelli (2006) can be simplified if we slightly rearrange the lhs as
p(v̂2 − v̂1 > 0). Since v̂1 and v̂2 are Gaussian variables, their difference is also
Gaussian with mean µ2−µ1 = v2+a(v2)σ
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Therefore p(v̂2 > v̂1) = p(v̂2 − v̂1 > 0) = p(∆v̂ > 0) is the complement of a
cumulative normal distribution
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Therefore the Bayesian observer model is a type of probit analysis and thus we
can use standard theoretical (Finney, 1971) and simulation (McKee et al., 1985)
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results from probit analysis. The simplest analytical formula for the standard
error (SE) of the staircase threshold estimate (in our case T50) is

σPSE =
σ

√
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(A.2)

where σ =
√

σ2
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2 is the slope of the psychometric function, n is the number
of trials at each stimulus level and w are the probit weights. As McKee et al.
(1985) point out, this is a variation of the common statistical formula s/

√
N

used to estimate the standard error of the mean. The similarity between the
two formulas makes intuitive sense if we think of a staircase procedure as an
estimator of the mean of the underlying distribution of the test speed v2 at the
PSE (Equation 3.8). In their simulations, McKee et al. (1985) found that the
SE of a staircase estimate for T75 (the threshold at 75%) in a 2-AFC paradigm
is approximately 3σ/

√
N (in the variable-slope case) and also that the SE of T50

in a yes-no paradigm is approximately half of that. Furthermore, they assert
that under certain conditions of trial placement, these are lower bounds for
any possible staircase procedure. Since our staircase procedure was designed to
estimate T50 and p(v̂2 > v̂1) corresponds to a yes-no paradigm, it follows that
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This lower bound is tighter when the number of trials per staircase is relatively
small, typically less than 60 (McKee et al., 1985), such as in our experiment.
Our empirically determined SE, whose square is given by Equation 3.10, is in
broad agreement with these results.

Appendix A.4. Derivation of Equation 3.11

The logarithm of the prior is assumed a locally linear function of speed (see
Equation 3.1), that is

f(v) = ln p(v) = a(v)v + b

Thus, within a small range of speeds ∆v , the following holds:

f(v +∆v) = f(v) + a(v)∆v

or

a(v) =
f(v +∆v)− f(v)

∆v
(A.4)

Letting ∆v → 0, the right-hand side of Equation A.4 is simply the derivative of

f(v), i.e. a(v) = df(v)
dv . Integrating both sides, this becomes

f(v) =

ˆ

a(v)dv + C
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and thus

p(v) = exp(f(v)) = exp(

ˆ

a(v)dv + C) = C′exp(

ˆ

a(v)dv)

where C′ = exp(C) plays the role of a normalizing constant, i.e. its value is
such that

´

∞

0
p(v)dv = 1.

Appendix B. Supplementary Figures

Figure B.1: Mean ratio of speeds of the high (vHC) and low-contrast (vLC) gratings at
the point of subjective equality (PSE), plotted as a function of speed, separately for each
experimental session and contrast condition. Data from two subjects (S1 and S4) who showed
the greatest inter-session variability. Error bars are std.dev.
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