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Abstract:

Background - Cardiovascular risk factors tend to aggregate. The biological and predictive value 

of this aggregation is questioned and genetics could shed light on this debate. Our aim was to

reappraise the impact of risk factor confluence on ischemic heart disease (IHD) risk by testing 

whether genetic risk scores (GRSs) associated with these factors interact on an additive or 

multiplicative scale, and to determine whether these interactions provide additional value for 

predicting IHD risk.

Methods and Results - We selected genetic variants associated with blood pressure, body mass 

index, waist circumference, triglycerides, type-2 diabetes, HDL and LDL cholesterol, and IHD to 

create GRSs for each factor. We tested and meta-analyzed the impact of additive (Synergy Index 

–SI–) and multiplicative ( interaction) interactions between each GRS pair in one case-control 

(n=6,042) and four cohort studies (n=17,794), and evaluated the predictive value of these 

interactions. We observed two multiplicative interactions: GRSLDL·GRSTriglycerides interaction=–

0.096; Standard Error=0.028) and non-pleiotropic GRSIHD·GRSLDL interaction=0.091; Standard 

Error=0.028). Inclusion of these interaction terms did not improve predictive capacity. 

Conclusions - The confluence of LDL cholesterol and triglycerides genetic risk load has an 

additive effect on IHD risk. The interaction between LDL cholesterol and IHD genetic load is 

more than multiplicative, supporting the hazardous impact on atherosclerosis progression of the 

combination of inflammation and increased lipid levels. The capacity of risk factor confluence to 

improve IHD risk prediction is questionable. Further studies in larger samples are warranted to 

confirm and expand our results. 

Key words: risk factor; genetic variation; risk assessment; genetics, association studies; 
clustering; interactions
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Introduction

The Framingham Heart Study introduced the term “cardiovascular risk factor”1 to define traits 

that are associated with cardiovascular disease and have a capacity to predict future events2.

Some of these risk factors are interrelated and tend to aggregate. A paradigm of this aggregation

is metabolic syndrome3, which is associated with an increase in cardiovascular events4,5.

However, there is an open debate about whether this confluence of cardiovascular risk factors

provides clinical or mechanistic information beyond the mere addition of its individual 

components6-8. In other words, is the combination of risk factors more valuable than the sum of 

its parts?

An ideal way to reliably assess the impact of these risk factors on cardiovascular risk, 

individually and in combination, would be to perform a prospective cohort study of individuals 

with different, stable, long-term levels of exposure to these risk factors and with different 

combinations of each. Alternatively, this approach could be circumvented by genetic analysis, in 

which variants associated with cardiovascular risk factors are used as a proxy for the risk factors 

themselves. Specifically, each risk factor could be represented by a genetic risk score (GRS) 

composed of multiple variants that are known to be robustly associated with that risk factor9,10.

While this approach has the disadvantage of capturing a limited fraction of the total variance of 

the risk factor itself, it does have some important advantages. First, a GRS represents constant 

lifetime exposure within individuals and variable exposure between individuals, with random 

combinations of alleles according to Mendel’s Second Law11. Second, it is an efficient and 

economically feasible approach to this clinically important question.

 In this study, we used the genetically determined variability of classical risk factors to 

reappraise the value of risk factor confluence in assessing ischemic heart disease (IHD) risk. Our 

An ideal way to reliably assess the impact of these risk factors on cardiovvavascscculululararar rrrisisisk,k,k, 

ndividuduala lyy ana d iin n combination, would be to perfoformrm a prospective cohorort study of individuals d

wwwithhh differentntnt, stststababablee,,, lololongngng-t-t-term m m lelelevevevelslss ooof ff exxxpopoposureee ttto thhheseseseee riririsk fffacacactototorsrsr aaandndn wwititith h h dididiffffffererenenenttt 

cocoommbmbinations of f eaaach. AAAlternnnatattivively,y,, tthhis apppproooachhh cccouuuldldld bbbe ciircumumumvev ntededed byy y ggegenetiicc aananaalyyysis, iiin

which variants assoccciaiaiateted withthth cccardiovasa cular riskkk factors ararareee usu ed ass a a a prprp oxy y for the risk factors 

hhememseselvlveses.. SpSppececifificicalallylyy,,, eaeachch rrisisk k fafactctoror cocoululd d bebe rereprprp esesenenteted d bybyy aa gggeneneteticic rrisisk k scscorore e (G(G( RSRS) ) )
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specific aims were i) to analyze whether GRSs associated with the individual cardiovascular risk 

factors interact and present more than an additive or multiplicative association with IHD, and ii) 

to determine whether these interactions provide additional value for predicting the risk of future 

IHD events.

Methods

Design

A meta-analysis of five studies, one case-control and four prospective cohorts, was carried out. 

The studies included the Myocardial Infarction Genetics Consortium (MIGen)12 and the 

Framingham Heart Study (FHS), FINRISK 1997, FINRISK 2002, and Estonian Biobank 

(EGCUT)13 cohorts. A total of 23,836 participants were included in the meta-analysis, 6,042

from the case-control study and 17,794 from the four cohorts.  

 MIGen, an international case-control study, included 2,967 cases of early-onset 

and ,075 age- and sex-matched 

controls (12). The FHS sample consisted of 3,557 individuals from the FHS offspring cohort 

attending exam 5. Genome-wide genotype and associated phenotype data from MIGen and FHS 

were obtained via the database of Genotypes and Phenotypes (dbGaP; 

http://dbgap.ncbi.nlm.nih.gov; project number #5195). The FINRISK cohorts are comprised of

representative, cross-sectional population survey respondents. Surveys have been carried out 

every 5 years since 1972 to assess the risk factors of chronic diseases and health behaviors in the 

working age population; 5,562 individuals were included from the FINRISK 1997 cohort and 

2,314 from the FINRISK 2002 cohort. Finally, the EGCUT cohort of 50,750 participants 

recruited between 2002 and 2011 includes adults (aged 18-103 years) from all counties of 

Estonia, approximately 5% of the Estonian average-adult population13. A subset of 6,361  

Framingham Heart Study (FHS), FINRISK 1997, FINRISK 2002, and Estonian BiBiBiobobobananank k k

EGCUT)13 cohorts. A total of 23,836 participants were included in the meta-analysisi , 6,042

frrromomom the casseee-control studyyy and 17,,794 from the fououour cohorts.  

MIGen, ananan inteeernnnationnnaaal case-cononontrol stttudyyy, iiincludududededed 222,9667 ccasesss ooof eeearrrly-onnnseeet 

annddd ,070707555 aga e- anananddd seexx-mamatctct hhheddd

controls (12). The FFFHSHSHS sasasampmpmplelele ccconononsisisistststededed ooofff 33,3,555555777 ininindididivvviduduualalalsss frfrfromomom ttthehehe FFFHSHSHS oooffffspring cohort dd
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individuals was included in the study selected for this meta-analysis. 

SNP Selection

We mined published data from a series of large meta-analyses of Genome Wide Association

studies for each of the selected phenotypes. From these studies we identified SNPs that were 

associated (p<5×10-8) with the trait of interest, and grouped these into 8 categories broadly 

definable as distinct cardiovascular risk factors or coronary endpoints (Supplementary Table 1): 

low-density lipoprotein (LDL) cholesterol14, high-density lipoprotein (HDL) cholesterol14,

triglycerides (TG)14, blood pressure (BP)15-16, type 2 diabetes (T2D)17, body mass index (BMI)18,

waist circumference19 and ischemic heart disease (IHD)20. We additionally included genetic 

variants associated with schizophrenia21 as a negative control.

Genotyping

Four different arrays and two reference panels were used for genotyping and imputing. The 

MIGen study used the Affymetrix 6.0 GeneChip and imputing was performed with MACH 1.0 

using the HapMap CEU phased chromosomes as reference. The FHS used the Affymetrix 500K 

and 50K chips, imputing was performed using HapMap CEU as reference. FINRISK used the 

Illumina HumanCoreExome chip, imputation was performed using IMPUTE v222 and the 1000 

Genomes Project sequencing data as a reference panel23. EGCUT used the Illumina 

OmniExpress BeadChip, imputation was implemented in IMPUTE v2 using the 1000 Genomes 

Project as a reference. In all the cohorts, directly genotyped SNPs were coded as 0, 1 or 2, while 

the dosage was used for the imputed SNPs with values ranging between 0 and 2. SNPs with an 

imputation quality <0.4 were excluded. 

Construction of the genetic risk scores (GRS)

We constructed a weighted GRS for each cardiovascular risk factor of interest and IHD

variants associated with schizophrenia21 as a negative control.

Genotytyypipip ngng

FoFoFouurur differentntnt aaarrrrrrayaa ss ananand d d twtwtwo rererefefeferererencncnceee papp nenenelslsls werrre usededed fffororor ggennnoootypypypininng g g anaa d imimmpupuputititingnn . . . TTThehehe 

MMMIGGeGen study yy usededed thee AAAffymmmetetetrix 6...0 0 GeGeGeneChChChip aaanddd impmpmputiiinggg waaass perfooormememed d wiw th MAMAM CHCHCH 1..0

using the HapMap CCCEUEUEU pphaseseed d d chromoosomes as rrreferencecee.. ThThT e FHS S usususedee  the Affymetrix 500K 

anand d 5050K K chchipipps,s,, iimpmppututining g g wawass pepep rfrforormemed d ususining g g HaHapMpMp apapp CCEUEU aass rerefefererencncee.. FIFINRNRISISK K ususeded ththee
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independently by adding the number of risk alleles weighted by their effect sizes on the 

phenotype of interest (Supplementary Table 1). One SNP could be included in more than one 

GRS when associated with more than one risk factor, although with different weight. 

 We also constructed a weighted GRS for each cardiovascular risk factor, excluding those 

SNPs that were related to any trait other than that of interest (non-pleiotropic GRSs). From the 

list of variants associated with each trait, we excluded those that were associated with any other 

trait with a p-value less than 0.10 in the Framingham cohort. 

Ischemic heart disease outcomes

In the MIGen case-control study, only early-onset myocardial infarction cases were included. In 

the cohort studies, two IHD outcomes were defined: hard IHD, including fatal and non-fatal 

myocardial infarction and coronary death, and all IHD, additionally including angina and 

revascularization. The follow-up methodology in the prospective cohorts is explained in detail in 

the supplementary material. In summary, a follow-up or linkage with national databases was 

implemented using predefined ICD9 and ICD10 codes. In each cohort, cases were categorized by 

an event committee.

Statistical methods

The association between each GRS and IHD was tested by a logistic regression model in the 

case-control study and by Cox proportional hazards models in the cohort studies. Furthermore, 

we analyzed all potential pairwise interactions between the GRSs of interest and IHD. In the 

analysis of these interactions –and from a methodological point of view– we considered their 

departure from additivity and multiplicativity24: i) to test for multiplicative interactions we 

added, one by one, all pairwise products of GRSs to the logistic or Cox regression models; and 

ii) to analyze departure from additivity several metrics have been recommended, relative excess 

he cohort studies, two IHD outcomes were defined: hard IHD, including fatal annndd d nonn n-n-n-fafafatatatalll

myocarardidial infn arctction and coronary death, and all IHIHD, additionally includuding angina and 

eeevaaascularizatatatiooonn.n. Thhee e fofofollllllowowo -u-uup p p mememethhhodododologogogy yy in tttheee pprororospspspececectit vevee cohohohororrtststs iiis exxplplplaiaiainenened d ininin dddetetetaiaiailll ini

hhhe e susus pplementarrryyy maateteterrial. InInIn summamm rrry,,, a fofoolllow-u-u-up ororor llliiinkakakage wwwiitith natttiooonaaal dddatabbasasseses wwwas 

mplemented using prprpredede efinededd IIICDCDC 9 and ICD10 cococoded s. In n eaeaeach cohort,t,t, cccasaa es were categorized by

anan eeveventnt ccomommimitttteeee..
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risk due to interaction (RERI), attributable proportion (AP), and synergy index (SI)24-25. We 

selected the SI metric because it has been proposed as the most robust when the model includes 

covariates to control for confounding 26:

SI = [HR/ORA+B+ - 1] / [(HR/ORA+B- - 1) + (HR/ORA-B+ -1)].

Where: 

- HR/ORA+B+ = Hazard ratio/Odds ratio of those exposed to factor A and B compared to 

those non-exposed to factor A and B.  

- HR/ORA+B- = Hazard ratio/Odds ratio of those exposed to factor A but not to factor B 

compared to those non-exposed to factor A and B.

- HR/ORA-B+ = Hazard ratio/Odds ratio of those exposed to factor B but not to factor A 

compared to those non- exposed to factor A and B.

This index measures the extent to which the hazard or odds ratio for both exposures together 

exceeds 1, and whether this is greater than the sum of the extent to which each risk ratio, 

considered separately, exceeds 1. A SI > 1 would indicate the presence of an additive interaction. 

Bootstrapping was used to calculate 95% confidence intervals (95%CI) of the estimate25. 

All the analyses were adjusted for age, sex, and principal genetic components to account 

for population stratification and family relatedness27. We used a Bonferroni-adjusted p-value to 

account for independent multiple testing. Due to the correlation between the 36 pairs of tested 

interactions (each GRS of interest was included in 8 different pairwise interaction terms, we 

estimated the number of effective independent tests according to the matrix of variance-

covariance28; the resulting value was 35.88. Therefore, the statistical threshold was set at 

0.05/35.88=0.0014. A meta-analysis of the results observed in the different studies was 

undertaken using an inverse-variance weighting under a random-effects model (DerSimonian-

- HR/ORA-R B+ = Hazard ratio/Odds ratio of those exposed to factor B but nooott tototo fffacacactototor r r A A A

cocompmppara eddd tto those non- exposed to factor AA and B.

ThThThisiss index mememeasasasurururess ttthehehe eeextxtxtenenntt t tototo wwwhihihichchch thehee hahahazarddd oor odododdsdsds rrrataa iooo fffororor bbbototothh h eexe popoosususurereresss tot gegegethththererer 

exexxceeeede s 1, and wwwhhhetheeer this iiis gggreatererer thahahan thhhe summm ooof ttthehehe exxxteeent ttto wwhichhh eaccch hh risk rrratatatioio, 

considered separatelelly,y,y, eexceedsdsds 111. AA SI > 1 would d d inii dicate e  thththee prprp esenncecee ooof an additive interaction

BoBoBootototstststrararappppppininingg g wawawass s usususededed tttoo o cacacalclclculululatatatee e 959595%% % cococonfnfnfidididenenencecece iiintntntererervavavalslsls (((959595%C%C%CI)I)I) oooff f thththeee esesestititimamamatetete25...
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Laird method)29. Heterogeneity between studies included in this meta-analysis was also analyzed

by estimating the I2 and its p-value. To assess whether an individual study had strong effects and 

influenced the pooled results, a sensitivity analysis was performed by excluding one study at a 

time and calculating the multiplicative and additive interaction metrics for the remaining studies.

 The improvement in the predictive capacity of the statistically significant interaction 

terms was evaluated by assessing improvements in discrimination and reclassification in the 

cohort studies: 

a) The improvement in the discriminative capacity of the model was evaluated using the 

change in the c-statistic30. We first evaluated the discriminative capacity of a multivariate

model including age, sex, and all the individual GRSs of interest; additionally, we 

evaluated the discriminative capacity of this multivariable model, further including the 

significant interaction terms individually in different models. 

b) The reclassification capacity of the interactions of interest was evaluated by calculating 

the continuous net reclassification improvement index (c-NRI) and the integrated 

discrimination improvement index (IDI)31-32. 

These analyses were also performed in the individual studies and meta-analyzed using an 

inverse-variance weighting under a random-effects model.

 All statistical analyses were carried out using packaged or custom functions written in R-

3.02 (R Foundation for Statistical Computing, Vienna)33. 

Ethics Statement

All participants gave written informed consent to be included in these studies. The study was 

approved by the local Clinical Research Ethics Committees.

model including age, sex, and all the individual GRSs of interest; additionnanalllllly,y,, wwweee

evevaluauated d tht e discriminative capacity of thihiss multivariable model,l,,  a further including the

signifffiicicananantt t innteteterararactctctioioion tetetermrmrmsss indndndivivividdduauauallll y innn dddiffefeerererentntnt mmmododdelels.s.s. 

b)bb The reclaaassssificcatttion cccapappacity y y ofoff thhhe innnteeeractttiooonsss ofofof innnteeeresttt wwwas evvvaaaluaaateeed by cacaalclculullata innng 

the continuooususus nen t reclclclasasassificationo  impprovevevement indndndexexe (c(c-NRI)I)) ananand the integrated 

didisscrcrimimininatatioion n imimprprp ovovememenent t inindedexx (I(I( DIDI)))313131 33-3222..
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Results

The characteristics of the individuals included in the five studies, and the number of incident 

coronary events (938 hard events and 1,453 events in total) and median follow-up in the four 

cohorts, are shown in Table 1.  

SNP selection and sample description

From the literature sources described above, 484 independent SNPs were reported to be robustly 

associated with cardiovascular risk factors or coronary endpoints14-20. The number of SNPs 

included in the GRSs ranged from 23 for Type 2 diabetes (T2D) to 81 for BMI (Supplementary 

Table 1). There was a slight overlap between the different GRSs in terms of number of shared 

SNPs or loci but the Spearman correlation coefficient between GRSs was weak (correlation 

coefficient <0.100) with the exception of the associations between GRSs for TG and HDL -

0.391), and 

(Supplementary Table 2). When the non-pleiotropic GRSs were considered only the correlation 

-0.142), and remained 

significant. A strong and consistent association across studies between the GRS and their 

corresponding risk factors was observed, remaining strong and consistent for lipids and body 

mass index when the non-pleiotropic GRS were analyzed  (Supplementary Table 3). 

Association between genetic risk scores and ischemic heart disease. 

We observed significant associations between the GRS for IHD and hard coronary events in all 

the studies and in the meta-analysis (p-value=9.4x10-47) (Figure 1 and Supplementary Table 4; 

and Supplementary Figure 1 and Supplementary Table 5 for all IHD events). The TG, HDL, 

LDL, BMI, and waist GRSs were also associated with coronary events in the meta-analyses of 

hard IHD events, although these associations were mainly driven by the MIGen study (Figure 1 

SNPs or loci but the Spearman correlation coefficient between GRSs was weak (((cocoorrrr elelelatatatioioion n n 

coefficiciennt <0.10100) with the exception of the assosocic ations between GRRSsS  for TG and r HDL -

0.0.0.39991), ananand d

SSSupupupplp ementary Tableee 222). WhWhWheenen the nnnoon---pleiiiotttropiic GRSRSRSs wewewere ccconnsiderereed onononlyll  theee ccocorrrreellatiooonnn 

-00.142),)  and remained 

iigngng ifificicanant.t. A A ststrorongngg anand d coconsnsisistetentnt asassosociciatatioion n acacrorossss sstutudidieses bebetwtweeeen n ththe e GRGRSS anand d ththeieir r
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and Supplementary Table 4). The blood pressure, diabetes, and schizophrenia GRSs were not 

associated with coronary events in this meta-analysis (Figure 1 and Supplementary Table 4). 

When the non-pleiotropic GRSs were considered, only the association between the GRS for IHD

and coronary events remained significant (Supplementary Table 6). 

Assessment of interactions between genetic risk scores and impact on ischemic heart 

disease risk.

We tested all pairwise interactions between the GRSs of interest and IHD in the different studies. 

In the meta-analyses we found two statistically significant multiplicative interactions  

(Supplementary Tables 7 and 8). A negative multiplicative interaction between the LDL and TG 

GRSs on all IHD events (Table 2 and Supplementary Table 8). When hard IHD events were 

considered, the magnitude of the association of the interaction term decreased, from -0.096 to -

0.047) (Table 3), but this decrease was driven by the MIGen study; when that study was 

excluded the effect of the interaction term on hard IHD remained similar and statistically 

significant -0.116; p-value=1.3x10-4) (Supplementary Table 9). A positive multiplicative 

interaction between the non-pleiotropic LDL and IHD GRSs on all IHD and hard IHD was also 

observed (Table 2), and was robust and consistent in the sensitivity analysis (Supplementary 

Table 9).  

We also analyzed the presence of additive interactions. In the meta-analysis, we did not 

find any statistically significant additive interaction term (Supplementary Tables 10 and 11). 

We estimated 80% statistical power to detect a multiplicative interaction regression 

coefficient higher or lower than ± 0.077, considering the observed standard error (0.020) and a p-

value=0.0014. We also estimated 80% power to detect a synergy index higher than 1.28 or lower 

than 0.72, considering the lower observed standard error (0.07), and a synergy index higher than 

GRSs on all IHD events (Table 2 and Supplementary Table 8). When hard IHD eevevenee tstss wwwererere e e 

considere ede , thhe mamagnitude of the association of the e ini teraction term decrereasa ed, from -0.096 to -

0.0.0.04447) (Tableee 333))),, bubb t t thththisisis dddecee reeeasasaseee wawawas s s drdrdrivvvenenen bby tthheee MIMIIGeGeGen n n sts ududdy;y;; wwwheheennn thtt att stststudududy y y wawaasss

exexxcllluduu ed the effececect of thhhe intteterraraction n n teeermrmm onnn hhhard IHDHDHD rereremaaiinedd siiimilarrr aaandd d stststatistiiicacaallyyy 

ignificant -0.116166;;; p-p-p value=e=e=1.11 3x10-4)) (S( uppplp emmmene tary TTTababablee 9)). A popoposiss tive multiplicative 

nnteteraractctioion n bebetwtweeeen n ththe e nonon-n plplp eieiototroropipip c c LDLDL L anand d IHIHDD GRGRSsSs onon aallll IHIHDD anand d hahardrd IIHDHD wawas s alalsoso 
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2.57 or lower than -0.57, considering the higher observed standard error (0.39), always with a p-

value=0.0014. 

Assessment of the predictive capacity of the scores

We evaluated improvement in the discrimination of coronary events in the different cohort 

studies. First we used a model that included age, sex, the GRSs for all the cardiovascular risk 

factors evaluated, and the first two principal genetic components. Second, we added to the 

model, the interaction terms that were associated with IHD (GRSLDL·GRSTG, and non-pleiotropic 

GRSIHD·GRSLDL). Including these interaction terms did not improve the discriminative or 

reclassification capacity of coronary events in the meta-analysis (Table 3).  

Discussion

In the present study, we evaluated the potential interaction effects between cardiovascular risk 

factors on ischemic heart disease risk using a genetic approach. We tested the departure from an 

additive or multiplicative effect of the different two-pair combinations of GRSs related to these

risk factors and their association with coronary events. We report two significant multiplicative 

interactions (GRSLDL·GRSTG and non-pleiotropic GRSIHD·GRSLDL) modulating coronary risk.

The inclusion of these interaction terms in the multivariate model did not improve the predictive 

capacity of the model based on the individual effects of the GRSs of interest.

 We first evaluated the association of each individual GRS with its corresponding risk 

factors and these associations were strong and consistent across studies. We also evaluated the 

effects of each individual GRS on IHD risk in each study and meta-analyzed the results. The 

GRS for IHD was associated with coronary events in all the studies and also in the meta-

analysis. The GRSs for the different risk factors were also associated with hard coronary events 

in the meta-analysis, with the exception of the GRSs for blood pressure, diabetes, and 

Discussion

nnn tthehehe presentntnt study, we evaluated the pop tential inttterrraction effectsss bebb tween cardiovascular risk 

fafafactttoro s on ischemmmiiic heeearrrt disseaeaase risk uuusiiing aaa gggeneeeticc apppprprproaoaoachh. WeWeWe testededed thhehe dddepartrtrtuurre frrromo  annn 

addiitititiveveve ooorr multltltiiiplililicacatititiveve effeccttt ofofof the didiiffffffeerenent twtwoo-ppaiaiirr ccocombmbmbiinatttioioionsns oofff GGRGRSss tttheheh seserererellalated dd ttoto
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schizophrenia (which was included as a negative control). These results validate the GRSs; the 

lack of association of IHD events with blood pressure and diabetes could be related to the lack of

causal relationship11, low statistical power in the prospective studies, or other factors.  

The debate about whether the aggregation of cardiovascular risk factors provides 

additional information on vascular health beyond that of each individual components is still 

open. The paradigm for this discussion is metabolic syndrome. Our choice of a genetic approach 

to assess whether different risk factors interact to modulate the risk of IHD was based on the 

premise that a genetic score for a given risk factor captures some of its population variability;

however, the extent to which this is true varies markedly between risk factors. The amount of 

variance in the traits of interest that is accounted for by genetic scores varies from ~25% to 30% 

for LDL cholesterol14 down to no more than 3% for blood pressure15. However, the loss of 

information that this represents, with respect to measuring the phenotype itself, is 

counterbalanced by the fact that genetic risk is a constant exposure throughout an individual’s 

lifespan. Some studies have suggested that selecting a list of SNPs nominally associated with a 

trait increases the explained variability of that trait34. In this study, we selected only those SNPs 

consistently replicated in GWAS to be associated with the phenotypes of interest. The allelic 

scores that include thousands of genetic variants tend to lack specificity, and therefore should be 

used with caution and perhaps only to analyze proxy biological intermediates, not to analyze the 

association with other related clinical phenotypes34, as in the present study. Moreover, the list of 

nominally associated SNPs could vary across studies. For all these reasons, we preferred to select 

those variants with a statistically significant association, considering the GWAS threshold for 

our analyses.

In the analysis of these interactions we considered their departure from additivity and

variance in the traits of interest that is accounted for by genetic scores varies frommm ~2~2~25%5%5% ttto o o 303030%% 

for LDDL L chc ollese teerrolo 14 down to no more than 3% foror blood pressure15. Hoowew ver, the loss of 

nnnfooormation thththatatat ttthihh ss rerereprprpresesesenee tstss, , , wiwiwiththth rrresesespepp ctctct tttooo meeeaaasurinining g g thththe e phphhenenenotototypypypeee itii selflff, , isisis 

cocooununnterbalanced d bby thhee ffact tththataa geneneeticcc rrrisk isss a cooonnnstaaantntnt exxpxposurrre througugughohohoututut an innndidiivividuduual’sss

ifespan. Some studdieieies s s have ssuguguggegeg sted tthat selecttinining gg a list ooof f f SNSNPs nomomminininalff lyy associated with a 

rraiait t inincrcreaeasesess ththe e exexplplp aiainened d vavaririababililitity y y ofof tthahat t trtraiaitt343434.. InIn tthihis s ststududy,y,y, wewe sselelececteted d ononlylyy tthohosese SNSNPsPs 
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multiplicativity24 and identified two multiplicative interaction terms, one showing a less than 

multiplicative effect (GRSLDL·GRSTG) and other a more than multiplicative effect (non-

pleiotropic GRSLDL·GRSIHD). The LDL and TG GRSs were slightly correlated. This association 

could be related to common molecular mechanisms or to the use of the Friedewald equation to 

estimate LDL in most epidemiological studies. Although this collinearity could decrease the 

statistical power of our analyses, we report a statistically significant multiplicative interaction 

between the genetic load for LDL cholesterol and TG. This interaction term had a negative 

value, indicating that the joint effect of these two factors is less than multiplicative in the risk 

ratio scale. Moreover, as the additive interaction between these two factors was not statistically 

significant, we can assume an additive effect of these two factors on IHD risk in the risk ratio 

scale. This type of additive but not multiplicative effect of two risk factors has also been reported 

in other diseases, e.g., to describe the joint effects of smoking and asbestos on lung cancer35. The 

explanation of this additive effect could be related to basic lipid profile concepts36. The lipid 

profile includes measurement of the total amount of the two most important lipids in the plasma 

compartment: cholesterol and TG. These lipids are not soluble in plasma, and are carried in 

association with proteins, the so-called lipoproteins: HDL, LDL and TG-rich lipoproteins. The 

TG-rich lipoproteins also transport remnant cholesterol. Triglycerides can be degraded by most 

cells, but cholesterol cannot; therefore, the cholesterol content of TG-rich lipoproteins, rather 

than increased TG levels per se, is the more likely contributor to atherosclerosis and 

cardiovascular disease36. The negative multiplicative interaction indicates an additive effect 

between TG and LDL cholesterol on IHD risk, and supports the suggestion that TG-rich particles

act as an additional source of cholesterol in the arterial wall.  

We also report a more than multiplicative effect between the non-pleiotropic genetic load

ignificant, we can assume an additive effect of these two factors on IHD risk in tthehehe risisisk k k rararatititio o

cale. ThThisi  typypype ofof additive but not multiplicative eeffffect of two risk factoorsrs has also been reported

nnn ooottther diseaaasesees,s,s, eee.gg...,,, tototo  dededescs ririribebebe tttheheh jjjoioiointnn eeeffffffecee ts offf smmmokokokinining gg annnddd asasasbebebestststosoo  on n lululungngng cccannncececerrr355. . TTTheh

exexxplpllaanation of thhhisss adddditttive eefefffefect couououlddd bbbe reeelaaatedd tooo bbasasasiciic lllipppid ppprooofile cococonccepepeptst 36. ThThThe llipppid 

profile includes meaaasususurerementtt ooof ff the totat l amountt ooof the twwwo o o momost impmpororortatat nt lippids in the plasma 
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for LDL and IHD. The IHD genetic load has been related to lipid, inflammatory and immune 

pathways that could potentiate the progression of atherosclerosis37.  The non-pleiotropic GRS for 

IHD excluded SNPs associated with lipids and mainly reflects inmuno-inflammatory 

mechanisms. Therefore, this interaction could be explained by the independent interrelationships 

between lipids and inmuno-inflammation that could trigger the deleterious consequences of these 

two factors through different mechanisms38,39.  

 We also analyzed the improvement in predictive capacity when the interaction terms were

included in the model. However, we did not observe any improvement in the discrimination or 

reclassification. Recent meta-analyses focused on metabolic syndrome have shown that the 

population with this syndrome has a two-fold higher risk of cardiovascular disease than the rest 

of the population4-5 but the added value of this clinical constellation of risk factors is questioned6-

8. We identified 1 cross-sectional study40 and 6 cohort studies41-46 that assessed the unadjusted 

and adjusted association between metabolic syndrome and cardiovascular risk. When the models 

were adjusted for all or some of the classical cardiovascular risk factors, 3 of these studies 

showed an association between metabolic syndrome and cardiovascular events43,45-46. However, 

Girman et al only adjusted for the estimated coronary risk obtained with the Framingham 

45, and McNeill et al did not adjust for HDL cholesterol 

and BP46. In contrast, our analyses did not show any interaction between the GRSs related to the 

risk factors that define metabolic syndrome. Our results are in line with the two remaining 

studies, which specifically analyzed whether metabolic syndrome improves the predictive 

capacity of its individual components. Neither study reported significant improvement in 

discrimination capacity44,46; this shared finding calls into question the capacity of the metabolic 

syndrome diagnosis to improve a cardiovascular risk calculation based on the individual classical

population with this syndrome has a two-fold higher risk of cardiovascular diseasassee thththananan ttthehehe rrrest

of the pppopoppulatationn4-5 but the added value of this clininicac l constellation of risisk factors is questioned6

... WWWe identifffieiied d d 111 crosososs-s-s-sesesectctctionananal ll stststudududyyy4040 andndnd 666 cohhhooort ststtudududieieiesss41-44666 ththhatata  asasassesesessededd ttthehehe uuunanaadjdjdjusususteteteddd ddd

anannd d adaa justed assococociationonon betweweweene  metete abbbooolic sssyyyndromomome anananddd ccacarrrdiooovaaasculaaar risssk.k. Wheeen n ththee mmmodddellls
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hhowoweded aan n asassosociciatatioion n bebetwtweeeen n memetatabobolilic c sysyyndndroromeme aandnd ccarardidiovovasascuculalar r evevenentsts43,45-46.. HoHowewevever,r,, 
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cardiovascular risk factors.

Limitations of the study

Four main limitations should be considered: i) The variability of the cardiovascular traits 

explained by the genetic scores considered in this analysis is not very high, in general, but 

represents lifetime exposure. Moreover, some interacting genetic variants could have been 

overlooked by GWAS and therefore not included in our GRSs; ii) The small number of events 

observed in the cohort studies limited the statistical power to explore the interactions of interest. 

We have also to consider that when the magnitude of the association between the two individual 

components of the interaction and the outcome of interest is small the power to differentiate 

between additive and multiplicative effects is reduced; iii) IHD clinical endpoints are the result 

of a complex phenomenon, which includes endothelial dysfunction, plaque formation and 

growth, plaque stability, and thrombosis. Interaction could happen in the context of one of these 

pathways and be diluted in the observation of clinical end-points; and iv). Although the approach 

we used could be considered as Mendelian randomization11, we must be cautious about 

interpreting the causality and synergistic effect of the confluence of risk factors. First, the genetic 

instrumental variable is a genetic score composed by multiple risk alleles10. In some cases, the 

biological pathway linking each risk allele to the intermediate trait of interest is unknown, and 

therefore the assumption that the only causal pathway from the genetic variant to IHD involves 

the trait of interest is questionable. Moreover, there may be association(s) between the genetic 

variants and unmeasured/unknown confounders; for example, the genetic load of obesity could 

be related to food choices that could also be directly related to coronary risk. We also must 

consider the presence of pleiotropic effects that are reflected in the correlation between the GRSs 

analyzed and that violate one of the assumptions of Mendelian randomization studies.  

between additive and multiplicative effects is reduced; iii) IHD clinical endpointtss s ararare ththhe e e rereresusus ltll  

of a comomplplp exx ppheenon menon, which includes endothhelelial dysfunction, plaququq e formation and 
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 Finally, we would note that 339 of the FINRISK participants were also included in the 

MIGen sample; however, this is a small proportion (<1.5%) of the whole sample, the sensitivity 

analyses carried out are consistent, and we could consider the effect of this duplication to be 

minimal.  

Conclusions 

The genetic risk loads for LDL cholesterol and TG interact, suggesting that the effect of these

two risk factors on IHD risk is additive rather than multiplicative. Moreover, the non-pleiotropic 

GRSs for LDL and IHD also interact on IHD risk and have a more than multiplicative effect. 

This interaction supports the hazardous impact on atherosclerosis progression of the combination 

of inflammation and increased lipid levels. Our results question the added value of the 

confluence of risk factors in improving the estimation of cardiovascular risk beyond the

predictive capacity provided by individual risk factors. However, further studies in larger 

samples are warranted to confirm and expand our results, due to the limited statistical power of 

the present analysis.
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Table 1: Characteristics of the Participants in the Five Studies Included in the Meta-analysis (Number and Percentage Shown for 
Categorical Variables, Mean and Standard Deviation for Continuous Variables).

Study MIGen* FHS* FINRISK1997 FINRISK2002 EGCUT*

Design Case-control Cohort Cohort Cohort Cohort 

N  
Hard IHD events

6,042
2967

3,557
168

5,562
367

2,314
145

6,361
258

All IHD events --- 251 447 185 570

Follow-up, years (SD) --- 12.8 (6.2) 13.8 (2.9) 9.2 (1.9) 5.4 (2.4) 

N women (%) 1,422 (23.54%) 1,880 (52.9%) 2,878 (51.7%) 1,106 (47.8%) 3,615 (56.8%) 

Age, in years  NA* 54.61 (9.8) 47.9 (13.3) 51.7 (12.6) 48.2 (19.4) 

SBP*, in mmHg NA 125.8 (18.6) 135.8 (19.7) 137.9 (20.4) 128.6 (18.1) 

DBP*, in mmHg NA 74.5 (9.9) 82.3 (11.3) 80.2 (11.3) 78.7 (10.9) 

BMI*, in kg/m2 NA 27.4 (5.0) 26.6 (4.5) 27.5 (5.1) 26.5 (5.2) 

HTN*, n (%) NA 1,020 (28.7%) 2,477 (44.5%) 1,143 (49.4%) 1,771 (27.8) 

LDL cholesterol*, in mg/dL NA 125.1 (34.5) 134.8 (35.9) 138.2 (48.7) 137.3 (40.8)† 

HDL cholesterol*, in mg/dL NA 50.1 (15.1) 54.8 (13.5) 58.7 (18.9) 58.8 (15.9)† 

Triglycerides, in mg/dL NA 139.4 (78.6) 130.1 (90.3) 137.2 (92.9) 139.2 (90.9)† 

Current Smoking, n (%)  NA 610 (17.2%) 1,355 (24.4%) 617 (26.7%) 1,904 (29.9%) 

* MIGen: Myocardial Infarction Genetics Consortium; FHS: Framingham Heart Study; EGCUT: Estonian Biobank; SBP: Systolic blood pressure; 
DBP: Diastolic blood pressure; BMI: Body mass index; HTN: Hypertension; LDL: Low-density lipoprotein; HDL: High-density lipoprotein; NA: 
Not available.
† Data available in a subsample of 3,782 individuals.

HD events --- 251 447 185 575757000

w-up, years (SD) --- 12.8 (6.2) 13.8 (2.9) 9.2 (1.9) 555.444 (2(2(2 44.4) ))

men (%(%))) 1,422 (23.54%) 1,880 (52.9%%)) ) 2,878 (51.7%) 1,1,1,1011 6 (47.8%) 3,615 (56.8%

in n n yeyeeaaars  NA* 54.61 (9.8)) ) 47.9 (13.3))) 551.7 (12.6) 48.2 (19.4) 

,, innn mmmHg NANANA 125.5..8 ((18.6)) 1355.5.888 (19.99 7)77  13337.9 (2(2(200.0.4)4) 1211 8.8.8.666 (1(1(18.8.8 1)

***,, innn mmHg NNNA 74...5 ((9.9) 828282.3.3 (((11.33) 80.22 (111.3) 7878.7.  (1000.999) 

*, iiinn n kgkgkg/m/m/m2 NANANA 272727..4.4 (((5.55 0)) 262626.6. (((4.44 5))) 22727.5 (((5.5.5.1)1)1  2666.5 ((555.2)2)) 

*, n (%) NANANA 1,020 (28.7%7%7%) 2,474747777 (44.5%) 1,1,1,143 (49.4%) 1,771 (27.8)

cholesterol*, in mg/dL NANANA 1212125.5.5.11 (3(334.4..5)5)) 131313444.888 (3(3(35.55 9)99  13131 8.8.8.2 2 2 (4(4(48.7) 137.3 (40.8)†
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Table 2. Significant Multiplicative Interaction Terms Between Genetic Risk Scores of Interest 
Associated with Ischemic Heart Disease Identified in the Meta-analyses.  

Regression coefficient
(Standard Error)

P-value 
P-value 

Heterogeneity

GRSLDLxGRSTG

Hard events -0.047 (0.021) 0.027 0.011

All events -0.096 (0.028) 5.2x10-4 0.252

Non-pleiotropic GRSLDLxGRSIHD

Hard events 0.064 (0.022) 0.022 0.003

All events 0.091 (0.028) 1.2x10-3 0.461

GRS: Genetic risk score; IHD: Ischemic heart disease; TG: Triglycerides; LDL: Low-density lipoprotein. 

Table 3: Results of the Improvement in Predictive Capacity when the GRSLDL and GRSTG, and
the Non-pleiotropic GRSLDL and GRSIHD Interaction Terms Were Added to the Model Based on 
the Individual Genetic Risk Scores: Changes in Discrimination C -Statistics) and in 
Reclassification (Continuous Net Reclassification Index –c-NRI– and Integrated Discrimination 
Improvement –IDI–) for the Two Ischemic Heart Disease Outcomes in the Meta-analyses.  

Hard IHD Outcomes All IHD Outcomes

GRSLDL·GRSTG

 c-statistic (p-value) 0.000 (0.471) 0.000 (0.217) 

  c-NRI (95% CI)* 0.011 (-0.030, 0.052) 0.030 (-0.021, 0.081) 

IDI (95% CI)* 0.000 (-0.001, 0.001) 0.000 (-0.001, 0.002) 

Non-pleiotropic GRSIHD·GRSLDL

 c-statistic (p-value) 0.001 (0.263) 0.000 (0.637) 

  c-NRI (95% CI)* 0.031 (-0.011, 0.073) 0.029 (-0.019, 0.077) 

IDI (95% CI)* 0.001 (-0.000, 0.001) 0.001 (-0.000, 0.003) 

*c-NRI (95% CI): Continuous Net Reclassification Index (95% Confidence Interval); IDI (95% CI): 
Integrated Discrimination Improvement (95% Confidence Interval) 

GRS: Genetic risk score; IHD: Ischemic heart disease; TG: Triglycerides; LDL: Low-densisisitytyty llipipipopopproror tetein.
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he Individual Genetetticicic Risk SSScococorer ss: Changeg s in DDDisii crc iminnnatatatioii n n C -Statistics) and in 

Reclassification (Cooontntntinininuououoususus NNNetete  RRRecececlalalasssssififificicicatattioioion nn IIIndndndeexex –––c-c-c-NRNRNRIII––– ananand d d InInIntetetegrgrgratatatede  Discrimination 
mmprprp ovovememenent t –IDIDII–)–)) fofor r ththe e TTwowo IsIschchememicic HHeaeartrt DDisiseaeasese OuOutctcomomeses iin n ththe e MMetetaa-ananalalysysy eses..  
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Figure Legends:

Figure 1: Forest Plot of the Association Between the Weighted Genetic Risk Scores for 

Cardiovascular Risk Factors and Ischemic Heart Disease and the Prevalence/Incidence of Hard 

Ischemic Heart Disease Events (Myocardial Infarction or Ischemic Heart Disease Death) Across 

Studies and in the Meta-analysis.




