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A Theory

We provide here some mathematical background of our method.

A.1 Matrix functions

If f (z) is a function of the complex number z and analytic in a disk with radius R around z0, then it

can be shown (see Section 2.2) that for all matrices A, the matrix function f(A) can be expressed as

a polynomial of degree at most N − 1,

f (A) =
N−1∑
k=0

ck [f ]Ak

where the coefficients ck [f ] can be specified as

ck [f ] =
1

k!

N∑
m=1

f (λm)∏n
j=1;j 6=m (λm − λj)

dk

dxk

N∏
j=1;j 6=m

(x− λj)

∣∣∣∣∣∣
x=0

Only if f is a polynomial of degree m at most N − 1, we find, for all 0 ≤ k ≤ N − 1, that

fk (0) = ck [f ] ,

where fk(0) is the k-th coefficient of the Taylor series of f for the development point z0 = 0.

A.2 Role of the diameter

An explanation for the importance of the diameter could be as follows: The matrix powers I, A, A2,

A3,... are all linearly independent of each other up to Aρ (Van Mieghem, 2011). For higher powers,

we cannot be sure of their dependency. Our analysis shows that using higher powers of the structural

connectivity matrix than its diameter (ρ = 6) does not improve the goodness of fit of our estimation.

Furthermore, in the binary matrix A, the sum
∑m

k=1A
k can have zero entries for all m < ρ. Reducing

the number of zero entries can also be a reason why the goodness of fit increases gradually until adding

Aρ and then converges.

A.3 Analysis in the spectral domain

If a mapping postulated in the previous section is valid, then such a mapping should also hold in

the spectral domain (Van Mieghem, 2011). Provided A is symmetric such that A = XΛXT , where

the matrix X contains the eigenvectors of A in the columns and Λ = diag(λk), 1 ≤ k ≤ N , with

λ1 ≥ λ2 ≥ . . . ≥ λN the real eigenvalues of A, then there exists an alternative to compute f (A).

Since eigenvectors are orthogonal, the matrix X is an orthogonal matrix satisfying XTX = I and

XXT = I, where the latter follows from the fact that X−1 = XT and the fact that a matrix and its
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inverse commute. We assume here that all eigenvalues are different, as is the case in most real-world

networks (Van Mieghem, 2011). Then,

f (A) = Xf (Λ)XT =
N∑
k=0

f (λk)xkx
T
k (1)

where xk is the eigenvector of A belonging to the eigenvalue λk. Using the spectral form (1) in our

assumption (1) reveals that

W = Xf (Λ)XT , (2)

Since W is symmetric, the spectral decomposition equals

W = YΥY T (3)

where Y is the orthogonal matrix containing the eigenvectors y1, y2, . . . , yN belonging to the eigenvalues

µ1 ≥ µ2 ≥ . . . ≥ µN and Υ = diag(µk) , 1 ≤ k ≤ N is the diagonal matrix of the eigenvalues of W .

Using the properties of orthogonal matrices, we find from (2) the diagonal matrix f (Λ) = diag(f (λk))

as

f (Λ) = XTWX.

With (3), we obtain

f (Λ) =
(
XTY

)
Υ
(
Y TX

)
. (4)

Since both f (Λ) and Υ are diagonal matrices and
(
XTY

)
=
(
Y TX

)−1
, there must hold that

f (λk) = µk (5)

for each 1 ≤ k ≤ N . Furthermore, from (4) follows that(
Y TX

)
f (Λ) = Υ

(
Y TX

)
. (6)

From (5) and the fact that we multiply the matrix Y TX with the same diagonal matrix from both

sides, we can conclude that (under the condition that all eigenvalues are different) Y TX = I and

therefore X = Y .

In summary, equation (1) implies that both the structural matrix A and the functional matrix W

must have the same eigenvectors and that the function f maps the eigenvalues (ordered) of A onto

those of W (also ordered, see (5)). Moreover, (5) shows that f (x) is non-decreasing in x.

If the empirical matrices have different eigenvectors, then that difference may be due to noise of

the measurement. If the difference cannot be explained by noise perturbation, our assumption in (1)

that there exists an analytic function f needs to be revisited and a more general form of our fitting

function can be considered with matrix coefficients instead of scalar ones

F (A) =

∞∑
k=0

Fk (A− z0I)k (7)

where Fk are N ×N matrices, which reduces when N = 1 again to our previous assumption (3).
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B Data Analysis

B.1 Visualization of best fits

In Figures 1, 2 and 3, we visualized the best fitted matrices of the group-averaged data set on a bigger

scale to better localize the biggest discrepancies between our best fits and the empirical findings. The

numbers on the axes of the matrices, 1 to 78 refer to specific brain regions. You can find on the next

page a complete list of the regions of interest (ROIs) that we display mostly with numbers:
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1 Rectus-L 40 Rectus-R

2 Olfactory-L 41 Olfactory-R

3 Frontal-Sup-Orb-L 42 Frontal-Sup-Orb-R

4 Frontal-Med-Orb-L 43 Frontal-Med-Orb-R

5 Frontal-Mid-Orb-L 44 Frontal-Mid-Orb-R

6 Frontal-Inf-Orb-L 45 Frontal-Inf-Orb-R

7 Frontal-Sup-L 46 Frontal-Sup-R

8 Frontal-Mid-L 47 Frontal-Mid-R

9 Frontal-Inf-Oper-L 48 Frontal-Inf-Oper-R

10 Frontal-Inf-Tri-L 49 Frontal-Inf-Tri-R

11 Frontal-Sup-Medial-L 50 Frontal-Sup-Medial-R

12 Supp-Motor-Area-L 51 Supp-Motor-Area-R

13 Paracentral-Lobule-L 52 Paracentral-Lobule-R

14 Precentral-L 53 Precentral-R

15 Rolandic-Oper-L 54 Rolandic-Oper-R

16 Postcentral-L 55 Postcentral-R

17 Parietal-Sup-L 56 Parietal-Sup-R

18 Parietal-Inf-L 57 Parietal-Inf-R

19 SupraMarginal-L 58 SupraMarginal-R

20 Angular-L 59 Angular-R

21 Precuneus-L 60 Precuneus-R

22 Occipital-Sup-L 61 Occipital-Sup-R

23 Occipital-Mid-L 62 Occipital-Mid-R

24 Occipital-Inf-L 63 Occipital-Inf-R

25 Calcarine-L 64 Calcarine-R

26 Cuneus-L 65 Cuneus-R

27 Lingual-L 66 Lingual-R

28 Fusiform-L 67 Fusiform-R

29 Heschl-L 68 Heschl-R

30 Temporal-Sup-L 69 Temporal-Sup-R

31 Temporal-Mid-L 70 Temporal-Mid-R

32 Temporal-Inf-L 71 Temporal-Inf-R

33 Temporal-Pole-Sup-L 72 Temporal-Pole-Sup-R

34 Temporal-Pole-Mid-L 73 Temporal-Pole-Mid-R

35 ParaHippocampal-L 74 ParaHippocampal-R

36 Cingulum-Ant-L 75 Cingulum-Ant-R

37 Cingulum-Mid-L 76 Cingulum-Mid-R

38 Cingulum-Post-L 77 Cingulum-Post-R

39 Insula-L 78 Insula-R
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We can see that the patterns of the fitted matrices seem to be similar to the empirical ones and

that the value range is overlapping. Therefore, we can conclude that also only from visual inspections

of the fitted matrices our mapping seems to be convincingly accurate.

B.2 Spectral data analysis

After plotting the eigenvalue couples (λk, µk) in a scatter plot, we can obtain the function f in the

spectral domain (see (5)). Polynomial functions were fitted to all possible combinations of scatter

plots (i.e. for the combinations structure-function (MEG/fMRI) and vice versa) by minimizing the

sum of squared errors. An example of such a fit is depicted in Figure 4.

For the goodness of fit in the spectral domain, we computed the adjusted R2 value for the different

mappings (see Figure 5). Overall, we reached already for K ≥ 4 with all combinations of matrices

an adjusted R2 value of higher than 0.9 indicating a good fit of our mapping. We followed the same

approach here as we did for the topology domain, and reversed A and W to repeat the spectral analysis

for the function f−1 : W → A. Results of this analysis can also be found in Figure 5. For this spectral

approach, the adjusted R2 value did not improve much after adding the same number of terms as was

used for the mathematical function in the topology domain (compare Figures 5 with Figure 2). Thus,

a functional expression with K = 5 was again sufficient for the analyzed mappings. This conclusion

held for both modalities (fMRI and MEG) and for both functions f : A→W and f−1 : W → A.

Since we conducted a similar analysis in the topology and in the spectral domain respectively for

the functions f and f−1, we compared the estimated coefficient values for the spectral and topology

domain. For a correct comparison, we must omit the error matrix E in (5) in the topology domain.

A plot of the estimated coefficient values and confidence intervals (obtained by the least squared pa-

rameter estimation in MATLAB) is illustrated in SI Figures 6 and 7 for the mapping of structural

to functional matrices and in SI Figures 8 and 9 for the other direction. For the mapping f , we

only faced small differences between the coefficients (see SI Figures 6 and 7) and in most cases their

confidence intervals were overlapping. But for the other direction, function f−1, we observed quite

different estimated coefficients. In the case of f−1 : WMEG → A we obtained large confidence inter-

vals when many (> 5) coefficients were fitted (see SI Figure 8), implying insecure estimations of their

exact value. This result is in agreement with the finding that 5 coefficients were sufficient to describe

the mapping between W and A (Figure 2), and that these extra coefficients did not contribute rele-

vant information to the mapping. The discrepancies between the estimated coefficient values in the

topology and spectral domain could be originating from the different eigenvectors of the 3 analyzed

empirical matrices. These eigenvector perturbations can potentially be caused by noise in the different

measurement techniques.

C Comparison of fitted coefficient values for different modalities

In Table 1, we displayed the different estimated values for the coefficients of our mapping for a maximal

fitted exponent of K = 6 and z0 = 0 for the group-averaged data set. In addition, in Figures 10 and 11

we show the different coefficient values (without the offset estimates) for the two modalities for both

mappings together with their 95% confidence intervals, from structure to function and from function
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(a) WMEG
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(b) W̃MEG
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Figure 1: Visualization of the best fits for the function f , which was W̃MEG (for K = 6 with an error

matrix E), under the empirical adjacency matrix WMEG for the group-averaged data set.
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(a) WfMRI
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(b) W̃fMRI
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Figure 2: Visualization of the best fits for the function f , which was W̃fMRI (for K = 6 with an error

matrix E), under the empirical adjacency matrix WfMRI for the group-averaged data set.
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(a) A
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(b) Ã
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Figure 3: Visualization of the best fits for the function f−1, which was Ã (again for K = 6 with an

error matrix E) under the empirical adjacency matrix A for the group-averaged data set.
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Figure 4: Scatter plot of the eigenvalues of the structural matrix A against the eigenvalues of WfMRI

with a least-squared fitted polynomial function with a maximal fitted exponent of K = 6 (including

the intercept f0) for the group-averaged data set.
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Figure 6: Plot of the estimated coefficient values for different maximal exponents K with their 95%

confidence interval as an errorbar for the mapping f : A → WMEG for the group-averaged data

set. The spectral and topology approach are marked in blue and red, respectively. Note that, the

confidence intervals of the coefficient values overlap and the distance between the estimated coefficient

values is becoming smaller when more coefficients are used.
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Figure 7: Plot of the estimated coefficient values for different maximal exponents K with their 95%

confidence interval as an errorbar for the mapping f : A → WfMRI for the group-averaged data set.

The spectral and topology approach are marked in blue and red, respectively. Note that, in nearly

all cases, the confidence intervals of the coefficient values overlap pointing towards similar estimated

coefficients for the spectral and topology domain.
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Figure 8: Plot of the estimated coefficient values for different maximal exponents K with their 95%

confidence interval as an errorbar for the mapping f−1 : WMEG → A for the group-averaged data set.

The spectral and topology approach are marked in blue and red, respectively.
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Figure 9: Plot of the estimated coefficient values for different maximal exponents K with their 95%

confidence interval as an errorbar for the mapping f−1 : WfMRI → A for the group-averaged data set.

The spectral and topology approach are marked in blue and red, respectively.
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to structure. In both displayed figures, the 95% confidence intervals for the estimated coefficients

of the different modalities do not overlap indicating significantly different coefficients using the 5%

significance level. This table and these confidence intervals show clearly the differences between the

different analyzed mappings pointing towards a modality-dependent mapping.

Table 1: Estimated coefficient values for a maximal exponent of K = 6 and z0 = 0 for the group-

averaged data set.

parameter in front of f: A -> WMEG f: A -> WfMRI parameter in front of f
-1

:  WMEG -> A f
-1

:  WfMRI -> A

I -0.186244926 -0.622088682 I 0.931541504 1.472348531

E 0.170142739 0.417817587 E -0.226229939 -0.098880043

A -0.002689163 0.073378816 W 15.61376486 1.633796259

A
2

0.000397359 0.027965465 W
2

25.77141943 -0.760008801

A
3

0.00136165 0.010963972 W
3

-64.46444579 0.241736267

A
4

-7.34E-05 -0.000932557 W
4

-92.90312812 -0.03937664

A
5

-5.42E-05 -0.000401534 W
5

-6.670779246 0.002673357

A
6

5.47E-06 3.96E-05 W
6

0.993949647 -4.75E-05

D Interpretation with walks

In Figure 12, we visualized our mapping in terms of the number of walks of the structural brain

network (without the error matrix E).

E Comparison with a previous study

In Figures 13 and 14, we compare our results with a previous study (Tewarie et al., 2014). Tewarie and

coworkers (Tewarie et al., 2014) demonstrated that the degree product between nodes in the structural

network together with the Euclidean distance has the ability to predict the functional connections

between these nodes. If we merely focus on the degree product, we observe that our approach with the

sum of structural matrices Ak (see Eq. (5)) is correlated with the degree product (SI Figure 13). The

correlation between those two measures is indeed positive with a Spearman correlation of R = 0.57

(p-value < 0.001). There are two clouds in the scatterplot: the upper cloud corresponds to direct

connections whereas the lower cloud corresponds to all possible indirect connections, consisting of

all walks larger than one. If we investigate the relationship between the previous model (including

degree product and Euclidean distance as predictors for functional connectivity) and the mapping

approach from this paper, the Spearman correlation R becomes higher (R = 0.64, p-value < 0.001, see

Figure 14). This result raises the question whether the Euclidean distance as a separate term in a model

for explaining functional connections is required (Alexander-Bloch et al., 2013). In our approach, we

only incorporated topological distance, which means the distance with respect to intermediary nodes

and links in the structural network, and not Euclidean distance; however, these findings might suggest

that topological distance and Euclidean distance between nodes are related.
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Figure 10: Plot of the estimated coefficient values for maximal fitted exponent K = 5 with their

95% confidence interval as an errorbar for the mapping from structural to functional networks for

the group-averaged data set. Note that the displayed intervals do not overlap, thus we face here

significantly different estimated values.

F Error analysis

The equation (1) assumes that W and A are known exactly. In reality, all types of error mask the

true structure so that we actually measure

W̃ = W + εWRW

where RW is a realization of a random matrix with unit norm and εW is the maximum amplitude of

the error. Similarly,

Ã = A+ εARA

and the assumption becomes

W̃ = f
(
Ã
)

or

W + εWRW = f (A+ εARA)
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averaged data set. Note that the displayed intervals do not overlap, thus we face here significantly

different estimated values.
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(a) WMEG
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(b) WfMRI

10 20 30 40 50 60 70

10

20

30

40

50

60

70

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Frontal L

Parietal L
Occipital L

Temporal L
Cingulate ROIs L

Frontal R 

Parietal R
Occipital R

Temporal R
Cingulate ROIs R

Figure 12: Visualization of a simplified version of our model (from (4) where ck = ck[f ]): Walks of

different length between node i and j, first the direct connection, then with one intermediate node,

with two and so on, adding up to the functional connectivity matrix.

Using the Taylor expansion (3),

f (A+ εARA) =
∞∑
k=0

fk (A) εkA (RA)k

up to first order (assuming that εA is sufficiently small!), then

W + εWRW = f (A) + f1 (A) εARA +O
(
ε2A
)

Invoking the assumption (1) shows a relation between the different types of errors

εWRW = f1 (A) εARA +O
(
ε2A
)

Given that the assumption (1) is correct and that A is known exactly, we could derive a method

to improve the measurements W̃ based on Section SI-A.3, which suggests that all eigenvectors of W

are fixed and known (i.e. X is the same as for A), so that W̃ needs to be modified to incorporate this

property. This analysis is a suggestion for future work.

To investigate the influence of false positives in the structural matrix, we randomly added con-

nections (1 % new connections) in the structural matrix of the group-averaged data set and redid the

analysis (power series in topology domain with 6 terms). The results can be found in the boxplots of

the goodness of fit (SSEnorm) in SI Figure 15. If we define the change in SSEnorm due to noise as the

noise influence NI whereas NI(SSEnorm) := standard deviation(SSEnorm)/mean(SSEnorm), then

we can calculated

NI(SSEnorm)(WfMRI → A) = 0.0174

NI(SSEnorm)(WMEG → A) = 0.0169

NI(SSEnorm)(A→WfMRI) = 0.0124

NI(SSEnorm)(A→WMEG) = 0.0158.
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Figure 13: Scatter plot of the structural degree product against the sum of the powers of the structural

matrix A (from power k = 1 up to k = 6).

Figure 14: Scatter plot of the estimated fMRI correlation matrix from the distance and degree model

described in a previous study (Tewarie et al., 2014) against the estimated values using the mapping

approach on the structural matrix A.
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(a) f−1 : WfMRI → A and f−1 : WMEG → A

different modalities
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Figure 15: Boxplot of the variations in SSEnorm in the topology domain for K = 6 with group-

averaged data for z0 = 0. To investigate the influence of false positives in the structural connectivity

matrix, we randomly added connections (1% new connections) in the structural matrix and redid the

analysis.

It can be observed from the above that the change in goodness of fit is small in the presence of little

noise (in the order of 1%), thus the mapping does not seem to be sensitive to small noise fluctuations.

If we analyze the region-to-region variability, we find that the inter-hemispheric connections were

often quite different between the empirical matrix and its fitted version (see the secondary diagonal in

Figures 16 - 19 where we displayed the absolute error). This result confirms our interpretation about

the more homologous inter-hemispheric connections in the fitted networks than in the empirically

observed networks. Furthermore, we were also interested in which regions benefitted more from an

increasing number of coefficients (darker regions in SI Figures 20-23). Those regions that benefitted

from an increasing number of fitted coefficients were possibly most influenced by longer walks in the

underlying structural network. For the estimated structural and functional networks by our mapping

we observe as a result quite a diverse homogenous spreading of the benefitting regions over the entire

group of regions except for the diagonal and secondary diagonal. Thus, we can again conclude that

the inter-hemispheric connections are probably benefitting most from our mapping approach.
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Figure 16: Absolute distance matrix between the best fit for Ã = f(WfMRI) (K = 6, z0 = 0) and the

empirical matrix A for the group-averaged data set.
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Figure 17: Absolute distance matrix between the best fit for Ã = f(WMEG) (K = 6, z0 = 0) and the

empirical matrix A for the group-averaged data set.
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Figure 18: Absolute distance matrix between the best fit for W̃fMRI = f(A) (K = 6, z0 = 0) and the

empirical matrix WfMRI for the group-averaged data set.
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Figure 19: Absolute distance matrix between the best fit for W̃MEG = f(A) (K = 6, z0 = 0) and the

empirical matrix WMEG for the group-averaged data set.
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Figure 20: Absolute differences in the error for 2 in comparison with the error for 6 fitted coefficients

(K = 6, z0 = 0) for the mapping f−1 : WfMRI → A for the group-averaged data set. Note that darker

areas correspond here to regions that benefitted more from a higher number of coefficients.

10 20 30 40 50 60 70

10

20

30

40

50

60

70
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4Frontal L

Parietal L
Occipital L

Temporal L
Cingulate ROIs L

Frontal R 

Parietal R
Occipital R

Temporal R
Cingulate ROIs R

Figure 21: Absolute differences in the error for 2 in comparison with the error for 6 fitted coefficients

(K = 6, z0 = 0) for the mapping f−1 : WMEG → A for the group-averaged data set. Note that darker

areas correspond here to regions that benefitted more from a higher number of coefficients.
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Figure 22: Absolute differences in the error for 2 in comparison with the error for 6 fitted coefficients

(K = 6, z0 = 0) for the mapping f : A → WfMRI for the group-averaged data set. Note that darker

areas correspond here to regions that benefitted more from a higher number of coefficients.
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Figure 23: Absolute differences in the error for 2 in comparison with the error for 6 fitted coefficients

(K = 6, z0 = 0) for the mapping f : A → WMEG for the group-averaged data set. Note that darker

areas correspond here to regions that benefitted more from a higher number of coefficients.
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G Reshuffled matrices

We used one reshuffling technique on all matrices: we selected two matrix entries at random and

then exchanged their entries in the matrix (their link weights in the network). We repeated this step

5000 times to obtain a reshuffled version of every matrix, which is again symmetric. Thereby we

preserved the distribution of the weights. After generating 100 reshuffled matrices, we compared the

goodness of fit distribution of the mappings using reshuffled matrices to our empirical results (see SI

Figures 24 and 25). More precisely, for each mapping from any matrix M to N , we first replaced the

underlying matrix M with a reshuffled version of this adjacency matrix and ran the same mapping

analysis on it. Then we replaced the image matrix N with a randomly reshuffled version of itself

(keeping the underlying matrix M as the original empirical matrix) and ran the fitting algorithm on

that combination (thus always one empirical matrix with one reshuffled version of the other matrix

together).

For the group-averaged data set, the fit errors of 100 reshuffled matrices were larger compared

to those obtained using the experimental data for all analyzed mappings (see SI Figures 24 and 25).

Therefore, we can conclude that the mapping from structure to function (and vice versa) fails when

reshuffled connections are used. Therefore, the empirical matrices seem to possess a special struc-

ture making the relationship between the structural and functional brain network closer than when

reshuffled version of those matrices are used.

For the data set of individual healthy controls, we also used 100 reshuffled matrices of their

structural and functional networks, respectively, and displayed the percentage of those matrices that

achieved better goodness of fit than our empirical data (see SI Figures 26 and 27).

When using 5 coefficients or more, we obtained good results for the mapping f : V → WfMRI

for nearly all subjects. Only subject number 5 seems to be an exception which could be due to

some measurement errors or specific individual attributes of that subject. We also identified two

individuals as outliers whose goodness of fit level did not outperform the random reshuffles for the

mapping f−1 : WfMRI → V . The function f−1 starting from MEG networks obtained good results

for K > 2. The only mapping that was not able to outperform the reshuffled matrices as a benchmark

for most of the subjects was f : V → WMEG in the individual healthy control data. To sum up, for

the individual structure-function relationships, in most of the cases the mapping performs worse when

we apply it to random reshuffles indicating a high goodness of fit level for the mapping between the

original empirical matrices.

H Details of the fitting procedure

In order to use the non-linear regression algorithm in MATLAB (using the routine nlinfit.m version

R2015a) to determine the coefficients in (5) by iterative least squares estimation, we need to adapt

our data first. Because all involved matrices are symmetric, we only need to fit the lower triangular

matrices and the diagonal to get our fitting results. Thus, we first write all matrices in a vectorized

form only containing their lower triangular and diagonal entries. For any matrix M of dimension

N×N this vector will be denoted by ltd(M). To be able to use the standard equation Y = X ·β (with

X design matrix, β parameter vector and Y image matrix) for a linear model, we need to define the
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(a) f : A→WfMRI

(b) f : A→WMEG

Figure 24: Plot of the normalized sum of squared errors (SSEnorm) of the function f in the topology

domain for different maximal fitted exponents K and always in combination with a randomly reshuf-

fled matrix R (RMEG, RfMRI and Are denoting the reshuffled versions of WMEG, WfMRI and A,

respectively) averaged over a range of z0 values from −3 till 3 (always including an error matrix E)

for the group-averaged data set.
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(a) f−1 : WfMRI → A

(b) f−1 : WMEG → A

Figure 25: Plot of the normalized sum of squared errors (SSEnorm) of the function f−1 in the topol-

ogy domain for different maximal fitted exponents K and always in combination with a randomly

reshuffled matrix R (RMEG, RfMRI and Are denoting the reshuffled versions of WMEG, WfMRI and

A, respectively) averaged over a range of z0 values from −3 till 3 (always including an error matrix

E) for the group-averaged data set.
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(b) f : V → RMEG
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(c) f−1 : RMEG → V
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(d) f−1 : WMEG → Vre
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Figure 26: Plot of the percentages of reshuffled matrices that resulted in a lower normalized sum

of squared errors (SSEnorm) in the topology domain for different maximal fitted exponents K with

individual healthy controls results for all mapping including MEG (V denoting the weighted structural

matrix and Vre denoting its randomly reshuffled version) for z0 = 0 (with an error matrix E).
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(a) f : Vre →WfMRI

maximal exponent fitted
0 1 2 3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 o

f r
es

hu
ffl

ed
 m

at
rix

 fi
ts

 w
ith

 lo
w

er
 S

S
E

no
rm

0

10

20

30

40

50

60

70

80

90

subject 1
subject 2
subject 3
subject 4
subject 5
subject 6
subject 7
subject 8
subject 9
subject 10
subject 11
5% level

(b) f : V → RfMRI
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(c) f−1 : RfMRI → V
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(d) f−1 : WfMRI → Vre
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Figure 27: Plot of the percentages of reshuffled matrices that resulted in a lower normalized sum

of squared errors (SSEnorm) in the topology domain for different maximal fitted exponents K with

individual healthy controls results for all mappings including fMRI (V denoting the weighted structural

matrix and Vre denoting its randomly reshuffled version) for z0 = 0 (with an error matrix E).
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variables for our case. In the case of f(A) = W , the response Y is just the image matrix W written

as a vector containing the lower triangular and diagonal entries, Y = ltd(W ). The design matrix X is

in the case of K as the maximal exponent

X =
(
ltd(J) ltd(I) ltd(A) ltd(A2) ... ltd(AK)

)
Therefore, the parameter vector β has the length (K + 2), where the first entry will be the coefficient

c in front of the all-one matrix J and the second one is the coefficient for the identity matrix I and

the others are in front of the matrix powers of A. Because the matrix powers of A are exploding

in magnitude quickly, we normalize all the matrices beforehand dividing every entry by the absolute

maximum entry of each matrix, which has the consequence that all matrices now have values between

0 and 1. Then, the nlinfit.m algorithm can be applied to our data using the underlying function

myfun.m displayed here

function F = myfun(beta,xdata)

F = xdata*beta;

end

where xdata refers to our design matrix X and beta is the parameter vector β. Because our model

resembles a GLM, we could also use the pseudo-inverse of our design matrix xdata (pinv(xdata))

and multiply it with the vectorized matrix Y in order to obtain the same estimated coefficients. In

order to obtain the coefficient values for the original powers of the A matrix, we have to denormalize

the estimated values by dividing the estimated coefficients each by the absolute normalization value

from before.

I Dimension differences

In practice, the m×m measured matrix W ∗ may be of a different dimension than the N×N matrix W .

If m ≥ N , then we can transform the measured matrix W ∗ to W as follows. Since W ∗ is symmetric,

the spectral decomposition is

W ∗ = Y ∗Υ∗Y ∗T

where the diagonal matrix Υ∗ = diag
(
µ∗1, . . . , µ

∗
N , µ

∗
N+1, . . . , µ

∗
m

)
with the real eigenvalues ordered

as |µ∗1| ≥ |µ∗2| ≥ . . . ≥ |µ∗m|. The ordering here is different than the usual ordering in Section A.3,

because eigenvalues of W may be negative (in principle; although those of a correlation matrix are

non-negative). Next, we let µk = µ∗k for 1 ≤ k ≤ N and µk = 0 for k > N and

Y ∗ =

[
(Y11)N×N (Y12)N×(m−N)

(Y21)(m−N)×N (Y22)(m−N)×(m−N)

]
so that

W̃ ∗ =

[
Y11 Y12

Y21 Y22

][
Υ O

O O

][
Y11 Y12

Y21 Y22

]T
=

[
Y11ΥY

T
11 Y11ΥY

T
21

Y21ΥY
T
11 Y21ΥY

T
21

]
from which we choose W = Y11ΥY

T
11. This method is well-known in the theory of singular value

decompositions (see e.g. (Golub and Loan, 1996)) and provides the best N ×N (in the mean-square

sense) approximation of an m×m matrix.
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