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1 GOVERNING EQUATIONS

For rigid and completely water-filled compartments with constant fluid density, mass conservation of
solution requires the condition

Qaxin −Qaxout +Qradin −Qradout = 0, (S1)

where Qaxin (Qaxout) is the axial volume flow rate of solution into (out of) position (r, z), and Qradin (Qradout ) is
the radial volume flow rate into (out of) position (r, z).

The concentration of solute species m at position (r, z) is given by a conservation equation:

dCm
dt

=
1

V

[
Saxin,m − Saxout,m + Sradin,m − Sradout,m

]
, (S2)

where V is the solution volume, Cm is the concentration of species m, Saxin (Saxout) is the axial flux of solute
m into (out of) position (r, z) and Sradin (Sradout ) is the radial flux of solute m into (out of) position (r, z).

The flow rate of water in a plant root is driven by both hydraulic and osmotic pressure gradients. Hence,
the radial flow rate of water is given by (Katchalsky and Curran, 1965):

Qradin = Lradp Arad

[
∆prad −RgT

N∑
m=1

σradm ∆Cradm

]
, (S3)

and similarly, the axial flow rate of water in all tissues except the region in which the xylem is conductive
is given by,

Qaxin = Laxp A
ax

[
∆pax − ρg∆z −RgT

N∑
m=1

σaxm ∆Caxm

]
, (S4)

where Lradp (Laxp ) is the position-dependent, radial (axial) water permeability, Arad (Aax) is the element of
surface area through which the radial (axial) water flow is occurring, ∆p is the hydraulic pressure gradient
across the region of interest, ρ is the fluid density, g is the acceleration due to gravity directed toward
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decreasing z, ∆z is a discrete height increment (see Section 2.4 for further details), Rg is the Universal
Gas Constant (8.314 J mol−1K−1), T is the (constant) temperature, σradm (σaxm ) is the position-dependent
radial (axial) reflection coefficient of solute ion m = 1, . . . , N . Here, N is the total number of ions in the
system; ∆Cm is the concentration difference of ion type m across the region of interest. In Eqs. (S3) and
(S4) we have assumed that solute concentrations are sufficiently low that use of the van’t Hoff relation for
osmotic pressure, ∆Πm = RgT∆Cm, is valid (Katchalsky and Curran, 1965). The appropriateness of this
assumption is discussed in Foster and Miklavcic (2014).

In contrast to the other root tissue regions, axial transport in the functional xylem is not interrupted by
cell membranes. Hence, the axial flow of water in the xylem is driven by hydraulic pressure gradients only,
with no osmotic pressure gradients present. This water flow can be modeled as linearly proportional to the
hydraulic pressure gradient, using Darcy’s Law,

Qaxin =
kaxAax

µ

∆pax − ρg∆z

∆z
, in functional xylem (S5)

where kax is a position-dependent, axial water permeability, and µ is the (constant) dynamic viscosity of
the fluid.

The transport of ions in the model plant root is governed by a chemical potential contribution (arising
from concentration differences), an electric field contribution (due to an electric potential difference) and
by convection. Hence, the radial flux of ions (Sradin,m) and the axial flux of ions in all tissues except the
functional xylem (Saxin,m) are given by,

S
rad/ax
in,m = k

rad/ax
m Arad/ax ×

[
∆C

rad/ax
m +

ZmCmF

RgT
∆ψrad/ax

]
+
(

1 − σ
rad/ax
m

)
CmQ

rad/ax
in . (S6)

where, kradm (kaxm ) is the radial (axial) diffusive permeability of ion m, Zm is the valence of ion m, F is
Faraday’s constant (96 485 C mol−1), and ∆ψ is the electric potential gradient across the region of interest.

Due to the absence of membranes, the axial flux of solutes in the functional xylem is given by,

Saxin,m = kaxm A
ax

[
∆Caxm +

ZmCmF

RgT
∆ψax

]
+ CmQ

ax
in , in functional xylem (S7)

where the convection term is not scaled by a solute reflection coefficient.

The value of ψ in Eqs. (S6) - (S7) is determined by solving Poisson’s equation as described previously
(Foster and Miklavcic, 2013, 2014).

In order to implement the equations outlined above, the r and z root volume space was discretized into
compartments identified by discrete positions (rα, zj), where α = 1, . . . , 5 and j = 1, . . . , 100.
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