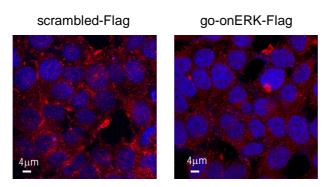
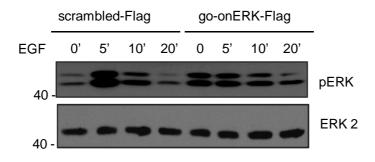
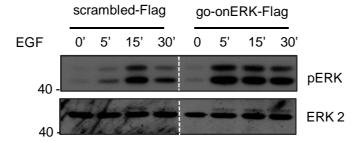

Supplementary figure S1. praja2 degrades KSR1 through the proteasome. Immunoblot of lysates from cells transiently transfected with Flag-praja2 vector (either wild type or ring mutant). Where indicated, the cells were treated with MG132 ($10\mu M$) and harvested at the indicated time points.

Α




Supplementary Figure S2. praja2 regulates ERK phosphorylation by EGF. Osteosarcoma cells (U2OS) (**A**) or HEK 293 cells (**B**) were transiently transfected with empty vector (CMV) or flag-praja2rm (RM) vector and treated with EGF (100ng/ml). HEK293 are pretreated for 15 minutes with U0126 (5µm) (**B**). Lysates were immunoblotted with the indicated antibodies.


Suplementary figure S3. Quantitative analisys of esperiment showed in 4C.

Suplementary figure S4. Entry of go-onERK-Flag into the cells. HEK293 cells, treated for eight hours with scrambled-Flag or go-onERK-Flag peptides, were immunostained with monoclonal anti-Flag antibody. Nuclei were stained with DRAQ5. Images were collected and analyzed by confocal microscopy.

LNCAP

U87

Suplementary figure S5. LNCAP and U87 cells were pretreated (8 hours) with the synthetic peptides(1 μ M) (scrambled-Flag and go-onERK-Flag-Flag) and stimulated with EGF. Lysates were immunoblotted for P-ERK and ERK

```
Kinase domain of KSR2 is in PDB (2Y4I)
Sequence alignment with KSR1 shows very high conservation
Identified Peptide 862-<mark>DIGERPORSY</mark>-872 in KSR1 is analogous to 913-<mark>EQUARIZED A</mark>
SP | GEVABE | KSR2_HUMAN -------MDE-----ENMTKSEEQQPLSLQKALQQCELVQMMIDLSISNLEGLRT 43
SP|QSIVT5|KSR1_HUMAN KCAVSNDLTQQEIRTLEAKLVRYICKQRQCKLSVAPGERTPELNSYPRFSDMLYTFNVRP 120
SP|Q6VAB6|KSR2_HUMAN KCATSNDLTQKEIRTLESKLVRYFSRQLSCKKKVALQERNAELDGFPQLRHMFRIVDVRK 103
SP Q6VAB6 KSR2_HUMAN -QDWTIQWPTTETGKENN-PVCPPEPTPWIRTHLSQSPRVPSKCVQHYCHTSPTPGAPVY 221
                          ---RSISVSALPASDSPTPSFSEGLSD-TCIPLHA-SGRLT--PRALESFITPPTTPQLR 278
SP|QSIVT5|KSR1_HUMAN ---RSISVSALPASDSPTPSFSEGLSD-TCIPLEA-SGRLT--PRALESFITPPTTPQLR 278
SP|Q6VAB6|KSR2_HUMAN TEVDRLTVDAYPGLCPP-PPLESGERSLPPSPRQREAVRTPPRTPNIVTTVTPPGTPPMR 280
                                           * * :..* .
SP |Q8IVT5 | KSR1_HUMAN RETKLKPPRTPPPPSRKVFQLLPSFPTLTRSKSHESQLCNRIDDVSSMR
SP |Q6VAB6 | KSR2_HUMAN KKNKLKPPCTPPPSSRKLIHLIPGFTALHSK6HEFQLCHKVDEAHTFKAKKKSKPLNLK 340
SP|QSIVT5|KSR1_HUMAN ------FDLSEGSP 335
SP|Q6VAB6|KSR2_HUMAN IHSSVGSCENIPSQQRSPLLSERSLRSFFVGHAPFLPSTPPVHTEANFSANTLSVFRWSP 400
SP Q6VAB6 KSR2_HUMAN IERGDPARLVRTESVPCDINNPLRKPPRYSDLHISQTLPKTNKINKDHIPVPYQPDSSSN 520
SP | Q6VAB6 | KSR2_HUMAN PSSTTSSTPSSPAPPLPPSATPPSPLHPSPQCTRQQXNFNLPASHYYKYKQQFIFPDVVP 580
8P \mid Q8IVT5 \mid RSR1\_HUMAN \ GHCWRCLLIAESLRENAFNISAFAHAAPLPEAADGTRLDDQFRADVLEAHEAEAEEPEAG \ 567 \ SP \mid Q6VAB6 \mid RSR2\_HUMAN \ VPET------PTRAPQVILEPVTSNPILEGNPLLQIEVEPTS------EN--EEV \ 621
                                                * . : *: *.
SP|OSIVTS|KSR1_HUMAN KSEAEDDEDEVDDLPSSRRPWRGPISRKASQTSVYLOEWDIPFEQVELCEPICOGRWCRV 627
SP|Q6VAB6|KSR2_HUMAN | BDEAEESEDDFEEMNLSL-LSARSFPRKASQTSIFLQEWDIPFEQLEIGELIGKGRFGQV 680
SP | Q8IVT5 | RSR1_HUMAN | FCKGRTLHSFVRDPKTSLDINKTRQIAQEIIKGMGYLHAKGIVHKDLKSKNVFYDNGKVV 747
SP Q6VAB6 KSR2_HUMAN LCKCRTLYSVVRDAKIVLDVNKTRQIAQEIVKCMCYLHAKCILHKDLKSKNVFYDNGKVV 800
SP|OSIVIS|KSR1_HUMAN | ITDFCLFGISGVVREGRRENOLKLSHDWLCYLAPEIVREMTPGKDEDOLPFSKAADVYAF 807
SP|OSVAB6|KSR2_HUMAN | ITDFCLFSISGVLQAGRREDKLBIQWGWLCHLAPEIIRQLSPDTEEDKLPFSKBSDVEAL 860
SP | QSIVT5 | KSR1_HUMAN GTVWYELQARDWPLKNQAAEASIWQIGSGEGMKRVLTSVSLGKEVSEILSACWAF<mark>OLGER</mark> 867
SP | QGVAB6 | KSR2_HUMAN GTIWYELBAREWPFKTQPAEATIWQMGT--CMKPNLSQIGMGKEISDILLFCWAEEQESS 918
```

Suplementary figure S6. alignament of human KSR1 (KSR1_HUMAN, Q8IVT5) with KSR2 sequence (KSR2_HUMAN, Q6VAB6)