## Extracellular control of intracellular drug release for enhanced safety of anti-cancer chemotherapy

Qian Zhu<sup>a</sup>, Haixia Qi<sup>a</sup>, Ziyan Long<sup>a</sup>, Shang Liu<sup>a</sup>, Zhen Huang<sup>a</sup>, Junfeng Zhang <sup>a</sup>, Chunming Wang<sup>b</sup>, Lei Dong <sup>a</sup>

<sup>a</sup>State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China.

<sup>b</sup>State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR.

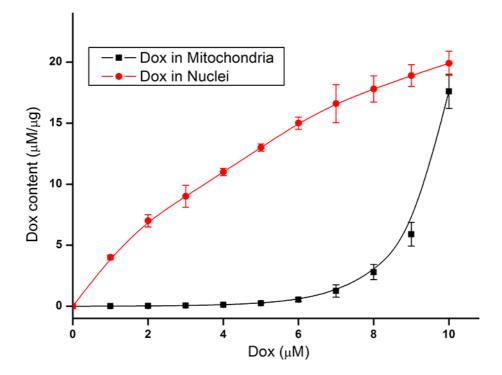
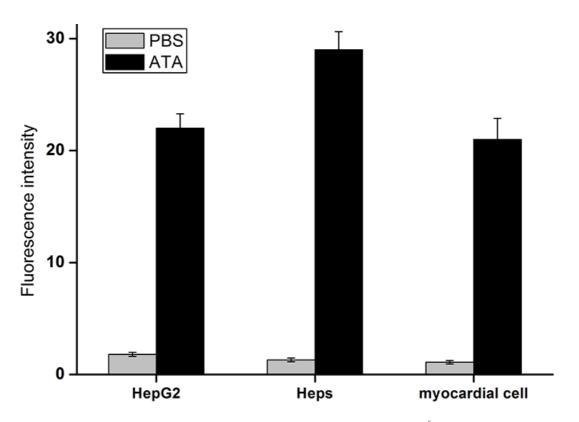
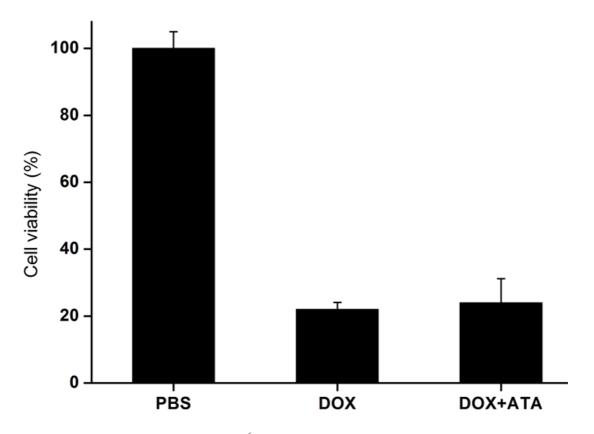





Figure S1: Mitochondria and nucleus were separated from mouse primary myocardial cells and were incubated with Dox of different concentration solved in PBS at 37  $^{\circ}$ C for 30 min. Dox contents in mitochondria and nucleus were then quantified. The experiments were triplicated and the results were mean ± SE.



**Figure S2:** HepG2, Heps and mouse primary myocardial cells  $(1 \times 10^6)$  were incubated with 1  $\mu$ M ATA in PBS at 37 °C for 30 min. After removal of extracellular ATA, cell lysates were obtained and centrifuged. The supernatants were diluted into 100  $\mu$ L PBS for examination of ATA fluorescence intensity (Exc: 220 nm, Emi: 409 nm). The experiments were triplicated and the results are expressed as mean  $\pm$  SE.



**Figure S3:** HepG2 cell cultures ( $1 \times 10^6$  per well) were incubated with 0.2 µg/ml Dox with or without 1 µM ATA for 12 hours before the cell viability were evaluated. The experiments were triplicated and the results are expressed as mean ± SE.