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I. GRID

The six-dimensional grid in the XY = (R, θ1, θ2, ϕ, r, s) coordinates was obtained as a

direct product of the intermolecular X = (R, θ1, θ2, ϕ) and intramolecular Y = (r, s) grids.

The parameter R denotes the separation between the centers of mass (COM) of H2 and CO.

To define the angles, let us choose the z axis going through these COMs and oriented from

H2 to CO. The parameter ϕ denotes the dihedral angle between half planes going through

this axis and one of the H atoms (denoted as H1) and the C atom. The angles of the

vectors formed by the COMs and these two atoms with the z axis are denoted as θ1 and

θ2, respectively (with zero values for the COM-atom vectors colinear with the axis). The

coordinates r and s are the H-H and C-O distances, respectively.

The intermolecular grid is similar to that used in Ref. 1, i.e., it is a direct product of

grids in R and (θ1, θ2, ϕ). The following 18 values of R (in bohr) have been used: 5.0, 5.25,

5.5, 5.75, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 10.0, 11.0, 12.0, 13.5, 15.0, 17.5, 20.0. This radial

grid has been combined with the angular one, defined as in Ref. 2 by a set of 33 unique

combinations of the following angles: 0◦, 45◦, 90◦, 135◦ for θ1; 0
◦, 45◦, 90◦, 135◦, 180◦ for θ2;

0◦, 45◦, 90◦ for ϕ. For four intermolecular distances, 7.0, 8.0, 10.0, and 15.0 bohr, the angular

grid was made twice as dense in each of the θ1, θ2, and ϕ coordinates, which resulted in

208 additional angular configurations. Thus, the total number of intermolecular grid points

resulting from the regular grid defined above is equal to 18·33+4·208 = 1,426.

The grid in the intramonomer coordinates Y = (r, s) was constructed as a direct product

of 5 points in r: 0.95, 1.2, 1.4, 1.67, 2.05 bohr, and 5 points in s: 1.9, 1.99, 2.13, 2.30, 2.45

bohr. One more grid point was (rc, sc) = (1.474, 2.165) bohr. These values are not any of

the vibrationally averaged distances but are chosen to lie between the values averaged in the

ground and first excited states. This choice was made in Refs. 1 and 3 to perform Taylor

expansions of the surface around these points. Thus, the two-dimensional grid in the Y

coordinates is comprised of 26 points. The direct product of the inter- and intramolecular

grids results in 37,076 points of the total regular grid in the XY coordinates.

The use of very large interaction energies in the data set leads to some bias when fitting

the potential since the errors related to such points are large and difficult to control with

energy-based weights. Therefore, we decided to include only interaction energies below 1000

cm−1 (this resulted in not using 1,922 of the computed energies). On the other hand, our
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goal was to cover all regions of the coordinate space with interaction energies below this

threshold. Therefore, for the smallest distance from the regular grid, R = 5.0 bohr, we

identified orientations with interaction energy values smaller than 1000 cm−1. For such

angular orientations, the interaction energy was calculated for R equal to 4.75 and 4.5 bohr,

combined with all intramonomer grid points in the Y coordinates. This resulted in 832

additional grid points and the total number of grid points in the six-dimensional space

defined by the XY coordinates was thus increased to 37,908. However, for 14 of these

points, all corresponding to small values of R and the repulsive part of the potential, ab

initio calculations did not converge. Thus, the final, six-dimensional grid comsists of 37,894

points (but, as mentioned, 1,922 of these points were not used in the fit).

For all of these 37,894 points, the interaction energy denoted further as Eint,B, where “B”

in the subscript denotes the ‘base’ level of theory and basis set, was calculated as follows.

The Hartree-Fock interaction energy, EHF
int [Q], was computed using the aug-cc-pVQZ basis

set4. The correlation part, δE
CCSD(T)
int [TQ], was computed using the coupled-cluster method

with single, double, and noniterative triple excitations [CCSD(T)] in the aug-cc-pVXZ, X =

T and Q, basis sets4. These results were used to perform 1/X3 (Ref. 5) extrapolation to

the complete basis set (CBS) limit. The extrapolated result is denoted as δE
CCSD(T)
int [TQ].

Thus, the interaction energy is

Eint,B = EHF
int [Q] + δE

CCSD(T)
int [TQ].

At the grid points with intramonomer coordinates (r, s) = (rc, sc), we have performed calcu-

lations at a higher level of theory: CCSD(T) calculations in the aug-cc-pV5Z basis set and

CCSDT(Q) calculations in aug-cc-pVDZ basis set, where here T stands for iterated triple

excitations and (Q) stands for noniterated quadruple ones. The latter calculations applied

the frozen-core approximation whereas all other calculations were done with all electrons.

This defines two corrections:

∆Eint[TQ;Q5] = EHF
int [5] + δE

CCSD(T)
int [Q5]− Eint,B,

and

δE
T(Q)
int [D] = E

CCSDT(Q)
int [D]− E

CCSD(T)
int [D].

Thus, the interaction energy at the high-level of theory is defined as

Eint,H = Eint,B +∆Eint[TQ;Q5] + δE
T(Q)
int [D]. (1)
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To combine the two sets of results, we have employed the idea of the hybrid potential

introduced in Refs. 6–8 (also indirectly in Refs. 1 and 3). If, for an arbitrary complex, one

knows a full-dimensional surface Vfull, obtained at a moderate level, and a rigid-monomer

surface Vrigid, obtained at high level, the hybrid surface can be defined as

Vhyb(d) = Vfull(d) + (Vrigid(u)− Vfull(u)) ≡ Vrigid(u) + (Vfull(d)− Vfull(u)), (2)

where d = (R, θ1, θ2, ϕ, r, s) and u = (R, θ1, θ2, ϕ, rc, sc) denote geometries with distorted and

the corresponding undistorted (i.e., rigid-geometry) monomers, respectively. For nonlinear

monomers, the definition depends on the embedding of monomers in the dimer8. The first

grouping in Eq. (2) can be interpreted as adding a correction for the extended theory level

computed only at rigid geometries to the lower-level full-dimensional potential. The second

grouping amounts to adding a monomer distortion correction computed at a lower level of

theory to a more accurate rigid-monomer potential. In the previous work, the “full” and

“rigid” potentials on the right-hand side of Eq. (2) were individually fitted. In contrast, we

applied Eq. (2) to individual grid points

Eint,hyb(X, r, s) = Eint,B(X, r, s) + (Eint,H(X, rc, sc)− Eint,B(X, rc, sc)). (3)

For grid points with 5.0 ≤ R < 5.5 bohr, we replaced Eq. (1) by Ẽint,H = Eint,B + δE
T(Q)
int [D]

since for some angular orientations there were problems with converging the interaction

energy calculations in the aug-cc-pV5Z basis set. For grid points with R < 5.0 bohr, we

used only Eint,B, as these values are in a highly repulsive region and do not need to be very

accurate. The set of interactions energies defined by Eq. (3) was used to fit a 6-dimensional

potential.

To check how the hybrid approximation works, we computed Eint,H for a set of deformed

monomer geometries: XY = (8.0, 0◦, 180◦, 0◦, r, s) and XY = (7.0, 0◦, 0◦, 0◦, r, s) for all 25

(r, s) values in each case. The results of Table I show that for (r, s) close to (rc, sc), the

approximation works very well, i.e., the hybrid results are closer to the Eint,H than the Eint,B

values are. However, for (r, s) farthest from (rc, sc), in particular for extensions of the C-O

bond at R = 7 bohr, the approximation is sometimes poor and in 22% of cases the hybrid

results are less accurate than the Eint,B values. One may try to devise a scheme of gradually

phasing out the high-level correction for more distorted monomers, but we could not find

any sensible approach. The hybrid Ansatz of Eq. (2) was shown to work well for the water
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dimer as the spectra of this system computed in Ref. 6 agreed overall better with experiment

than the spectra calculated with the base potentials in Ref. 9.

II. ANALYTIC FIT

The analytic representation of the 6-dimensional potential energy surface is a general-

ization of the 4-dimensional surfaces of the type developed in Refs. 1, 2, 10, and 11 in the

sense that the parameters of the intermolecular part are expanded in polynomials of r and

s. The surfaces of this type consist of short-range and long-range (asymptotic) components

Vsh and Vas, respectively, so that the total potential is

V (R, θ1, θ2, ϕ, r, s) = Vsh(R, θ1, θ2, ϕ, r, s) + Vas(R, θ1, θ2, ϕ, r, s). (4)

The short-range part is defined in a similar way as in Ref. 11, except that the fitting function

depends not only on the intermolecular coordinates, but also on the intramolecular ones r

and s, i.e.,

Vsh(R, θ1, θ2, ϕ, r, s) =

[
3∑

i=0

RiCi(θ1, θ2, ϕ, r, s)

]
eD(θ1,θ2,ϕ,r,s)−B(θ1,θ2,ϕ,r,s)R. (5)

The angular factors in Eq. (5) are defined as

Ci(θ1, θ2, ϕ, r, s) =
∑
l1,l2,l

10∑
j=1

gl1l2l,ji Al1l2l(θ1, θ2, ϕ)wj(r, s), (6)

B(θ1, θ2, ϕ, r, s) =
∑
l1,l2,l

6∑
j=1

bl1l2l,jAl1l2l(θ1, θ2, ϕ)wj(r, s), (7)

and D is analogous to B. The polynomials wj(r, s) are defined in Table II. The definitions

of the angular functions Al1l2l(θ1, θ2, ϕ) can be found in Ref. 11. The sum in Eq. (6) runs

over the (l1, l2, l) indices in the set of 25 arrangements, whereas the sum in Eq. (7) runs

over 8 arrangements; both sets are listed in Ref. 1. Thus, there are 1000 coefficients gl1l2l,ji ,

48 bl1l2l,j, and 48 dl1l2l,j.

The Vas component is given by

Vas(R, θ1, θ2, ϕ, r, s) =
12∑
n=4

∑
l1,l2,l

fn[B(θ1, θ2, ϕ, r, s)R]
C l1l2l

n

Rn
Γn(θ1, θ2, ϕ, r, s)Al1l2l(θ1, θ2, ϕ),

(8)
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where fn are the Tang-Toennies damping functions12 and B is the same as in Eq. (5). This

form was introduced in Ref. 11 except for the scaling factor Γn(θ1, θ2, ϕ, r, s). A constant

scaling factor was used in the 4-dimensional fit of Ref. 1, but we found that such form was

insufficient for the 6-dimensional fit. The C l1l2l
n coefficients contain information about the

asymptotic electrostatic, induction, and dispersion components of the interaction energy.

The index n in Eq. (8) runs from 4 to 12, where the n = 4 term originates from the

quadrupole-dipole electrostatic interaction of the H2 and CO molecules. These coefficients

were ab initio computed in Ref. 11 from monomers’ multipole moments and polarizabilities

(static and dynamic) at the level consistent with the level of symmetry-adapted perturbation

theory (SAPT)13 used in Ref. 10. This level of theory is different from that of the present

work and also our basis sets are much larger than used in Ref. 11. Since the asymptotics of

the CCSDT(Q) method is unknown, we have decided to take the numerical values of C l1l2l
n

from Ref. 11 and introduce factors Γn of the form

Γn(θ1, θ2, ϕ, r, s) =
∑

k1,k2,k

6∑
j=1

γk1k2k,j
n Ak1k2k(θ1, θ2, ϕ)wj(r, s), n = 4, . . . , 10, (9)

where the first sum runs over 4 sets of (k1k2k): (0, 0, 0), (0, 1, 1), (0, 2, 2), (2, 0, 2). The values

of 168 γk1k2k,j
n parameters, (7× 4× 6), were obtained by least squares fitting of Vas without

damping functions, i.e., with fn = 1, to the 16,822 long-range energies Eint,hyb(X, r, s) with

R ≥ 10 bohr. The Γn parameters for n > 10 were set to 1. In the least squares fitting of Vas,

the interaction energies were weighted by a factor wa =
(

R
Rw

)8

, where Rw = 10 bohr. One

may argue that a more consistent way of scaling would be to introduce coefficients Γl1l2l
n (r, s),

i.e., to scale each C l1l2l
n by a factor depending on intramonomer coordinates. However, since

the number of coefficients C l1l2l
n with n ≤ 10 is 80, this would give 6 × 80, too many linear

parameters.

The final potential was fitted to the 27,132 values of Eint,hyb(X, r, s), using the functional

form of Eq. (4) with the asymptotic part Vas frozen, except for the parameters bl1l2l,j. Out

of the total number of 37,894 computed interaction energies, we rejected 1,922 values larger

than 1000 cm−1 and 8,840 values with R > 12 bohr. The high-energy values are unimportant

for the intended applications of our fit and the values at R > 12 bohr are already well

reproduced by the asymptotic part of the fit.

We used the following weights in the fit:

wt = wEwrws (10)
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wE =


(
Ew

E

)2
for E > Ew

e−3(E−Ew)/2Ew for E ≤ Ew

, (11)

wr =
1

1 +
(
r−rw
0.6

)2 , ws =
1

1 +
(
s−sw
0.3

)2 , (12)

where Ew = 175 cm−1, rw = 1.45 bohr, and sw = 2.14 bohr. The values of the weighting

factors wr and ws are smallest for the values of r and s which differ most from rw ≈ rc and

sw ≈ sc, respectively. This means that the energies calculated with the highest accuracy,

i.e., with r ≈ rc and s ≈ sc, are weighted most in the fit.

The accuracy of the fit can be characterized by the root-mean-square error (RMSE),

which is equal to 0.629 cm−1 for all 27,132 grid points used in the final fit. For the 22,668

negative energies, i.e., belonging to the interaction potential well, the RMSE amounts to

0.164 cm−1, whereas for the 4,464 positive energies (smaller than our threshold of 1000

cm−1), the RMSE is equal to 1.505 cm−1.

To further check the quality of our fit, we calculated the Eint,hyb interaction energies at 200

randomly chosen points, applying the following restrictions: R ∈ [5.5, 10.0], r ∈ [0.95, 2.05],

and s ∈ [1.90, 2.45] bohr. The angles were generated within their full ranges. Four energies

from this random set were larger than 1000 cm−1 and were discarded. For the 153 points

with negative energies, the RMSE of the V15 potential with respect to the ab initio energies

was equal to 0.42 cm−1. The corresponding RMSE for the negative energies obtained on

the grid used in the fitting procedure, but restricted to the same ranges of R, r, and s,

was equal to 0.17 cm−1. For the 43 remaining positive energies, the RMSE amounted to

5.45 cm−1, whereas for the corresponding energies used in the fit, it is equal to 1.37 cm−1.

Thus, the increase of RMSE was a factor of 2.5 and 4, respectively. While this increase

was relatively substantial, the RMSE for negative energies is still smaller than the estimated

uncertainty of our ab initio interaction energies, amounting to 0.6 cm−1. Thus, we concluded

that calculations of additional interaction energies was not warranted.

III. SPHERICAL HARMONICS FIT

Since quantum scattering calculations require an expansion of the angular dependence of

the potential energy surface into products of spherical harmonics, the potential described in

Sec. II had to be refitted. Due to the way the scattering calculations are done, the refit was
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made for a set of fixed values of (r, s), i.e., it consisted of a set of 4D fits. The fit of Eq. (4)

was employed to generate interaction energies on a very dense grid of 7,500,000 geometries

in R, (θ1, θ2, ϕ), and (r, s). The following 25 values of R (in bohr) have been used: 4.00,

4.25, 4.50, 4.75, 5.00, 5.25, 5.50, 5.75, 6.00, 6.25, 6.50, 6.75, 7.00, 7.25, 7.50, 8.00, 8.50, 9.00,

9.50, 10.00, 11.00, 12.00, 13.00, 14.00 and 15.00. This radial grid has been combined with

3000 random angular geometries (θ1, θ2, ϕ). The grid in the intramonomer coordinates (r, s)

has been obtained as a direct product of Gauss-Hermite quadrature points: 10 points in r

(0.60, 0.81, 0.99, 1.16, 1.32, 1.48, 1.64, 1.81, 1.99, 2.2) bohr and 10 points in s (1.82, 1.90,

1.97, 2.04, 2.10, 2.16, 2.23, 2.29, 2.36 and 2.44) bohr. We note that some of these points lie

outside the ranges of our ab initio data. We have checked, however, that the fit is still stable

at the extreme values, and, in any case, the contribution of these points to the quadrature is

almost negligible. A set of 100 4D grids with 75,000 energy points each were thus produced,

and each such set was fitted by a 4D analytical expansion of the form

V (R, θ1, θ2, ϕ) =
∑
l1l2l

vl1l2l(R)sl1l2l(θ1, θ2, ϕ), (13)

where the basis functions sl1l2l are products of associate Legendre polynomials and cosine

functions listed in Eq. (A9) of Ref. 14. The indices l1 and l2 refer to θ2 and θ1 dependence,

whereas l runs from 0 to the sum of l1 and l2. The expansion coefficients vl1l2l were ob-

tained through a least-squares fit on the random grid of 3000 angular geometries at each

intermolecular separation (i.e., each vl1l2l(R) is in a tabular form at this point). All terms

up to l1 = 10, l2 = 6, and l = 16 were included, resulting in 142 terms in Eq. (13), as

in Ref. 15. The RMSE value was found to be lower than 0.1 cm−1 for all intramonomer

coordinates (r, s) when R & 6 bohr. For (r, s) points close to (rc, sc), the RMSE was lower

than 0.1 cm−1 already for R & 4.5 bohr. We then selected only the most significant terms

using a self-consistent Monte Carlo error estimator (defined in Ref. 16), resulting in a final

set of 60 expansion functions with indices up to l1 = 7, l2 = 4, and l = 11. The Monte Carlo

approach also allows us to estimate the mean error of the expansion coefficients vl1l2l(R) as

smaller than 0.1 cm−1 for R & 5 bohr. Finally, a cubic spline radial interpolation of the

coefficients vl1l2l(R) was performed over the whole R range and it was smoothly connected

using a switching function to standard extrapolations (exponential and power laws at the

short and long-range, respectively) in order to provide continuous radial expansion coeffi-

cients suitable for the scattering calculations. Details of the switch function can be found
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in Ref. 17.

IV. VIBRATIONAL AVERAGING

In the main text, we presented scattering cross sections obtained from the vibrationally

averaged potential energy surface (PES) ⟨V15⟩0. This averaging was over the para ground

state rovibrational wave function, i.e., (vH2 = 0, jH2 = 0). It can be noticed on Figs. 1-2 of

the main text that the agreement between the full-6D treatment and the 4D calculations

based on the ⟨V15⟩0 PES is better for para-H2(jH2 = 0) than for ortho-H2(jH2 = 1). As shown

in the figure below, when the 6D PES is averaged over the (vH2 = 0, jH2 = 1) rovibrational

wave function instead of (vH2 = 0, jH2 = 0), the agreement with the full-6D treatment

improves significantly and the shift becomes smaller than 0.01 cm−1 also for ortho-H2.
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FIG. 1. Cross sections for the CO excitation (jCO = 0 → 1) due to ortho-H2(jH2 = 1) as functions

of the collision energy in the range 5–6 cm−1. Here the full-6D PES V15 was averaged over the

(vH2 = 0, jH2 = 1) rovibrational wave function.
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V. CONVOLUTION OF CROSS SECTIONS

In order to compare our scattering calculations with the measurements of Chefdeville

et al.18, the computed cross sections σ(E) were convolved with the experimental collision

energy spread according to:

σconv(E) =

∫ ∞

0

σ(E ′)Gδ(E − E ′)dE ′ (14)

with

Gδ(E) =
1√
2πδ

exp

(
−E2

2δ2

)
, (15)

where δ(E) is determined by the crossed-beam experiment of Ref. 18 (Astrid Bergeat, private

communication):

δ(E) =
1√
2
(0.827 + 0.0826E − 5.24× 10−4E2 + 3.73× 10−6E3 − 9.87× 10−9E4), (16)

for para-H2 and

δ(E) =
1√
2
(0.909 + 0.0833E − 5.26× 10−4E2 + 3.40× 10−6E3 − 8.15× 10−9E4), (17)

for normal-H2.

VI. CROSS SECTION FOR jCO = 0, 1 → 2 EXCITATION

The cross sections for the excitation of CO (jCO = 0 → 1) due to para- and normal-H2

were presented in the main text. The results obtained for CO (jCO = 0, 1 → 2) excitation

due to para-H2(jH2 = 0) are displayed in Fig. 2 here. The experimental data are taken from

Fig. 1 of Ref. 18. The theoretical cross sections were calculated with the 6D V15 surface and

were convolved with the experimental energy spread. The theoretical data correspond to

the sum of two contributions: the excitations from the initial levels jCO = 0 and jCO = 1

with weights of 90% and 10%, respectively, based on average population of the jCO = 1 level

in the experiment. We note in particular that the jCO = 1 → 2 contribution explains the

behaviour of the experimental cross section below the jCO = 0 → 2 threshold, as pointed out

in Chefdeville et al.18 The agreement between theory and experiment is again very good,

actually better than on Figs. 3 and 4 of the main text as most of the computed values

are within the experimental error bars. The agreement is particularly impressive close to
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FIG. 2. Cross sections for CO excitation (jCO = 0, 1 → 2) due to para-H2(jH2 = 0) as function of

collision energy. Theory (blue line) is from 6D calculations with V15. The experimental data are

taken from Fig. 1 of Ref. 18.

the threshold, where the error bars are smallest. This improved agreement may indicate

that the experimental disentanglement of different types of scattering introduces additional

uncertainties not fully accounted by the error bars.
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TABLE I. The values of Eint,B, Eint,hyb, and Eint,H are presented in the rows denoted by A,

B, and C, respectively, for two intermolecular sets of parameters X = (7.0, 0◦, 0◦, 0◦) and

X = (8.0, 0◦, 180◦, 0)◦, and a grid of the intramolecular coordinates Y = (r, s). The percentage

error of Eint,B and Eint,hyb, with respect to Eint,H, are given in the parenthesis. The reference

values of Eint,B and Eint,hyb = Eint,H calculated for (rc, sc) = (1.474, 2.165) bohr are -74.809 cm−1

and -75.314 cm−1 for (7.0, 0◦, 0◦, 0◦), and -91.318 cm−1 and -94.045 cm−1 for (8.0, 0◦, 180◦, 0◦),

respectively. All energies are given in cm−1 and distances in bohr.

r\s 1.90 1.99 2.13 2.30 2.45

(7.0, 0◦, 0◦, 0◦)

0.95 -42.402(-1.37%) -45.884(-1.11%) -51.339(-0.67%) -57.701(-0.10%) -62.770( 0.41%) A

-42.907(-0.20%) -46.389(-0.02%) -51.844( 0.31%) -58.206( 0.78%) -63.275( 1.21%) B

-42.992 -46.400 -51.686 -57.757 -62.516 C

1.20 -49.974(-1.66%) -54.760(-1.33%) -62.294(-0.78%) -71.130(-0.07%) -78.232( 0.54%) A

-50.479(-0.67%) -55.265(-0.42%) -62.799( 0.03%) -71.635( 0.63%) -78.737( 1.19%) B

-50.818 -55.497 -62.783 -71.183 -77.811 C

1.40 -54.743(-1.89%) -60.636(-1.48%) -69.949(-0.84%) -80.928(-0.02%) -89.819( 0.70%) A

-55.248(-0.98%) -61.141(-0.66%) -70.454(-0.12%) -81.433( 0.61%) -90.324( 1.26%) B

-55.796 -61.550 -70.539 -80.943 -89.197 C

1.67 -57.756(-2.26%) -65.125(-1.73%) -76.848(-0.91%) -90.787( 0.11%) -102.209( 0.99%) A

-58.261(-1.40%) -65.630(-0.97%) -77.353(-0.26%) -91.292( 0.66%) -102.714( 1.49%) B

-59.089 -66.272 -77.552 -90.691 -101.207 C

2.05 -50.309(-3.72%) -59.418(-2.75%) -74.092(-1.39%) -91.831( 0.16%) -106.689( 1.45%) A

-50.814(-2.76%) -59.923(-1.93%) -74.597(-0.72%) -92.336( 0.71%) -107.194( 1.93%) B

-52.254 -61.100 -75.136 -91.688 -105.167 C

(8.0, 0◦, 180◦, 0◦)

0.95 -59.886(-1.95%) -57.464(-2.13%) -53.415(-2.45%) -48.118(-2.89%) -43.168(-3.35%) A

-62.613( 2.51%) -60.191( 2.51%) -56.142( 2.53%) -50.845( 2.61%) -45.895( 2.76%) B

-61.077 -58.717 -54.757 -49.550 -44.662 C

1.20 -82.361(-2.03%) -78.528(-2.24%) -72.136(-2.61%) -63.797(-3.16%) -56.044(-3.75%) A

-85.088( 1.21%) -81.255( 1.15%) -74.863( 1.07%) -66.524( 0.98%) -58.771( 0.94%) B

-84.069 -80.330 -74.071 -65.876 -58.225 C

1.40 -101.678(-2.12%) -96.518(-2.34%) -87.923(-2.74%) -76.733(-3.35%) -66.360(-4.03%) A

-104.405( 0.51%) -99.245( 0.42%) -90.650( 0.28%) -79.460( 0.09%) -69.087(-0.09%) B

-103.877 -98.830 -90.401 -79.392 -69.150 C

1.67 -128.156(-2.24%) -120.929(-2.48%) -108.914(-2.94%) -93.310(-3.66%) -78.896(-4.51%) A

-130.883(-0.16%) -123.656(-0.29%) -111.641(-0.51%) -96.037(-0.84%) -81.623(-1.21%) B

-131.087 -124.010 -112.215 -96.855 -82.619 C

2.05 -161.313(-2.74%) -150.664(-3.07%) -133.001(-3.69%) -110.138(-4.73%) -89.111(-6.05%) A

-164.040(-1.10%) -153.391(-1.32%) -135.728(-1.72%) -112.865(-2.37%) -91.838(-3.17%) B

-165.866 -155.437 -138.103 -115.604 -94.845 C

14



TABLE II. List of the polynomials wi in variables r and s corresponding to the intramonomer

distances in the H2 and CO molecules, respectively. The values of the reference separations are

rc = 1.474 bohr and sc = 2.165 bohr.

i wi(r, s)

1 1

2 (r − rc)

3 (s− sc)

4 (r − rc)
2

5 (r − rc)(s− sc)

6 (s− sc)
2

7 (r − rc)
3

8 (r − rc)
2(s− sc)

9 (r − rc)(s− sc)
2

10 (s− sc)
3
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