Foetal hepatic progenitor cells assume a cholangiocytic cell phenotype during two-dimensional pre-culture

Kazuya Anzai, Hiromi Chikada, Kota Tsuruya, Kinuyo Ida, Tatehiro Kagawa, Yutaka Inagaki, Tesuya Mine, and Akihide Kamiya

Supplementary Figure Legends

Supplementary Figure 1

Expansion and differentiation of foetal LPCs in 2D pre-culture. Primary cells and cultured cells, which were 2D pre-cultured for 1 day, 3 days or 5 days, were stained with antibodies against a cholangiocytic marker *CK19* or a proliferation marker *Ki-67*. Nuclei were stained with DAPI. Scale bars, 100 μm.

Supplementary Figure 2

Number of cells before and after 7 days pre-culture. Primary E13 LPCs were inoculated onto gelatine-coated culture plates $(1 \times 10^5$ cells per well of a 24-well culture plate or 2×10^5 primary cells per well of a 12-well culture plate). Cells were cultured for 7 days and the number of cells was counted. Results are presented as mean ± SEM. Statistical analysis was performed with Student's *t*-test. n=40 (24-well plates) and n=9 (12-well plates).

Supplementary Figure 3

Flow cytometric analysis to LPCs pre-cultured with or without cytokines. The expression of PE-tagged antigens was hardly influenced by the addition of cytokines, but the expression of CD133 decrease under the stimuli of OSM or HGF.

Supplementary Figure 4

Expression of cell signalling receptors during in vitro cholangiocytic formation. (Upper panel)

Expression of ErbB family genes of primary cells, cultured cells, and cysts derived from cultured cells were analysed by using quantitative RT-PCR. (Lower panel) Expression of the Lgr family genes of primary cells and cysts derived from cultured cells were analysed by using quantitative RT-PCR. Expression level of primary cells was set to 1.0. Mock, cells were pre-cultured without cytokines.

Supplementary Figure 5

Cysts derived from neonatal CD133⁺ cells expressed *HNF4* α and *Ki-67*. Cysts were stained with anti-*HNF4* α and *Ki-67* antibodies. Arrowheads indicate *Ki-67*-positive cells. Scale bars, 100 µm.

Supplementary Figure 6

Colony formation assay of E13 foetal LPCs and CD133⁺ neonatal liver cells. Progenitor cells were purified from E13 and neonatal livers. Primary E13 LPCs, E13 LPCs pre-cultured on gelatine-coated dishes, and neonatal progenitor cells were cultured on MEF feeder cells. Resulting colonies were stained with anti-*ALB* and -*CK19* antibodies (left panel). Isotype control (right panel). Red, *ALB*; green, *CK19*. (i) Colonies derived from primary E13 CD133⁺ LPCs. (ii) Colonies derived from E13 CD133⁺ pre-cultured LPCs. (iii) Colonies derived from CD133⁺ neonatal liver cells.

	Fluorescent Conjugate	Catalogue Number	Isotype	Company
CD9	PE	124805	Rat IgG2a	
CD24	PE	101807	Rat IgG2b	
CD26	PE	137803	Rat IgG2a	
CD29	PE	102207	American	
			Hamster IgG	
CD47	PE	127507	Rat IgG2a	
CD54	PE	116107	Rat IgG2b	
CD63	PE	143903	Rat IgG2a	
CD73	PE	127205	Rat IgG1	
CD81	PE	104905	American	Biol egend
			Hamster IgG	DioLegend
CD98	PE	128207	Rat IgG2a	
CD106	PE	105713	Rat IgG2a	
CD121a	PE	113505	American	
			Hamster IgG	
CD147	PE	123707	Rat IgG1	
CD262	PE	119905	American	
			Hamster IgG	
CD276	PE	135605	Rat IgG2a	
CD326	PE	118205	Rat IgG2a	
CD44	FITC	11-0441	Rat IgG2b	eBioscience

Supplementary Table S1 Cell surface antigens for flow cytometric analysis

		Catalogue	Host		
Antibody	Company	Number	Animal	Dilution	
ALBUMIN	Betyl laboratory	A90-134A	goat	1:500	
СК19	Miyajima et al.	-	rabbit	1:2000	
β -CATENIN	BD Pharmingen	610154	mouse	1:1000	
aPKC	SantaCruz Biotechnology Inc	sc-216	rabbit	1:250	
HNF4a	SantaCruz Biotechnology Inc	sc-6556	goat	1:400	
Ki-67	Abcam	15580	rabbit	1:500	

Supplementary Table S2 Primary antibodies for immunohistochemistry

Gene name		Sequence	Probe number
Hprt	Sense Antisense	5'-TCCTCCTCAGACCGCTTTT-3' 5'-CCTGGTTCATCATCGCTAATC-3'	#95
Albumin	Sense	5'-AGTGTTGTGCAGAGGCTGAC-3'	#27
Ch10	Antisense Sense	5'-TICICCITCACACCATCAAGC-3' 5'-TGACCTGGAGATGCAGATTG-3'	#17
	Antisense	5'-CCTCAGGGCAGTAATTTCCTC-3'	
Hnf1 β	Antisense	5'-GGTTGTAGCGCACTCCTGA-3'	#33
Hnf6	Sense	5'-GGAGTTCCAGCGCATGTC-3'	#64
Tat	Sense	5'-GGAGGAGGTCGCTTCCTATT-3'	#82
	Antisense	5'-GCCACTCGTCAGAATGACATC-3'	#53
Cyp3a11	Antisense	5'-CCATGTCGAATTTCCATAAACC-3'	
Grhl2	Sense	5'-CCACAGAGCATACTGCCAGA-3'	#32
Ck7	Sense	5'-GGAGATGGCCAACCACAG-3'	#41
	Antisense	5'-GGCCTGGAGTGTCTCAAACTT-3'	
Cftr	Antisense	5'-TGTCACAAGGTGGGTGAAAA-3'	#31
Sox9	Sense	5'-CAGCAAGACTCTGGGCAAG-3'	#66
	Antisense	5'-TCCACGAAGGGTCTCTTCTC-3'	

Supplementary Table S3 Primer sequences for quantitative PCR analysis

Gene name		Sequence	Probe number	
Lgr4	Sense	5'-CAGTTACCAGAAGATGCATTTAAGAA-3'	#20	
	Antisense	5'-CAAGGCTTTTGGGTGGATAA-3'		
Lgr5	Sense	5'-CTTCACTCGGTGCAGTGCT-3'	#60	
	Antisense	5'-CAGCCAGCTACCAAATAGGTG-3'		
Lgrб	Sense	5'-AGCTTCAGCCGGGTCTCT-3'	#17	
	Antisense	5'-AGAGGTGGTTCCCTGAGAGC-3'		
Erbb1	Sense	5'-GCCACGCCAACTGTACCTAT-3'	#107	
	Antisense	5'-GCCACACTTCACATCCTTGA-3'		
Erbb2 (Her2)	Sense	5'-TCAACTGCACCCACTCATGT-3'	#85	
	Antisense	5'-CTGGCTCTCTGCTCTGCTG-3'		
Erbb3	Sense	5'-CTGCCACGAGAACTGCAC-3'	#93	
	Antisense	5'-TGCTTGGCCTAAACAGTCTTG-3'		
Erbb4	Sense	5'-AATGCTGATGGTGGCAAGA-3'	#21	
	Antisense	5'-CATCACTTTGATGTGTGAATTTCC-3'	1	

Anzai et al., Supplementary Figure 1

Anzai et al., Supplementary Figure 2

Anzai et al., Supplementary Figure 3

Primary Cell Cultured Cell Cyst derived from Cultured cells

Anzai et al., Supplementary Figure 4

Anzai et al., Supplementary Figure 5

(i)

(ii)

(iii)

Anzai et al., Supplementary Figure 6