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1. Results of stool survey by age 

 

Figure S1: The results of the stool surveys (after removing of repeat samples – see data section 

in the main text) conducted in the Bedouin population of southern Israel between July 2013 and 

June 2014. 'x' marks the proportion of positive tests in each age-group and the bars mark the 

95% confidence intervals given by the binomial distribution using Clopper-Pearson. The exact 

numbers of positive and total tests are also given in the figure. Note that above the age of ten 

no positive samples were found among 203 sampled individuals - similar to the number of 

individuals sampled in each of the one year age-groups 5, 6, 7, 8 and 9, in which positive 

samples were found. This is an indication that individuals above 10, who were vaccinated with 

OPV as part of their routine vaccination schedule, played a negligible role in transmission of 

WPV1. 
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2. Transmission model 

Following is the formulation of the deterministic, discrete-time SEIR transmission model that is 

described schematically in figure 1 of the main text: 

(S1a) 
𝑆1(𝑡) = 𝑆1(𝑡 − 1) − 𝛽(𝑡) ∙ 𝐼(𝑡 − 1) ∙

𝑆1(𝑡 − 1)

𝑁(𝑡 − 1)
− ℎ1(𝑡) ∙ 𝑣𝑂𝑃𝑉1(𝑡) + 𝑏(𝑡) 

(S1b) 
𝑆2(𝑡) = 𝑆2(𝑡 − 1) − 𝛽(𝑡) ∙ 𝐼(𝑡 − 1) ∙

𝑆2(𝑡 − 1)

𝑁(𝑡 − 1)
+  (1 − 𝜌) ∙ ℎ1(𝑡) ∙ 𝑣𝑂𝑃𝑉1(𝑡) − ℎ2(𝑡) ∙ 𝑣𝑂𝑃𝑉2(𝑡) 

(S1c) 
𝑆3(𝑡) = 𝑆3(𝑡 − 1) − 𝛽(𝑡) ∙ 𝐼(𝑡 − 1) ∙

𝑆3(𝑡 − 1)

𝑁(𝑡 − 1)
` + (1 − 𝜌) ∙ ℎ2(𝑡) ∙ 𝑣𝑂𝑃𝑉2(𝑡) 

(S1d) 
𝐸(𝑡) = 𝐸(𝑡 − 1) + 𝛽(𝑡) ∙ 𝐼(𝑡 − 1) ∙  

[𝑆1(𝑡 − 1) + 𝑆2(𝑡 − 1) + 𝑆3(𝑡 − 1)]

𝑁(𝑡 − 1)
− 1/𝑑𝐿 ∙ 𝐸(𝑡 − 1) 

(S1e) 𝐼(𝑡) = 𝐼(𝑡 − 1) +  1/𝑑𝐿 ∙ 𝐸(𝑡 − 1) − 𝛾 ∙ 𝐼(𝑡 − 1) 

(S1f) 𝑅(𝑡) = 𝑅(𝑡 − 1) +  1/𝑑𝐼 ∙ 𝐼(𝑡 − 1) + 𝜌 ∙ (ℎ1(𝑡) ∙ 𝑣𝑂𝑃𝑉1(𝑡) + ℎ2(𝑡) ∙ 𝑣𝑂𝑃𝑉2(𝑡)) 

(S1g) 𝑁(𝑡) = 𝑁(𝑡 − 1) + 𝑏(𝑡) 

S1, S2 and S3 denote groups of individuals susceptible to infection with polio. S1 denotes 

individuals that were not yet vaccinated with OPV, S2 denotes individuals that received one 

dose of OPV but have not gained mucosal immunity and S3 denotes individuals that received 

two doses of OPV but have not gained immunity. 𝐸 denotes exposed individuals who are 

infected but not yet infectious, 𝐼 denotes infectious individuals and 𝑅 denotes recovered or 

immune individuals who gained their immunity via infection with the wild poliovirus or via 

vaccination with OPV. 𝑁(𝑡) denotes the total population size on day t, which grows by 𝑏(𝑡) 

newborn susceptible individuals. We set 𝑏(𝑡) = B = 21 ≈ 0.035 ∗ 220,000/365, assuming a 

fixed number of daily newborns and based on a 3.5% yearly birth rate in the Bedouin population 

of southern Israel, which reached 220,000 in 2013 (see also fig. S2). The fixed number of daily 

newborns is a good approximation for the 2-3 years period in which the model is run. The model 

assumes homogeneous mixing of the population. The number of susceptible individuals of group 

SX that become infected on day t depends on the transmission rate on day t - 𝛽(𝑡), the number 

of infectious individuals and the proportion of susceptible individuals of groups SX in the 

population on the previous day. The transmission rate on day t is given by the formula: 
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(S2) 𝛽(t) = R̅ ∙ (1 + 𝜔(𝑡))/𝑑𝐼 

where dI is the mean infectious period, R̅ is the mean reproductive number and 𝜔(𝑡) is a 

periodic function with the property 𝐸(𝜔(𝑡)) = 0 describing the seasonal variation in the 

reproductive number, which is modeled using the estimated seasonality in the southern US 

states during the pre-vaccination era (see ‘Modeling Seasonality’ section below). 

Exposed individuals become infectious at rate 1/𝑑𝐿 (𝑑𝐿 being the mean period of latency) and 

infectious individuals recover at rate 1/𝑑𝐼. 𝑣𝑂𝑃𝑉1(𝑡) and 𝑣𝑂𝑃𝑉2(𝑡) denote the number of 

individuals vaccinated with a first and second dose of OPV on day t. We used the data provided 

by the Israeli Ministry of Health, with a delay of one week, as this is the time it takes for the 

vaccines to build up protective immunity [1]. 𝜌 denotes the per-dose efficacy of OPV (i.e., the 

probability that the vaccine will build up protective intestinal immunity, as in [2–4]]). Finally, 

ℎ1(𝑡) and ℎ2(𝑡) denote the probability that a first and second dose of OPV given on day t, will 

be given to susceptible individual. These probabilities are calculated according to the fraction of 

susceptible individuals in the target population for each dose (since the first dose was only given 

to those who did not receive one yet and the second dose was given only to individuals who 

received a first dose): 

(S3a) 
ℎ1(𝑡) =

𝑆1(𝑡 − 1)

(𝑁(𝑡 − 1) − ∑ 𝑣𝑂𝑃𝑉1(𝑡̀)𝑡−1
𝑡̀=1 )

 

(S3b) 
ℎ2(𝑡) =

𝑆2(𝑡 − 1)

∑ 𝑣𝑂𝑃𝑉1(𝑡̀)𝑡−1
𝑡̀=1 − ∑ 𝑣𝑂𝑃𝑉2(𝑡̀)𝑡−1

𝑡̀=1

 

The initial conditions of the model for the start of the epidemic are 𝐼(𝑡0) = 1, 𝑆1(𝑡0) = 𝑁(𝑡0) −

1 and 𝑆2(𝑡0) = 𝑆3(𝑡0) = 𝐸(𝑡0) = 𝑅(𝑡0) = 0, where 𝑡0 defines the day in which the first 

infection in Israel occurred (𝑡0=1 was set to September 15, 2012 – see below). For 𝑡 < 𝑡0 we set 

𝐼(𝑡) = 0.  
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Figure S2: Size of the modeled population in time. The initial population size on September 15, 

2012 was calculated as 𝑁(1) = 57,882 − 21 ∗ 390 = 49692, where 57,882 is the number of 

individuals under ten in the Bedouin population who were being targeted for vaccination with 

OPV by October 10, 2013, and 21 ≈ 0.035 ∗ 220,000/365 is the estimated number of daily 

newborns based on a 3.5% yearly birth rate in the Bedouin population of southern Israel, which 

reached 220,000 in 2013. 

  



 

6 
 

3. Modeling seasonality 

In order to model the seasonal variation in the reproductive number we employ information 

available from a study modeling the spread of WPV in the US in the 1930s-1950s [5]. The study 

estimated the seasonality of WPV in the different US states. We used the estimated seasonality 

for ten southern US states (Alabama, Arizona, California, Florida, Georgia, Louisiana, Mississippi, 

New Mexico, South Carolina and Texas) that share the same latitudes with Israel (30N-33N), as 

the study indicated that the timing of seasonality of WPV has a latitudinal gradient.  Using these 

data we modeled the seasonal variation ω(𝑡) (appearing in eq. S2) as: 

(S4) ω(𝑡) = δ ∙ ω̅(mod(t + (ϕ̅ − ϕ),365)) 

where ω̅(t), 1 ≤ t ≤ 365, is a function of the mean seasonality of the ten US states obtained by 

interpolating the monthly estimates into daily data, centering the seasonal functions so that 

their peaks align at the day of the mean peak time, taking the mean of the functions and 

normalizing it (dividing by the mean and subtracting by one) so that 𝐸(ω̅(t)) = 0 (fig. S3a-d). 

The parameters δ and Φ are model parameters that allow to control the amplitude and peak 

time of the seasonal variation. δ sets the amplitude so that δ = 0 means there is no seasonal 

variation while δ = 1 means a seasonal variation similar to the mean seasonal variation of ω̅. ϕ 

sets the peak time so that when ϕ = ϕ̅ ≡ 𝑎𝑟𝑔𝑚𝑎𝑥(ω̅) = 156 (i.e., June 5) the same peak time 

as is in ω̅ is obtained. Using the variance in the amplitude and peak time of the seasonal 

variation estimated for the ten southern US states we obtain prior distributions for ϕ and δ for 

our Bayesian inference (fig. S3e-f). The prior distribution for ϕ was set as 𝑁(156,17.55) 

evaluated at the range [1,365] (with steps of 1 day), according to the mean and standard 

deviation of the peak time in the seasonal curves shown in fig. S3b. The prior distribution for δ 

was set as 𝑁(1,0.414) evaluated at the range [0,3] (with steps of 0.01), according to the mean 

and standard deviation obtained for the ratios of the amplitudes of the normalized seasonal 

curves for each of the US states and the amplitude of the normalized mean seasonal curve  ω̅ 

(curves shown in fig. S3d). 
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Figure S3: Modeling the seasonal variation of the reproductive number of WPV: 

(a) Estimates of the monthly variation in the reproductive number of WPV in ten southern US 

states obtained by fitting  epidemic data from the 1930s-1950s (data taken from [5]). 

(b) The curves from (a) after interpolation into daily data. 

(c) The curves from (b) after centering them so that their peaks align at the mean peak time. 

The thick black curve is the mean of the ten seasonal curves. 

(d) The curves from (c) after normalizing each of the curves so that the mean of each curve is 

zero. The thick black curve is the normalized mean seasonality (ω̅ in eq. S4). 

(e) Prior distribution for the peak time of the seasonal variation (ϕ) obtained using a normal 

distribution 𝑁(156,17.55), set with the mean and standard deviation of the peak times of 

the curves in (b). 

(f) Prior distribution for the amplitude of the seasonal variation (δ) obtained using a normal 

distribution 𝑁(1,0.414), set with the mean and standard deviation of the amplitude ratios 

between the normalized curves for each state and the mean normalized curve given in (d).  
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4. Observation model 

We used a binomial observation model to link the prevalence given by the transmission model 

to the stool survey data: 

(S5) 
𝑇+(𝑡)~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑇(𝑡),

𝐼(𝑡)

𝑁(𝑡)
) 

where 𝑇(𝑡) is the number of total samples taken on day 𝑡, 𝑇+(𝑡) is the number of positive 

samples found on day 𝑡 (see supplementary data file) and 𝐼(𝑡)/𝑁(𝑡) is the prevalence of polio in 

the population on day 𝑡 according to the transmission model. The likelihood function for the 

model is the probability of obtaining the stool survey data given the model and a set of values 

for the model parameters. Denoting 𝑝𝐵(𝑡) = 𝐼(𝑡)/𝑁(t) and 𝜃 = {𝑑𝐼 , R̅, δ, ϕ, ρ, t0} this function 

can be written as: 

(S6) 

L(𝜃) = ∏ (
T(t)

T+(t)
)

tend

t=1

∙ pB(t)T+(t) ∙ (1 − pB(t))
T(t)−T+(t)

 

In addition, as mentioned in the main text, we employed the information available from ES by 

enforcing a limitation on the likelihood function so that if a set of parameter values 𝜃 does not 

maintain the following condition: 

(S7) 
 

𝐼(𝑡𝐷)

𝑁(𝑡𝐷)
>

𝐼(𝑡́)

𝑁(𝑡́)
  for each 𝑡́ > 𝑡𝑁𝐷 

where 𝑡𝐷 is the time of the initial detection of WPV1 in the sewage (Feb. 6, 2013) and 𝑡𝑁𝐷 is the 

time two months after the last detection of WPV1 in the sewage (June 3, 2014), then we set 

L(𝜃) = 0. The logic behind this limitation is that according to ES, the prevalence of WPV1 after 

June 3, 2014, when it was no longer detected in the sewage, should not have been higher than 

the prevalence at the time when WPV1 became detectable in the sewage on February 6, 2013, 

since otherwise it should have been detected by the ES. 
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5. Bayesian inference 

We adopted a non-informative uniform prior for the  for the duration of infectiousness (𝑑𝐼) in 

the range [7,49] days based on estimates ranging from 4 to 7 weeks in naïve populations [6–8], 

and the suggestions that the period of infectiousness can be shorter in a population vaccinated 

with IPV [9–11]. For the mean reproductive number (𝑅̅) we set a uniform prior in the range 

[1,10], as 1 is the threshold value above which an epidemic can occur, and 10 is the high end 

estimate for 𝑅̅, attributed to a situation in a country with poor sanitary conditions [12]. For the 

two seasonality parameters (δ and ϕ) we employed prior distributions obtained from estimates 

of the seasonal variation of WPV in southern US states, as described above. The prior 

distribution for the per-dose efficacy of OPV was set as 𝑁(0.56,0.23) according to estimates 

given in a recent meta-analysis study [13]. We set a uniform prior for the initiation time of the 

epidemic (𝑡0) in the range [1,145] (which implies initiation dates between September 15, 2012 

and February 6, 2013). This lower limit of this range was set based on the results of a 

phylogenetic study, analyzing poliovirus isolates from Israel and Egypt, that indicated the Israeli 

and Egyptian WPV1 lineages have diverged around mid-September 2012 [14]. The upper limit 

for this range was set according to the timing of the first identification of WPV1 in Israel using ES 

[15]. 

 

We explored the posterior distribution of the model parameters 𝜃 by employing Markov Chain 

Monte Carlo (MCMC) sampling performed using the slice sampling method [16] (implemented 

using the slicesample function in matlab) on the sum of log 𝐿(𝜃) given in eq. S6 and the log of 

the prior distributions, with the additional limitation given in eq. S7. We discarded the first 

10,000 iterations as a burn-in period and used a thinning of 1 in 10 samples as to avoid auto-

correlation between adjacent samples. The remaining 10,000 samples after the burn-in period 

and the thinning were used to obtain the posterior distribution for the model parameters. 95% 

credible intervals were obtained by removing the 5% of the samples with the lowest likelihood 

and computing the range within the remaining samples. Figure S4 shows the traces of the 

parameter values obtained by the MCMC. Figure S5 shows pairwise scatter plots of the 

parameter values obtained by the MCMC and figure S6 shows scatter plots depicting the 

relationship between the parameter estimates and the obtained results in terms of the overall 

attack rate by the end of 2014 and the duration of the outbreak. Positive correlations were 

obtained between the mean reproductive number (𝑅̅) and the duration of infection (𝑑𝐼) and 
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between 𝑅̅ and the efficacy of OPV (𝜌) (fig. S5). We also found a strong negative correlation 

between 𝑑𝐼 and the overall attack rate (fig. S6). Since we fit prevalence data, a longer period of 

infection is able to help fit the same data with fewer cases, thus explaining the negative 

correlation between dI and the attack rate. For this reason we also obtain smaller reproductive 

number values for larger values of dI. A larger 𝜌 necessitates a larger 𝑅̅ to obtain the same 

number of cases, which explains the positive correlation between these two parameters. 

 
Figure S4: Traces of the model parameter values as obtained by the MCMC sampling. 
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Figure S5: Pairwise scatter plots of the model parameters, using the 95% best fitting samples 

obtained by the MCMC.  

 

 

Figure S6: Scatter plots of the 95% best fitting model parameters values obtained by the MCMC 

and the corresponding outcomes of the epidemic (attack rate at the end of 2014 and the 

epidemic duration given in years). 
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Figure S7: The grey and yellow areas show the 95% credible intervals for WPV1 prevalence and 

the range given by parameter values whose log-likelihood is within 2 log-likelihood units of the 

best fit obtained by the model fitting respectively (as in fig. 3 of the main text). The markers and 

error bars show the proportions of positive stool samples and the related 95% confidence 

intervals (CI) given by the binomial distribution using Clopper-Pearson. 

(a) The proportions and 95% CI of the daily stool sample results - 𝑟(𝑡) =
𝑇+(𝑡)

𝑇(𝑡)
.  

(b) The proportions and 95% CI of the weekly smoothed stool samples data - 𝑟̃(𝑡) =
∑ 𝑇+(𝑡′)𝑡+3

𝑡′=𝑡−3

∑ 𝑇𝑡+3
𝑡′=𝑡−3

(𝑡′)
.  

The confidence intervals related to the daily data are huge and easily cover the estimated WPV1 

prevalence range. Even the smaller intervals given by the weekly smoothed data cover the range 

of WPV1 prevalence given by the model almost completely.  
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6. Results of model with no seasonal variation in transmission 

In order to compare the results of the model with seasonal variation in transmission to the 

results of a model without seasonality, we ran the MCMC procedure for a second time while 

fixing the seasonality parameters so that 𝛿 = 0 (i.e., no seasonal variation) and 𝜙 =  𝜙̅ (i.e., the 

mean of the peak time in 𝜔 (eq. S4)). While the latter has no effect on the results of the model 

fitting (with 𝛿 = 0 the value of 𝜙 does not affect the transmission rates), we did so in order to 

obtain the maximum value of the prior distribution for 𝜙, so as to allow a comparison of the 

likelihoods obtained with this model and the model with seasonality (see table S2 below). Table 

S1 and figure S8 show the results obtained using this model. The mean and 95% CI estimates 

obtained using this model for the period of infectiousness (𝑑𝐼) and for the reproductive number 

(𝑅̅) are similar to the estimates obtained using the model with seasonality (compare to table 2 in 

the main text). The posterior distribution for the per-dose efficacy of OPV (𝜌) in this model looks 

similar to its prior distribution (fig. S8c), while the posterior for the initiation time of the 

epidemic (𝑡0) is tilted towards the earlier times in the considered range (fig. S8d). The main 

difference between the two models is that without seasonality, the model does not project the 

possibility of another epidemic wave during 2014 and beyond, in case the OPV campaign had 

not taken place (compare figures S8e,g to figures 4a,c in the main text). Otherwise most of the 

parameter values are in the same range (table 2 and table S1). 

 

output mean [95% CI] 

reproductive number 1.79 [1.49-2.45] 

mean duration of the infectious period  15.6 days [9.0-24.3] 

per-dose efficacy of OPV 0.56 [0-1] 

attack rate with the OPV campaign at the end of 2014 0.47 [0.26-0.67] 

attack rate without the OPV campaign at the end of 2014 0.63 [0.49-0.76] 

reduction in attack rate due to OPV campaign 0.16 [0-0.39] 

end time of the outbreak with the OPV campaign April 23, 2014 [Jan. 28, 2014 - Sep. 16, 2014] 

end time of the outbreak without the OPV campaign Sep. 17, 2014 [Mar. 22, 2014 –Apr. 18, 2015] 

reduction in outbreak duration due to OPV campaign 146 days [ 0-305] 

 
Table S1: Parameter estimates of model fitting using a model with no seasonality. 
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Figure S8: Outcomes of fitting a model without seasonal variation in the transmission.  

(a) Posterior distribution for the reproductive number. 

(b) Posterior distribution for the mean infectious period. 

(c) Posterior distribution for the per-dose efficacy of OPV. Red curve is showing the prior 

distribution used for this parameter. 

(d) Posterior distribution for the start time of the outbreak. 

(e) 95% credible intervals of WPV1 prevalence with the OPV campaign (dark grey) and without 

the OPV campaign (light grey).  

(f) The posterior distribution of the overall attack rate at the end of 2014 with (dark grey bars) 

and without (light grey bars) the OPV campaign. 

(g) The posterior distribution for the end time of the outbreak showing the probability of the 

outbreak ending on a particular month with (dark grey bars) and without (light grey bars) 

the OPV campaign. 
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model with seasonality 

 
model without seasonality 

𝐷(𝜃̅) = −2 ∙ 𝑙𝑜𝑔(𝐿(𝜃̅) ) 185.20 187.13 

𝐷̅ = −2 ∙ 𝐸 (𝑙𝑜𝑔(𝐿(𝜃))) 188.51 189.77 

𝑝𝐷1 = 𝐷̅ − 𝐷(𝜃̅) 3.31 2.64 

𝑝𝐷2 =
1

2
𝑉𝑎𝑟̂(𝐷(𝜃)) 

3.88 3.06 

𝐷𝐼𝐶1 = 𝑝𝐷1 + 𝐷̅  191.82 192.41 

𝐷𝐼𝐶2 = 𝑝𝐷2 + 𝐷̅  192.39 192.83 

 
Table S2: A comparison of the two models, with and without seasonality, using deviance 

information criterion (DIC) [17]. 𝜃̅ was calculated as the average of the sampled values obtained 

using the MCMC. 𝐷̅ was calculated using the mean of the log-likelihoods of all the sampled 

values and 𝑝𝐷2 was calculated using the variance of the log-likelihoods of all the sampled values. 

The model with seasonality, which incorporates two additional parameters compared to the 

non-seasonal model, manages to obtain slightly better likelihoods over all, as can be seen by the 

difference in the value of 𝐷̅ between the two models. However, the calculated effective number 

of parameters (either 𝑝𝐷1 or 𝑝𝐷2) is higher for this model so that the obtained DIC score (either 

𝐷𝐼𝐶1 or 𝐷𝐼𝐶2) are only slightly better for the seasonal model, and not enough to rule out the 

non-seasonal model. 
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7. Results of inference without the limitation set using ES 

Table S3 and figures S9 and S10, summarize the results obtained by the model fitting when 

removing the limitation set using the ES data (eq. S7). Without the limitation the sampled 

posteriors include samples with longer mean durations of infection and larger amplitudes, 

leading to more uncertainty in the estimated outcomes of the outbreak and the possibility 

of a second small epidemic wave during 2014 and 2015 even after the OPV vaccinations. In 

this case, without the OPV vaccinations the projected epidemic wave during 2014 could 

have been huge (fig. S11a). 

 

output mean [95% CI] 

mean reproductive number 1.81 [1.48-2.43] 

mean duration of the infectious period  19.9 days [9.2-40.3] 

amplitude of seasonal variation in transmission  0.95 [0-2.38] 

peak day of seasonal variation in transmission 
128 [71-198] 

May 8 [Mar. 12 – Jul. 17] 

per-dose efficacy of OPV 0.61 [0-1] 

attack rate with the OPV campaign 

at the end of 2014 

0.35 [0.14-0.65] 

attack rate without the OPV campaign 

at the end of 2014 

0.59 [0.29-0.90] 

reduction in attack rate due to OPV campaign 0.24 [0-0.73] 

end time of the outbreak with the OPV campaign 
July 19, 2014  

[Jan. 27, 2014 - Feb. 1, 2016] 

end time of the outbreak without the OPV campaign 
July 20, 2015  

[Feb. 18, 2014 - Dec. 31, 2016] 

reduction in outbreak duration due to OPV campaign 365 days [-134-895] 

 
Table S3: Results of the model fitting obtained without imposing the condition based on the ES 

data (compare to the results with the inclusion of the limitation in table 2 of the main text). 
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Figure S9: Posterior distributions for the model parameters obtained from the MCMC sampling 

without imposing the condition based on the ES data (compare to the results with the inclusion 

of the limitation in figure 2 of the main text): 

(a) Posterior distribution for the mean reproductive number. 

(b) Posterior distribution for the mean infectious period. 

(c) Posterior distribution for the amplitude of seasonal variation in transmission. The red curve 

shows the used prior distribution. 

(d) Posterior distribution for the peak time of seasonal variation in transmission. The red curve 

shows the used prior distribution. 

(e) Posterior distribution for the per-dose efficacy of OPV. The red curve shows the used prior 

distribution. 

(f) Posterior distribution for the start time of the outbreak. 
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Figure S10: Outcomes of model fitting without imposing the condition based on the ES data 

(compare to the results with the inclusion of the limitation in figure 4 of the main text): 

(a) Top panel: 1000 plots of the value of the reproductive number (𝑅) in time, calculated using 

eq. S2 and S4 with 1000 values of 𝑅̅,  𝛿 and 𝜙, randomly sampled out of the values obtained 

by the MCMC. Blue curves showing results for 𝛿 ≤ 0.1, red curves showing results for 𝛿 ≥ 1 

and green curves showing results for everything in between. 

 Bottom panel: 95% CI of WPV1 prevalence with the OPV campaign (dark grey) and without 

the OPV campaign (light grey). Without the limitation using ES we obtain the possibility of a 

small second wave during 2014 with the OPV campaign and a huge second wave without 

the OPV campaign. 

(b) The posterior distribution of the overall attack rates at the end of 2014 with (dark grey bars) 

and without (light grey bars) the OPV campaign. 

(c) The posterior distribution for the end time of the outbreak showing the probability of the 

outbreak ending on a particular month with (dark grey bars) and without (light grey bars) 

the OPV campaign.  
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8. Posterior distributions of the outbreak end time when using a 

threshold of ten infected individuals for the epidemic extinction 

 

 

Figure S11: The posterior distribution of the end time of the outbreak using the full model 

(including seasonality) with the OPV campaign (dark grey bars) and without it (light grey 

bars), while setting the threshold for the epidemic extinction to ten infected individuals. In 

this case, according to the figure, there is considerable probability that without the OPV 

campaign the outbreak would have lasted up until February 2015, and only a very small 

probability that it would have lasted for more than that. This is in contrast to the results 

obtained when using a threshold of one infected individual which shows substantial 

probability for the outbreak without the OPV vaccinations lasting until March 2016 (see fig. 

4c in the main text). This indicates that in a model incorporating stochasticity in the 

transmission of WPV, an epidemic wave after 2014 may not occur, due to stochastic fade-

out of the outbreak during the period of low transmissibility, whereas the epidemic wave 

during 2014 would most likely occur in a stochastic model as well.   
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9. Epidemic curves with different vaccination starting dates 

 

Figure S12: The epidemic curves obtained from running the transmission model using the mean 

estimates obtained from the MCMC sampling (table 2 of the main text) with an OPV campaign 

of one dose covering 50% of the population under three scenarios: vaccination beginning on 

April 5, 2013 (solid line), June 5, 2013 (dashed line) or August 5, 2013 (dotted line) - the three 

considered starting dates used in figure 5 of the main text. As in the preparation of figure 5, the 

simulations of the model were run until the incidence falls below ten infected individuals, in 

order to take into account the probability of a stochastic fade-out of the outbreak during the 

periods of low transmissibility. The Y-axis is showing the incidence of infected cases. The inset 

shows the same plot with the y-axis plotted in log-scale, allowing a closer examination of the tail 

end of the epidemic. As can be seen, starting the vaccination earlier reduces the magnitude of 

the epidemic at the cost of prolonging the duration of the outbreak. 
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