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Supplementary Figure 1. Micromagnetics simulation of spatial magnetization profiles

at two different fields (left) and the associated calculated stray-field in the NV-plane

(right). Left: magnitude of the in-plane component of the magnetization perpendicular to the

equilibrium direction (x) at B = 700 F (top), and B = 196 G (bottom). Right: associated magnetic

field at a distance of 50 nm from the disc (the NV plane)
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Supplementary Figure 2. Linear transverse spin response of a Permalloy disc of 6µm

in diameter a, Colormap combining several χ′′⊥(ω,Bext), where the value of Bext is the magnitude

of the external field applied along the NV-axis direction. NV transitions are shown with white solid

lines. Green triangles show the position of the uniform mode. b, Detail of χ′′⊥(ω,Bext) at the fields

Bext = 672 and 307 G.
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Supplementary Figure 3. Time-averaged variation of the longitudinal magnetization

and resulting stray field at the frequency ωFMR of the uniform mode. a, In-plane

component ∆M‖ of the time-averaged quantity 〈δm‖,i(t)〉u‖,i. Magnetization is normalized to

Ms. b, Stray magnetic field along the NV-axis direction originating from the local magnetization

〈δm‖,i(t)〉u‖,i. The stray field has been normalized by the drive field. The NV depth has been

taken to be 50 nm.
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Supplementary Figure 4. Analysis of the Stark shift, theory and experiment. a,

Effective Stark field Beff as a function of the frequency of the off-resonant driving field at Bext =

110 G, where ω+ = 2π · 3.19 GHz. We used the measurement scheme depicted in Fig. 3a of the

main text. The red (blue) dots correspond to NV-control pulses applied at the 0↔ −1 (0↔ +1)

transition. Solid lines represent the parameter-free theoretical prediction given by Supplementary

Eq. (20). The dashed line is the result expected from Supplementary Eq. (21). Because at

this low field we have (ω− − ω) ∼ (ω+ − ω), Supplementary Eq. (21) (dashed red line) does not

correctly approximate the experimental results. We normalized the effective field by the square

of the drive field B2
2 (see main text). b, Effective Stark field, multiplied by a factor 4, as a

function of the detuning ∆ = ω − ω+ for NV-control pulses applied at the 0 ↔ −1 transition.

The factor four corresponds to the maximum observed enhanced Rabi amplitude in Fig.2 of the

main text, i.e., max

[
f
NVi
R

f
NVref
R

(f)

]
. To estimate the contribution of the Stark effect at the FMR

frequency, we assume that the FMR enhances the drive field by approximately the same factor for

the measurements in Fig. 3b-c of the main text. As is visible in the figure, the expected Stark

effect varies with splitting of the | ± 1〉 NV state, i.e. with the value of the static applied field.
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Supplementary Figure 5. Example of the normalization procedure used to obtain main-

text Fig. 3b and 3d: a frequency sweep at Bext = 211 G on NVA. a, Raw data (details

on pulse sequences in text) b, Spin expectation values, c, Phase of the final superposition. Inset:

Absolute value of the phase and Rabi frequency of NVref plotted in one graph. The dips/peaks in

Rabi frequency clearly correspond to dips/peaks in φ. d, Effective field normalized by the power

of the driving field.
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Supplementary Figure 6. Characterization of the frequency-dependent transmission

of microwaves through our setup. Even though this measurement is performed with constant

MW-source power, we observe a strongly frequency-dependent spin rotation rate (Rabi frequency

fR). Measuring the Rabi frequency is an excellent method to characterize in-situ how much MW

power actually reaches the NV centre. From the Rabi frequency fR, we obtain |bd| = fR/γ.

Measurement performed on NVref , the ESR frequency is tuned using Bext.
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Supplementary Figure 7. Linear scaling of phase φ with MW-source power. a, FMR

measured on NVB for different MW powers at Bext = 450 G. c, The phase divided by the MW-

source power, illustrating the linear scaling with MW-source power.
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Supplementary Figure 8. a, Reference frame xyz for the disc and x′y′z′ for the stray-field probe.

b, Field-dependence of the g(ωα,β) rate for various magnetic fields, following Supplementary Eq.

(33) and using the parameters extracted from the fit in Fig.4b of the main text. A field-independent

constant rate was added to model the contribution of longitudinal spin fluctuations.
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Supplementary Figure 9. Dependence of the spin-noise model on the NV-disc distance

d. The solid lines are fits of Supplementary Eq. (33) to the measured NVA spin relaxation rates

also presented in Fig. 4b of the main text. During the fits, the parameter t and a field-independent

offset g‖ accounting for the longitudinal spin fluctuations were released. The FMR line width W

was taken from fits of the Fano interferences representing the resonant detection of the spin-wave

excitations.
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Supplementary Figure 10. NV-centre photoluminescence (PL) as a function of magnet

position. Left: Numerically calculated PL for an NV centre in the field of a cylindrical NdFeB

permanent magnet of diameter 6.35 mm and height 12.7 mm (the model magnet D48-N52 produced

by K&J magnetics). The NV axis is oriented along the [sin(θNV), 0, cos(θNV)] direction, with

θNV = arccos(1/
√

3), and moved in space in the vicinity of the magnet’s surface (gray disc). The

origin of the reference frame represents the centre of the magnet’s top surface. The white solid

line marks the positions where the field is 514 G. The dashed white line marks the positions where

the field is aligned with the NV axis. White arrows represent the directions of the field in the

various positions. Right: Experimentally measured (top) and numerically computed (bottom)

photoluminescence (PL) in the vicinity of the ∼ 500 G region. There, the PL is easily quenched

because of the spin mixing corresponding to the level anti-crossing of the NV excited states.[1] The

calculation/measurement refers to a NdFeB permanent magnet of diameter 3.175 mm and height

9.525 mm (model magnet D26-N52 produced by K&J magnetics).
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Supplementary Figure 11. Test of the field alignment. a, Misalignment angle θ =

arctan(B⊥/Bz), evaluated for both NVref and NVa. b, Stray field BNVa
z − BNVref

z at the NVa

(see text), as a result of the presence of the Permalloy disc. The correction for the spatial field

gradient from the permanent magnet is not included in the plot.
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Supplementary Note 1. Setup and sample

Our experiments were performed on a type IIa diamond grown by chemical vapor deposition

(by the company Element 6) measuring 2x2x0.05mm3. We studied NV centres formed by

N15 ion implantation at 18keV and a density of 30/µm2 and subsequent annealing for 2

hours at 800◦C, yielding NV centres at an estimated ∼50 nm below the diamond surface.

The magnetic fields used to control the NV centre spin state and to drive spin-wave ex-

citations in the disc were generated by microwave (MW) currents. These currents were

delivered to the sample by a Ti/Au 5nm/95nm coplanar waveguide (CPW) with a gap size

of 15µm fabricated on the surface of the diamond. In the centre of the CPW gaps, we

fabricated permalloy (Ni81Fe19) microdiscs by e-beam lithography and subsequent e-beam

evaporation. The diamond was glued on a coverslip using optically transparent wax and

NV centres were optically accessed through the coverslip-diamond stack with an NA=1.25

oil-immersion objective, resulting in the geometry depicted in Fig. 1a of the main text.

Laser pulses for optical spin initialization and readout were generated by an acousto-optical

modulator (AOM) in double-pass configuration. The NV centre spin state was read out by

integrating the first 550 ns of photoluminescence during a laser pulse. To avoid melting of

the Permalloy disc, we limited the laser power to 250 µW.

The MW bursts used to control the NV spin state and to excite spin-waves in the disc were

generated by modulating the output of a MW source (Rohde&Schwarz SMB100a or Agilent

N5183A) using pulses generated by an arbitrary waveform generator (Tektronix AWG520)

input into a MW switch (Minicircuits ZASWA-2-50DR+ or RFLambda RFSPSTA0208G).

To control the NV centre along two orthogonal axes (see Fig. 3a of main text), an additional

IQ mixer was incorporated (Marki IQ1545). After amplification (Minicircuits ZVE-3W-83+

2-8 GHz and ZHL-16W-43+ 1.8-4 GHz), signals from different MW sources were combined

using a diplexer (K&L microwave 5IZ10-3050) and fed to the on-diamond CPW through a

printed circuit board.

For all the experiments, a static magnetic field was applied that separates the two NV centre

spin transitions, which allowed the individual addressing of a target transition by MW pulses

at the associated ESR frequency. To assure good optical spin contrast, the static field was

carefully aligned with the NV centre crystal axis, using a procedure described in section

Supplementary Note 7.
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Supplementary Note 2. Numerical simulations

In this section we describe the numerical calculations of the spatial magnetization profile

used in this work. Fig. 1f of the main text presented such calculations for the static

magnetization of the disc. Fig. 2b of the main text shows the numerically calculated

ferromagnetic resonance of the disc, and in Fig. 3 of the main text we presented numerical

calculations of the time-averaged decrease in longitudinal magnetization of the disc.

A. Static magnetization and conventions

Micromagnetic simulations have been performed with the open source software OOMMF[16]

running on the Harvard Odyssey cluster. For all the results presented in this work, the mag-

netic properties of the Permalloy disc have been simulated imposing a spatial discretization

of 5×5×30 nm3. As in previous works,[20, 21] we chose a saturation magnetization for

Permalloy of Ms = 800 kA/m, an exchange coupling of A=10−11 Jm−1, a Gilbert gyro-

magnetic ratio γ = 2.21 × 105 m/As, a damping constant α = 0.005. For the calculation

of the static magnetic properties, the value of α has been increased to α = 0.95 to favour

convergence.[16]

Since the magnetic properties of a microdot are hysteretic [20], all measurements were done

by first applying a large field and then sweeping the field down. To obtain Fig. 1e of

the main text, we calculated the magnetization profile via the ODE solver of the Landau-

Lifshitz equation. Then we calculated the associated disc stray field at the sites of the two

NVs. For the calculation of the magnetization we imposed, at the largest computed field

of 700 G, a field-aligned spin structure as initial configuration. Subsequently, the initial

configuration at a lower field was chosen as the ground state of the adjacent field of bigger

magnitude. In order to resemble experimental conditions, the external field orientation in the

simulations has been chosen to be the same one of the nitrogen-vacancy center, e.g. along the

[sin(θNV), 0, cos(θNV)] direction, where the z-axis is the one normal to the magnet’s surface

and θNV = arccos(1/
√

3). In Supplementary Fig. 1 we show two examples of simulated

magnetization patterns (left panels) and the associated magnetic stray field in the NV-plane

50 nm from the disc (right panels).

For the calculation of the stray field created by a certain magnetization pattern (see e.g.
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Fig. 1e of the main text) at the site r0 we used eq. (2) of the main text. It is worth

noting that even having perfect knowledge of the stray field B(r0) in the entire plane at

fixed distance d from the magnetic film, a unique reconstruction of the static spin structure

is not possible, since any additional spin texture S(ρ) for which ∇ · S(ρ) = 0 will not affect

the field. Accordingly, the kernel matrix present in eq. (5) of the main text is not invertible.

B. Uniform dynamics

Here we describe how we calculate and define the ferromagnetic resonance (FMR) frequency

of the disc as a function of the external magnetic field Bext. We computed the linear,

frequency-dependent, spatially-averaged, transverse magnetic susceptibility[15] χ′′⊥(ω) by

applying a spatially uniform magnetic pulse h(t) of the duration ∆t = 50× 10−12 s oriented

orthogonally to the plane of the disc (resembling the direction of the field generated by

our coplanar waveguide). The following time-evolution m⊥(t) of the spatially integrated

transverse disc’s magnetization (transverse to the applied field and in the disc’s plane) was

then recorded for a total time of 20 ns, at 5 × 10−12 s time intervals. We computed the

field-dependent χ′′⊥(ω) via a Fast Fourier transform F , using the algorithm:

χ′′⊥(ω) = Im

(
F (m⊥(t)−m⊥(0))

F (h(t))

)
, (1)

with h(t) expressed in Tesla and m⊥(t) in units of Ms. The numerically calculated quantity

χ′′⊥(ω) differs from Supplementary Eq. (31) in that beyond exchange interactions it includes

the effects of dipolar demgnetization fields, which substantially modify the susceptibility

at wavelengths comparable with the size of the disc. A colormap combining spectra at

several fields is plotted in the left panel of Fig. 2. Green triangles mark the position of the

maximum spatially-averaged response, which represents the Kittel’s law of the FMR for the

disc. Spectral power at two selected fields is shown in the right part of Fig. 2. Well-isolated

modes besides the uniform one can be recognized, along the lines of what was shown in

previous studies of Permalloy micromagnets.[21]

C. Non-linear spin dynamics

To obtain the calculations shown in Fig. 3c-d of the main text, we used micromagnetics

simulations. The non-resonant spin-wave detection scheme (Fig. 3a of the main text)
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is sensitive to the time-averaged change 〈δm‖,i(t)〉 of the longitudinal magnetization at

the local i-site. To extract 〈δm‖,i(t)〉, we numerically average the quantity δm‖,i(t) in time,

during a continuous excitation of the form h(t) = h0 sin(ωt). The quantity δm‖,i(t) represents

a non-linear response of the system, because it is not oscillating in time with the same

frequency as the excitation field.

In formulas, for the time evolution of the local (site-index i) magnetization mi(t), we assumed

the following ansatz:

mi(t) = u‖,i

(
meq
‖,i + δm‖,i(t)

)
+
∑
η

uη,imη,i(t), (2)

Here, u‖,i is the unit vector locally (index i) parallel to the equilibrium magnetization, and

meq
‖,i is the value of the local equilibrium magnetization. Furthermore, η labels the two axes

orthogonal to u‖,i and δm‖,i(t) is the non-linear change of the longitudinal magnetization.

Provided with the previous assumption, we extracted from the numerical results the quantity

δm‖,i(t) by using the algorithm:

δm‖,i(t) = (mi(t)−meq
i ) · u‖,i. (3)

The quantity δm‖,i(t) is then time-averaged to compute the stray field along the NV axis

∆B‖(ω), to which our measurements are sensitive. The quantity ∆B‖(ω) is then casted into

mG/G2 by normalizing with the Rabi field h0 sin(θNV)/
√

2. In the left part of Fig.3 we plot

the exemplary in-plane component ∆M‖ of the time-averaged quantity 〈δm‖,i(t)〉u‖,i at the

frequency ωFMR of the uniform mode. The resulting stray field ∆B‖(ωFMR) is shown in the

right part of Fig.3. Similar plots were shown in Fig. 3c of the main text.
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Supplementary Note 3. Model for the Fano interference in the Rabi oscillations

In this section we describe the fitting procedure for the Fano resonances observed in Fig. 2 of

the main text. We use a phenomenological model by considering the interference between the

response of a linear system and its driving force. In particular, we use the analogy between

the response of a ferromagnet to a driving field and the response of a simple mechanical

harmonic oscillator. In both cases energy is stored at resonance; the coherent precession of

the two spin components transverse to the equilibrium axis of the ferromagnet is analogous to

the periodic transformation of kinetic into potential energy. Furthermore, energy dissipation

occurs via spin damping in the ferromagnet and through friction in the oscillator. Finally,

both systems are characterized by a phase delay in their response upon driving. Let’s

consider the equation of motion for a simple mechanical oscillator:

mẍ(t) + βẋ(t) +m∆2x(t) = F (t), (4)

where m is the particle’s mass, F (t) the driving force, β the friction, ∆ the resonance

frequency and x(t) the time-dependent coordinate. The oscillator’s response in frequency

space reads as:

x(ω) = χ(ω)F (ω) =
F (ω)

m(∆2 − ω2) + iβω
, (5)

where χ(ω) is the dynamical susceptibility. Similarly, the transverse dynamical magnetic uni-

form susceptibility χ⊥(ω) for a ferromagnet with short-range exchange interactions reads:[17]

χ⊥(ω) =
g(S)

(∆− ω) + iW
, (6)

where W is the FMR line width, ∆ the FMR frequency and g(S) a constant prefactor which

depends on the spin quantum number. A Fano interference is created in the mechanical

system described by (5) when considering the total response:

xtot(ω) = (1 + χ(ω))F (ω) =
(
1 + r(ω)eiθ(ω)

)
F (ω), (7)

which implies a quadrature summation of the total normalized output’s amplitude:∣∣∣∣xtot(ω)

F (ω)

∣∣∣∣ =
√

1 + r2(ω) + 2r(ω) cos(θ(ω)). (8)

Supplementary Eq. (8) is the mechanical equivalent of the expression we have used to model

the enhanced normalized Rabi frequency. In particular, in the magnetic case, by calling the
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total transverse field at the NV i-site bi(ω) and the external driving field bD(ω) we obtain:∣∣∣∣ bi(ω)

bD(ω)

∣∣∣∣ =
√

1 + r2(ω) + 2r(ω) cos(θ(ω) + φi), (9)

where φi is an additional frequency-independent phase factor motivated by the fact that

the stray field created by the ferromagnet varies according to the different NV i-site. The

terms θ(ω) and r(ω) can be obtained by taking argument and norm of the complex sus-

ceptibility in Supplementary Eq. (6). It is important to note that in order to model our

field-dependent normalized Rabi curves (main-text Fig. 2b), one has to impose for the

FMR resonance the Kittel-like expression ∆ = γ
√
Bext(Bext + A) and for the frequency

ω = D + γ
(
Bext +B‖(Bext)

)
, where D is the zero field splitting and B‖ is the projection

along the NV axis of the ferromagnet’s static stray field (as measured in main-text Fig. 1c).

From the fits shown in Fig. 2b of the main text, we extract W/h = 0.2 GHz.
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Supplementary Note 4. AC Stark effect in off-resonant detection scheme (Fig. 3 of

main text)

In this section, we analyze the phase shift imparted on the NV spin state by the AC Stark

effect caused by the off-resonant driving field in the measurement scheme of Fig. 3A of the

main text. The goal is to estimate if the Stark shift contributes significantly to the measured

Beff in Fig. 3 of the main text, taking into account that the AC drive field can be enhanced

by the AC field generated by the ferromagnet as was shown in main-text Fig. 2.

The Stark shift, and the related Bloch Siegert shift, [5, 6] is usually treated within an

effective two-level model.[4, 5] However, in our experiments, we prepare the S = 1 spin of

the NV centre in a superposition of ms = 0,−1 states, while the off-resonant driving has a

frequency in the vicinity of the ms = 0 ↔ +1 transition. Therefore, the three-level nature

of the system has to be retained.

To discuss the effective field which is picked up by the NV centre as a result of the Stark

shift, we employ the time-dependent Schrieffer-Wolff formalism.[7] The method outlined

below can be readily generalized to other multilevel quantum systems.

A. Time-Dependent Schrieffer-Wolff formalism

The time-dependent Schrieffer-Wolff formalism is discussed in detail in Ref. 7. Here we

briefly recall the main results. We assume an Hamiltonian composed of two parts, a time-

independent diagonal part H0 and a time-dependent non-diagonal part Hnd(t):

H (t) = H0 + Hnd(t). (10)

In order to derive an effective Hamiltonian Heff which retains up to second order the

effects of the perturbation Hnd(t), we change the quantum basis by applying a unitary

transformation Û(t) = eŜ(t), with Ŝ(t) = −Ŝ(t)†.

In the Schrieffer-Wolff formalism, a series expansion of ˆS(t) leads to the expression for Heff ,

which reads:[7]

Heff = H0 +
1

2

[
Ŝ(t),Hnd

]
+O(H 3

nd). (11)
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The matrix S(t) can be computed from the condition that eliminates the first-order terms

O(Hnd), namely:[7]

Hnd(t) +
[
Ŝ(t),H0

]
+ i ˆ̇S(t) = 0. (12)

We will now use this formalism to obtain an expression for the time-independent part of

Heff for an NV centre in an off-resonant driving field.

B. Description of the AC Stark shift for an NV centre in an off-resonant driving

field

For an NV centre in a longitudinal static field Bz and a transverse dynamic field B2, the

Hamiltonian reads:

H (t) = H0 + Hnd(t) = D(Ŝz)2 + hŜz + h2 cos(ωt)Ŝx, (13)

where S = 1 spin matrices are used, and we have defined h = γBz and h2 = γB2. We

assume for Ŝ(t) the following 3x3 matrix representation, which satisfies the Ŝ(t) = −Ŝ(t)†

condition:

Ŝ(t) =


0 S1(t) 0

−S∗1(t) 0 S2(t)

0 −S∗2(t) 0

 . (14)

Provided with Supplementary Eq. (12), the previous expression for Ŝ(t) defines a set of two

linear non-homogeneous differential equations:

iṠ1(t)− ω+S1(t) + h2 cos(ωt)

√
2

2
= 0 iṠ2(t) + ω−S2(t) + h2 cos(ωt)

√
2

2
= 0 (15)

where we have defined ω± = D± h, which are the spin transition frequencies in the absence

of the Stark shift. We compute the solution to Supplementary Eq. (15) imposing S1,2(t =

0) = 0, i. e., Û(t = 0) = Î. We obtain:

S1(t) = −h2
ω+e

−iω+t − ω+ cos(ωt) + iω sin(ωt)√
2(ω+ − ω)(ω+ + ω)

S2(t) = h2
ω−e

−iω−t − ω− cos(ωt)− iω sin(ωt)√
2(ω− − ω)(ω− + ω)

(16)
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By using Supplementary Eq. (11), the effective Hamiltonian can be written as:

Heff ≈H0+
1

2

[
Ŝ(t),Hnd

]
= H0+h2 cos(ωt)

√
2

2


S1(t)+S

†
1(t)

2
0 S1(t)−S2(t)

2

0
S2(t)+S

†
2(t)

2
− S1(t)+S

†
1(t)

2
0

S†1(t)−S
†
2(t)

2
0 −S2(t)+S

†
2(t)

2

 .

(17)

The resulting time-independent part H̄eff of the Hamiltonian (17) has the following form:

H̄eff = H0 +


A 0 A−B

2

0 B − A 0

A−B
2

0 −B

 , A =
h22ω+

4(ω+ − ω)(ω+ + ω)
B =

−h22ω−
4(ω− − ω)(ω− + ω)

.

(18)

Note that this effective Hamiltonian contains, in second order, off-diagonal terms that couple

directly the ms = ±1 subspace. However, in our experiments, the degeneracy of the ms = ±1

states is lifted by the static external field h, which represents the dominant energy scale of

the subspace. For this reason, as long as h� h2, the spin dynamics will mainly be governed

by the diagonal elements of H̄eff . In the limit h� h2 we are therefore allowed to write:

H̄eff ≈H0 +


A 0 0

0 B − A 0

0 0 −B


which describes the shift of the energy levels of the NV spin in the presence of an off-resonant

driving field.

C. Analysis of the Stark effect in the off-resonant detection scheme

We now consider the magnetometry sequence shown in Fig. 3a of the main text. The first

π/2 pulse creates a superposition of ms = 0 and ms = −1 states, and all further NV-pulses

are also given on the ms = 0↔ −1 transition. The normalized contrast is given by:

C(τ, ω) = |〈0|Ψ〉|2

= 〈0|Uy(π/2) exp(−iH0τ/2)Uy(π) exp(−iH̄eff (ω)τ)Uy(π) exp(−iH0τ/2)Ux(π/2)|0〉|2.

(19)
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where Ux,y(π/2) denotes the operator for a π/2-pulse around the x, y axis. We obtain the

following result:

C(τ, ω) =
1

2

(
1 + sin

[
h22τ

8

(
1

ω+ − ω
+

2

ω− + ω
+

2

ω− − ω
+

1

ω+ + ω

)])
(20)

For illustrative purposes, we now consider two limiting cases of small detuning. If we apply

off-resonant driving near the ms = 0↔ +1 transition at ω = ω+ + δ, similar to Fig. 3b-c of

the main text, we get

C(τ, ω) ≈
ω→ω++δ

1

2
+

1

2
sin

(
h22
8δ
τ

)
. (21)

for small δ.

On the other hand, if we would have applied driving near the ms = 0 ↔ −1 transition at

ω = ω− + δ, we get

C(τ, ω) ≈
ω=ω−+δ

1

2
+

1

2
sin

(
h22
4δ
τ

)
. (22)

which is the same as obtained from a two-level treatment of the NV-centre[5]. In this case,

the Stark shift is twice that of Supplementary Eq. (21) because the driving is applied near

the transition frequency of the two states forming the superposition.

D. Comparing the full Stark-effect model with experiments

As a check of our model, we now quantitatively compare Supplementary Eq. (20) with

experiments, applying the measurement scheme in Fig.3a of the main text to NVref . In the

first experiment, we apply all NV control pulses at the 0 ↔ +1 transition. In the second

experiment we apply all NV pulses on the 0 ↔ −1 transition. In both experiments, we

apply off-resonant driving close to the 0 ↔ +1 transition at a frequency ω = ω+ + δ, with

δ > 0.

Supplementary Fig. 4 shows the accumulated Stark phase φ in terms of an effective field

Beff = φ/(γT ), where T is the duration of the off-resonant driving. We normalized Beff by

the square of the amplitude of the driving field B2
2 to correct for a frequency-dependence in

the setup transmission. We independently measured B2(ω) by measuring the Rabi frequency

ωR(ω) of NVref as a function of ESR frequency ω which we vary using Bext. Note that for

an NV centre it can be shown[19] that ωR = B2/
√

2. We find a good agreement with

Supplementary Eq. (20) (solid lines) for both experiments. We indeed observe a difference

in the Stark effect according to which set of spin states we apply the NV-control pulses.
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The dotted line shows the approximation given in Supplementary Eq. (21), which should be

compared to the red solid line.

E. Estimate of the ’enhanced’ Stark effect in the measurements of Fig. 3

In this section, we estimate the magnitude of the Stark effect at the frequency of the FMR

in Fig. 3 of the main text. The Stark effect quickly diminishes with increasing detuning,

which is visible in Fig. 3c of the main text in the frequency range just above the 0 ↔ +1

transition over the entire magnetic field range. However, as we observed that the drive field

may be enhanced by the spin-wave field (Fig. 2 of the main text), an ’enhanced’ Stark

effect may contribute to the observed resonances in Fig. 3 of the main text, provided the

enhancement is strong enough.

For the plot in the right part of Fig. 4, we use the experimentally observed ≈doubling of

the Rabi frequency and plot a Stark field four times as big as the one measured in the left

part of the figure. We conclude that the Stark effect is negligible for the resonance observed

on NVB (top panel of Fig. 3b of main text) which is on the order of 100 mG/G2. On the

other hand, for NVA (Fig. 3b of main text, bottom panel), the estimated Stark effect at

the FMR is on the same scale as the signal in the low-field range Bext ∼< 300 G. However,

the negative sign of Beff in this range cannot result from the Stark effect (the sign will be

described in section Supplementary Note 4 F). For Bext > 300 G, the estimated Stark effect

is much smaller than the observed signal.

F. Sign of the effective field associated with the Stark shift

Finally, we discuss how the Stark shift provides a convenient way to assign a sign to the

effective field measured with the scheme of Fig. 3a of the main text.

To see if the Stark shift corresponds to a positive or negative effective field Beff , we need to

consider the Hamiltonian in Supplementary Eq. (19). As an example, we assume as in our

experiments that ω = ω+ + δ, with δ > 0, which leads to A < 0 while B ≈ 0. Suppose the

NV is prepared in a arbitrary superposition Ψ(t = 0) = a|0〉 + b| − 1〉 + c| + 1〉. The time

evolution in a field h and with A < 0 will read as:

Ψ(t) = eiAt
(
a|0〉+ be−i(D−h−|A|)t| − 1〉+ ce−i(D+h−2|A|)t|+ 1〉

)
. (23)
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It is evident from Supplementary Eq. (23) that the Stark shift corresponds to a positive

effective field if we create a superposition of the 0,-1 states (with a, b 6= 0, c = 0) because

the field h has changed to h+ |A|. This positive Stark field corresponds to the experimental

case. On the other hand, the effective field is negative for a superposition a, c 6= 0, b = 0,

because the field h has changed to h − 2|A|. Therefore, the observation of the Stark shift,

which as mentioned before is visible in Fig. 3c of the main text in the frequency range just

above the 0↔ +1 transition, allows us determine the sign of Beff in both the measurements

in Fig. 3b-c of the main text (these measurements used the exact same pulse sequence).
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Supplementary Note 5. Normalization procedure for the off-resonant detection scheme

(Fig. 3 of main text)

In this section we describe the normalization procedure used to obtain Figs. 3b,d of the

main text.

We use the measurement scheme shown in Fig. 3a of the main text, in which we apply the

final π/2-pulse along the x- or y-axis and subsequently read out the spin-dependent PL (Px

and Py resp.). During the same measurement, we also apply two normalization sequences

which are the same as in Fig. 3a of the main text except that we turn the MW off and apply

the final π/2-pulse along the x and −x axis. Supplementary Fig. 5a shows the raw data of

these four measurements. The normalization sequences yield the minimum and maximum

PL (Pmin and Pmax resp.) which we use to obtain the x and y spin expectation values

(Supplementary Fig. 5b) according to 〈i〉 = 2 Pi−Pmin
Pax−Pmin − 1, where i = x, y.

From the expectation values, we calculate the phase φ of the superposition using φ =

arctan( 〈y〉〈x〉) (Supplementary Fig. 5c). We express the final signal in terms of an effective

field Beff = φ/(γT ), and divide by the square of the driving field |bd|2 to correct for the

frequency-dependent delivery of microwaves through our setup (Supplementary Fig. 5d).

We independently characterized |bd|2 by measuring the Rabi frequency of NVref at con-

stant MW-source power as a function of the ESR frequency, which we tune using Bext

(Supplementary Fig. 6). The inset of Supplementary Fig. 5c illustrates the effect of the

frequency-dependent power on the measurement of φ: dips/peaks in φ clearly correspond to

dips/peaks in the Rabi frequency, motivating the normalization by |bd|2.

To validate the procedure of normalizing Beff by the square of the drive field |bd|2 (Sup-

plementary Fig. 5d), we studied the dependence of Beff on the power of the MW source

R, since |bd|2 ∝ R. Supplementary Fig. 7 shows the linear scaling of the signal with MW

power.
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Supplementary Note 6. Stray-field characterization of magnetization and spin noise

In this section we first describe the fitting procedure used to extract the relaxation rates

from the measurements in Fig. 4a of the main text. Then we describe the model linking

the relaxation rates to the spin-noise created by the disc. The following two sections are

complementary to what discussed in the Methods section of the main text.

A. Noise probed by an NV centre

To describe the NV-spin relaxation we use a rate-equation model[13]:

dP(t)

dt
= W̄P(t) =


−(W1,0 +W−1,0) W−1,0 W1,0

W−1,0 −(W−1,0 +W1,−1) W1,−1

W1,0 W1,−1 −(W1,−1 +W1,0)

P(t) (24)

where P(t) describes the populations of the three NV-spin states as a function of time. In

our fitting procedure, we imposed W1,−1 = 0. This is validated by noting that magnetic-

field noise does not directly couple the ms = −1, 1 levels. In addition, we observed that

the relaxation of NVA is dominated by magnetic-field noise (it has a much faster relaxation

than far-away NVref which we confirmed in a separate measurement to be ∼1/ms). The

relaxation dynamics is therefore described by only two parameters: W1,0 and W−1,0.

In second order perturbation theory, the relaxation parameters are given by:[14]

Wα,β =
α 6=β

1

~2

∫ ∞
−∞

dτeiωα,βτ 〈α|H1(τ)|β〉〈β|H1(0)|α〉, (25)

where the |α〉, |β〉 are the spin eigenstates of the NV centre and ~ωα,β is the energy difference

between the levels (ωα,β = (ωα − ωβ)). The time-dependent magnetic perturbation at the

NV centre due to magnetic-field fluctuations can be written as:

H1(τ) = ~γ
∑
η

ĪηδBη(τ), (26)

where Īη is the η-component of the spin operator of the I = 1 spin of the NV and γ = 2π·28

GHz/T. It is easy to show that, by defining:

g(ωα,β) =
γ2

2

∫ ∞
−∞

dτeiωα,βτ
∑
η 6=z

δBη(τ)δBη(0) =
γ2

2
|B⊥(ωα,β)|2, (27)
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we have:

W1,0 = g(ω+1 − ω0) W−1,0 = g(ω−1 − ω0). (28)

Besides probing the spin-noise spectrum at different frequencies, the two relaxation channels

are formally identical.

Combining eq. (8) of the main text and Supplementary Eq. (27), we reach the following

general expression for the characteristic relaxation rate of an NV centre in the vicinity of a

thin magnetic film:

g(ωα,β) =
γ2

2

Γ2

(2π)2

∑
m 6=z
n

∫
k

N m,n(k, d) · Sn(ωα,β,k)dk. (29)

Finally, note that the T - (temperature) and Bext-dependent spin fluctuations Sη,η(ωα,β,k)

can be related to the more well-known spin susceptibility χ′′η′,η′(ωα,β,k) with the fluctuation-

dissipation theorem:[15]

Sη,η(ωα,β,k) =
2~

1− e−β~ωα,β
χ′′η′,η′(ωα,β,k) ≈

~ωα,β�1/β
.
2kBT

ωα,β
χ′′η,η(ωα,β,k) (30)

B. Noise due to a two-dimensional ferromagnetic thin film

In this section we evaluate Supplementary Eq. (29) for the case of an infinitely extended

2d ferromagnetic layer of Permalloy. As discussed in the Methods section of the main text,

the NV center is mostly sensitive to spin fluctuations with wavenumber k ∼ 1/d. Because

d� a, where a is the lattice parameter, we can neglect the microscopic details of the lattice.

Accordingly, we will compute the magnetic noise from a system composed by an infinitely

thin ferromagnetic layer having a magnetic dipole density Γ. This procedure leads to the

calculated noise spectrum and associated NV-relaxation rates shown in Fig. 4c of the main

text (and to the corresponding solid lines in Fig. 4b of the main text.)

We will give an estimate of the characteristic relaxation time including at first only in-plane

transverse spin fluctuations, assuming that at the wavelengths k ∼ 1/d the exchange inter-

actions are dominant. Assume the plane is magnetized along the z-axis. The susceptibility

for a 2d ferromagnet along one of the axes transverse to z is given by:[17]

χ′′y,y(ωα,β, k) = Γ−1S
W

W 2 + (Dk2 + ∆− ~ωα,β)2
, (31)
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where D is the spin stiffness [17], W the width of the FMR excitation, ∆ its energy and

S is the value of the local spin. In the previous expression the k in the denominator is

expressed in m−1. The value of D can be taken from previous works [18], namely D = 370

meVÅ2. Because of the demagnetization energy cost for out-of-plane spin fluctuations, we

can in addition safely assume that χ′′y,y � χ′′x,x and include in the calculations only the

contribution of χ′′y,y.

In the case of Supplementary Eq. (31) the susceptibility has no φk-dependence. We can

therefore integrate out the φk variable in the integral (29). We define the following θNV-

dependent prefactor:

F (θNV) =
(gLµ0µB

2

)2 ∫ 2π

0

( ∣∣∣∣i sin(φk) cos(θNV) +
sin(2φk)

2
sin(θNV)

∣∣∣∣2 +
∣∣sin2(φk)

∣∣2 )dφk

=
(gLµ0µB)2

32
π
(

11 + 3 cos(2θNV)
)
. (32)

We can now solve the integral (29), which gives:

g(ωα,β) =
γ2

2

Γ

(2π)2

(
2kBT

ωα,β

)
SF (θNV)

∫ ∞
0

k3e−2dk
W

W 2 + (Dk2 + ∆− ~ωα,β)2
dk

=
γ2

2

Γ

(2π)2

(
2kBT

ωα,β

)
SF (θNV)

[
− W + i(∆− ~ω)

4D2
√
π

G 3,1
0,0

(
−1

−1,0,1/2

∣∣∣∣ d2−iW + ∆− ~ω
D

)
− W − i(∆− ~ω)

4D2
√
π

G 3,1
0,0

(
−1

−1,0,1/2

∣∣∣∣ d2 iW + ∆− ~ω
D

)]
, (33)

where the function Gm,n
p,q

( a1,...,ap
b1,...,bq

∣∣ z) is the Meijer G-function and d is the distance of the NV

centre from the ferromagnetic film.

The previous expression formally holds true in the case of an infinitely large and thin mag-

netic film and it represents the contribution to the magnetic relaxation rate due solely to

transverse spin fluctuations of the ferromagnet. On the other hand, longitudinal spin fluc-

tuations take into account thermal intra-band spin-wave transitions;[17] due to the much

smaller scale of the Zeeman with respect to the thermal energy, their contribution is essen-

tially field-independent. We include them by summing up the constant g‖ to the expression

(33).

For a comparison with the experimental data we have used W/h = 0.2 GHz. This value

was extracted from the fits of the Fano interferences in Fig. 2 of the main text with the

damped oscillator response in Supplementary Eq. (6). We also vary ∆(H) as the Kittel law

measured in our experiments for a 6 µm large disc and put S = 1/2 since fcc Permalloy has
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on average one Bohr magneton per site (Ms · a3/4 ≈ µB ) and a Landé factor gL ≈ 2 [22].

Finally, we used Ms = 8 · 105 A/m as the saturation magnetization.[12] A plot of g(ωα,β)

with these parameters and d = 35 nm is in Supplementary Fig. 8b.

Supplementary Eq. (33) represents the noise produced by a two-dimensional ferromagnetic

plane at a distance d. To illustrate the dependence on d, we shows fits to the noise measure-

ments in Fig. 9 (same measurements as in Fig. 4b of the main text), in which we fixed d

while fitting the parameters t and the field-independent offset g‖. When also releasing d, we

obtain the fit for the full field-dependence of the spectrum g(ωα,β) shown in Fig. 4b of the

main text with d = 35(5) nm, in reasonable agreement with the ∼ 50 nm estimated from

the implantation energy.

We now discuss the values of the fit parameter t, which underestimates the 30 nm expected

for our evaporated Permalloy disc as can be seen from Supplementary Fig. 9. We note

that several effects may play a role. Importantly, in our approximation the magnetic film is

assumed infinitely thin, thus neglecting the smaller noise produced by spins that are located

at a larger distance than the distance d from the NV centre. Furthermore, corrections due

to the discretization of the spin wave spectrum associated with the finite thickness of the

disc may also change the expected spin noise. Finally, a smaller saturation magnetization,

fabrication-related imperfections, and/or oxidation of the disc may also lead to smaller spin

noise.

In summary, our model for the spin noise captures the main physics of the problem, in-

troducing a formulation of NV magnetometry in momentum space, which will be of use in

future investigations of condensed-matter systems.
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Supplementary Note 7. Photoluminescence-based field alignment procedure

In our experiments, we use the spin of the NV centre as an optically interrogated magne-

tometer. To assure good optical spin contrast, it is essential to align the applied magnetic

field Bext with the N-V crystal axis [1]. In our experiments, all field sweeps are conducted by

translating a permanent magnet along computed space trajectories that keep Bext aligned

with the NV axis. In this section, we describe the procedure we used to find these trajec-

tories, based on combining a model of the field generated by our magnet with a model of

the NV-centre photoluminescence described by Tetienne et al[1]. In section Supplementary

Note 7 C we describe experimental tests of the quality of the alignment.

A. Calculation of the photoluminescence

To apply Bext, we used cylindrical NdFeB magnets of variable dimensions. We calculate their

space-dependent magnetic field profile with the open source Radia package[2]. Furthermore,

we calculate the PL of an NV centre in a field using the rate-equation model and transition

rates from Ref. 1. Combining these models yields characteristic plots for the space-dependent

PL (Fig. 10 left panel). The white dashed line marks the trajectory corresponding to perfect

alignment. It is clear that the PL is very sensitive to misalignment whenever the field is

≈ 500 G or ≈ 1000 G. These field values correspond to the level anti-crossing of the ground

and excited NV states, respectively.[1]. A direct comparison with experimental data around

≈ 500 G (Fig. 10, right panel) illustrates the quality of the model.

A transformation between the laboratory frame and the model frame is essential for calcu-

lating the magnet position corresponding to a given target magnetic field. The procedure

to obtain this transformation is described next.

B. Determining the magnet trajectory along which the field is well aligned

To calculate the magnet trajectory along which the field is well aligned with the NV axis, we

use the strong PL dependence on the magnet position in the Bext ≥ 514 G field range, which

can be easily identified by the nodal point in the PL (Fig. 10 right panel). In particular, we

first translated the magnet along orthogonal directions lying within N different constant-Z
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planes, recording the coordinates of a set of yi points, {i = 1, ..., N}, where the PL was

found to peak. The yi represent a set of magnet positions in the laboratory frame for which

the field is aligned. For each of these yi points we measured Bext,i by ESR. Provided with

Bext,i, we numerically compute the corresponding xi positions of the magnet in the model

frame. The transformation relating the yi to the xi is:

yi = Rxi + t, (34)

where R is assumed to be a pure rotation matrix and t a translation vector. We obtain

the matrix R via Wahba’s method[3], which provides an expression for R based on the

minimization of the following cost function:

L (R) =
1

2(N − 1)

N−1∑
i=1

||(yi − y1)−R (xi − x1)||2 . (35)

The algorithms for minimizing L (R) and computing R are described in Ref. 3. We then

obtain the vector t by:

t =
1

N

N∑
i=1

(yi −Rxi) . (36)

Provided with the matrix R and the vector t, the laboratory frame coordinates of the magnet

can be calculated for any value of Bext,i via (34). The next section describes experimental

tests of the quality of the field alignment by measuring the field dependence of the ESR

resonances of NVref.

C. Test of the field alignment along the numerically calculated magnet trajectory

In order to evaluate the quality of the field alignment along the numerically calculated maga-

net trajectory, we use single-NV vector magnetometry[11]. We measure the ESR frequencies

ω± of the ms = 0 ↔ ±1 transitions to determine the magnitude of the external field along

(Bz) and transverse to (B⊥) the NV axis.

In particular, we consider the NV Hamiltonian:

H = D(Ŝz)
2 + γBzŜz + γB⊥Ŝx, (37)

where D is the zero-field splitting, and γ = 2π · 2.8025 MHz/G is the NV gyromagnetic

ratio.
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The eigenvalues of Supplementary Eq. (37) are given by the solution of the characteristic

equation:

||H − λiI|| = 0, (38)

λ1 = λ0 λ2 = λ0 + ω+ λ3 = λ0 + ω−. (39)

We substitute Supplementary Eq. (39) into Supplementary Eq. (38) and solve for λ0, Bz, B⊥,

using the measured values for ω±. We obtain:

Bz =

√
−(D + ω+ − 2ω−)(D + ω− − 2ω+)(D + ω− + ω+)

3γ
√

3D
, (40)

B⊥ =

√
−(2D − ω+ − ω−)(2D + 2ω− − ω+)(2D − ω− + 2ω+)

3γ
√

3D
. (41)

The previous expressions rely on the value of D, which we extracted from the field-

independent average D = (ω+ + ω−)/2 to be D = 2π · 2.8707(1) GHz. In Fig. 11a we

plot the extracted misalignment angle, defined as arctan(B⊥/Bz), for both NVref and NVa.

A θ 6= 0 value for NVref is solely due to a misaligned field of the permanent magnet, which

is limited to the small value of θ ≤ 3◦ (Fig. 11a). For NVa, the stray field from the Py disc

causes the low-field increase of θ.

D. Determining the disc field from the ESR traces

The field created by the permanent magnet varies slightly between the different NVs studied

in this work. In addition, the associated field gradient varies also with the magnitude of the

external static field applied along the NV centre axis. By measuring the externally applied

field at reference NV sites distant from the Permalloy disc, we measure a field gradient of

∼ 0.2 G/µm at the maximum static field used in experiments of BNVref
z = 700 G (applied

using the model magnet D48-N52 produced by K&J magnetics). We confirm numerically

the strength and field-dependence of the measured field gradient, and the fact that the latter

is uniform in space within the optical field of view. In this way, we can compute the field-

dependence |∆BNVa,b
z | of the difference between the external static field at the NV sites a, b

with respect to the reference NV.

Finally, using the methods described in the previous paragraph, the values of Bz at both

NVref and NVa,b as extracted from the ESR resonances allow us to evaluate the residual stray
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field B// = B
NVa,b
z −BNVref

z +|∆BNVa,b
z | created by the Permalloy disc only. In Supplementary

Fig. 11b we compare B
NVa,b
z −BNVref

z with the simpler stray field estimate (ωNVref
− −ωNVa

− )/γ.

In the main text, we show the field dependence of B//, which includes the correction for the

field-gradient.

30



Supplementary References.

[1] J.-P. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J.-F. Roch and V.

Jacques, Magnetic-field-dependent photodynamics of single NV defects in diamond: an appli-

cation to qualitative all-optical magnetic imaging, New Journ. of Phys. 14, 103033 (2012).

[2] O. Chubar, P. Elleaume and J. Chavanne, A 3D Magnetostatics Computer Code for Insertion

Devices, Jour. of Synch. Rad. 5, 481 (1998).

[3] F. L. Markley and D. Mortari, How To Estimate Attitude from Vector Observations, Proceed-

ings: Advances in the Astronautical Sciences 103, 1979 (1999).

[4] S. Rohr, E. Dupont-Ferrier, B. Pigeau, P. Verlot, V. Jacques, and O. Arcizet, Synchronizing

the Dynamics of a Single Nitrogen Vacancy Spin Qubit on a Parametrically Coupled Radio-

Frequency Field through Microwave Dressing, Phys. Rev. Lett. 112, 010502 (2014).

[5] P. Cappellaro, L. Jiang, J. S. Hodges, and M. D. Lukin, Coherence and Control of Quantum

Registers Based on Electronic Spin in a Nuclear Spin Bath, Phys. Rev. Lett. 102, 210502

(2009).

[6] P. London, P. Balasubramanian, B. Naydenov, L. P. McGuinness, and F. Jelezko, Strong

driving of a single spin using arbitrarily polarized fields, Phys. Rev. A 90, 012302 (2014).

[7] H. Wang and G. Burkard, Mechanically induced spin resonance in a carbon nanotube, Phys.

Rev. B 90, 035415 (2014).

[8] J. R. Schrieffer and P. A. Wolff, Relation between the Anderson and Kondo Hamiltonians,

Phys. Rev. 149, 491 (1966).

[9] S. Poletto et al., Entanglement of Two Superconducting Qubits in a Waveguide Cavity via

Monochromatic Two-Photon Excitation, Phys. Rev. Lett. 109, 240505 (2012).

[10] M. Noske, A. Gangwar, H. Stoll, M. Kammerer, M. Sproll, G. Dieterle, M. Weigand, M.
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