

Supplementary Figure 1. Structural overlay of DinF-BH and DinF-BH^{D40N}.

The N and C domains are colored cyan and yellow respectively in DinF-BH^{D40N}, except for TM1, which is in red; the R6G-bound DinF-BH is colored in grey. Notably, TM1 is kinked in neither DinF-BH nor DinF-BH^{D40N}.

Supplementary Figure 2. Locations of TM1 within the DinF-BH^{D40N} crystals.

Protein molecules are colored cyan, yellow and grey, respectively, except for TM1, which is in red. The directions of unit cell axes are also indicated. (**a**) View of crystal packing down the Z-axis of the unit cell. It is particularly evident from this view that the TM1 is removed from any crystal packing interactions between neighboring DinF-BH^{D40N} molecules. (**b**) View down the X-axis of the unit cell.

Supplementary Figure 3. Sequence alignment of representative MATE proteins.

Residues that are conserved among the five MATE proteins are colored magenta. Regions of secondary structural elements in DinF-BH are outlined, with every 10th residue marked. Magenta and cyan dots highlight amino acids that likely bind cations in DinF-BH and NorM-NG, respectively. Residues 1 in PfMATE and NorM-NG, residues 1- 20 in hMATE1 were omitted for clarity. Notably, the H⁺-coupled hMATE1 bears the conserved cation-binding amino acids as found in NorM-NG and NorM-VC (cyan dots), while lacking the two aspartates (magenta dots) as seen in DinF-BH and PfMATE.

Supplementary Figure 4. Structural basis for the direct competition in DinF-BH. (a-c) Close-up views of the H-bonding networks in DinF-BH^{D40N}(a), deprotonated DinF-BH (**b**), and deprotonated, R6G-bound DinF-BH (**c**). H-bonding interactions as well as the contacts between D40 and R6G were indicated by dotted-lines. The interactions between D40N and D184, and D40 and R6G were highlighted by red arrows. (**d**) The inhibition of bacterial growth as measured by attenuance at 600nm. The bacteria expressing the DinF-BH variants and $pET15b$ were grown in the presence of 0.5 μ g/ml ethidium. Error bars indicate s.d. among three biological replicates.

Supplementary Figure 5. Western blot analysis of MATE variants.

Western blot analysis of DinF-BH and NorM-NG variants in membrane preparations was performed by using an antibody against the His-tag. Red arrows indicate the positions of the MATE transporters. This analysis suggested that the MATE variants studied in this work were expressed at similar levels.

Supplementary Figure 6. Competition of radioligand binding by verapamil.

[3 H]-rhodamine 6G (R6G) binding by DinF-BH (**a**) and NorM-NG (**b**) and its inhibition by the addition of increasing concentrations (5, 25, or 125 µM) of non-labeled R6G (magenta column), ethidium (orange column) and verapamil (cyan column). Error bars indicate s.d. among three biological replicates.

Supplementary Figure 7. Stereo view of the fitting of verapamil to the electron density in DinF-BH.

The electron density map (cyan mesh) for verapamil-bound DinF-BH was calculated to 3.0 Å resolution using native amplitudes and density-modified MIRAS phases. Density modification included solvent flattening, histogram matching, cross-crystal averaging and phase extension. The electron density was overlaid onto the final model of verapamil (magenta sticks) and contoured at 1.5 σ . Notably, the orientation of verapamil was welldefined based on the unbiased electron density.

Supplementary Figure 8. Verapamil-H+ antiport in everted membrane vesicles.

The transmembrane proton gradient was examined by measuring time-dependent, acridine orange fluorescence in everted membrane vesicles containing DinF-BH (**a**), DinF-BH^{D40A} (b), or pET15b (c). The fluorescence was shown in arbitrary units (a.u.).

Supplementary Figure 9. Stereo view of the fitting of verapamil to the electron density in NorM-NG.

The electron density map (cyan mesh) for verapamil-bound Norm-NG was calculated to 3.0 Å resolution using density-modified MIRAS phases. The electron density was overlaid onto the final model of verapamil (magenta sticks) and contoured at 2.0 σ. The conformation of the bound verapamil was well-defined on the basis of the electron density and differs drastically from that seen in the verapamil-bound DinF-BH. Notably, the distance between the two stacked aromatic rings in verapamil is $~5$ Å, and the two rings adopt a parallel displaced configuration, likely to minimize the repulsive electrostatic interactions between them.

Supplementary Figure 10. Experimental electron density for verapamil-bound NorM-NG.

The featured slices of electron density depict L3-4 (**a**) and L9-10 (**b**). The electron density map (cyan mesh) was calculated to 3.0 Å resolution using density-modified MIRAS phases. The electron density was overlaid onto the final protein model (magenta sticks) and contoured at 1.5 σ . The protruding electron densities for hydrophobic side chains were useful for amino-acid sequence assignment.

Supplementary Figure 11. Heavy-metal binding sites in DinF-BH and NorM-NG.

The Cα backbones of DinF-BH (**a**) and NorM-NG (**b**) were colored in cyan (N-terminal half) and yellow (C-terminal half). The mercury-, lead-, platinum- and gold-binding sites were highlighted by red, blue, green and orange spheres, respectively.

Supplementary Table 1. Data collection and MIRAS phasing statistics for DinF-BHD40N.

Overall MIRAS figure of merit^e (20 - 4.0 Å): 0.63 (acentric), 0.67 (centric) (low pH); 0.64 (acentric), 0.70 (centric).

^aEMTS: thimerosal. TMLA: trimethyllead acetate.

 ${}^{\text{b}}\mathsf{R}_{\text{sym}}$ = Σ| I - <I>| / ΣI, where I is the observed intensity of symmetry-related reflections.

 $\rm\degree$ Phasing power= F_h / E, where F_h is the rms isomorphous/anomalous difference and E the rms residual lack-of-closure.

^dR_{cullis}(iso)= Σ(||FPH – FP| - |FH(calc)||) / Σ(|FPH – FP|), where FPH and FP are structure factors for derivative and native data, respectively. $R_{\text{cullis}}(\text{iso})$ is valid for centric reflections only. $^{\sf d}$ R_{cullis}(ano)= Σ(||ΔFPH(obs)| - |ΔFPH(calc)||) / Σ|ΔFPH(obs)|, where ΔFPH(obs) and ΔFPH(calc) are the observed and calculated structure factor differences between Bijvoet pairs, respectively. ^eFigure of merit is defined as weighted mean value of the cosine of phase error.

Supplementary Table 2. Data collection and phasing statistics for verapamil-bound DinF-BH.

^aEMTS: thimerosal. TMLA: trimethyllead acetate.

 ${}^{\text{b}}\mathsf{R}_{\text{sym}}$ = Σ| I - <I>| / ΣI, where I is the observed intensity of symmetry-related reflections.

 $\rm ^c$ Phasing power= F_h / E, where F_h is the rms isomorphous/anomalous difference and E the rms residual lack-of-closure.

^dR_{cullis}(iso)= Σ(||FPH – FP| - |FH(calc)||) / Σ(|FPH – FP|), where FPH and FP are structure factors for derivative and native data, respectively. $R_{\text{cullis}}(\text{iso})$ is valid for centric reflections only.

 $^{\text{d}}$ R_{cullis}(ano)= Σ(||ΔFPH(obs)| - |ΔFPH(calc)||) / Σ|ΔFPH(obs)|, where ΔFPH(obs) and ΔFPH(calc) are the observed and calculated structure factor differences between Bijvoet pairs, respectively. ^eFigure of merit is defined as weighted mean value of the cosine of phase error.

Supplementary Table 3. Data collection and phasing statistics for verapamil-bound NorM-NG.

^aEMTS: thimerosal. TMLA: trimethyllead acetate.

 ${}^{\text{b}}\mathsf{R}_{\text{sym}}$ = Σ| I - <I>| / ΣI, where I is the observed intensity of symmetry-related reflections.

 \rm{e} Phasing power= F_h / E, where F_h is the rms isomorphous/anomalous difference and E the rms residual lack-of-closure.

^dR_{cullis}(iso)= Σ(||FPH – FP| - |FH(calc)||) / Σ(|FPH – FP|), where FPH and FP are structure factors for derivative and native data, respectively. $R_{\text{cullis}}(\text{iso})$ is valid for centric reflections only. $^{\sf d}$ R_{cullis}(ano)= Σ(||ΔFPH(obs)| - |ΔFPH(calc)||) / Σ|ΔFPH(obs)|, where ΔFPH(obs) and ΔFPH(calc) are the observed and calculated structure factor differences between Bijvoet pairs, respectively.

^eFigure of merit is defined as weighted mean value of the cosine of phase error.

Supplementary Table 4. Structure refinement statistics for MATE transporters.

 ${}^{a}R_{\text{cryst}} = \Sigma(||F_{obs}|\cdot|F_{cal}||) / \Sigma(|F_{obs}|)$, where F_{obs} and F_{calc} are the observed and calculated structure factors, respectively.

 ${}^{\text{b}}\mathsf{R}_{\text{free}}$ is the same as $\mathsf{R}_{\text{cryst}}$ but calculated with 5% of the reflections excluded from structure refinement.