Supplementary Table 1

Gaussians widths (σ) and temperature bias (ΔT) used in each of the simulation replicas in the Bias-Exchange Well-Tempered Metadynamics calculations^a.

Replica	Collective variables	σ (V ₁)	$\sigma (V_2)^{b}$	σ (V ₃)	σ (V ₄)	σ (V ₅)	298 K + Δ <i>T</i>
	biased	[nm]	[nm]	[nm]			(К)
1	<i>V</i> ₁ , <i>V</i> ₂	0.035	0.035	-	-	-	4470
2	<i>V</i> ₁ , <i>V</i> ₂	0.035	0.035	-	-	-	4470
3	V ₁ , V ₂ , V ₃	0.116	0.116	0.116	-		2214
4	<i>V</i> ₁ , <i>V</i> ₂ , <i>V</i> ₃	0.100	0.100	0.100	-		1831
5	<i>V</i> ₁ , <i>V</i> ₂ , <i>V</i> ₃	0.083	0.083	0.083	-		1447
6	V ₁ , V ₂ , V ₃	0.066	0.066	0.066	-		1064
7	<i>V</i> ₁ , <i>V</i> ₂ , <i>V</i> ₃	0.050	0.050	0.050	-		681
8	unbiased	-	-	-	-	-	-
9	V ₁ , V ₂ , V ₄ , V ₅	0.150	0.150	-	0.1050	0.002250	2214
10	<i>V</i> ₁ , <i>V</i> ₂ , <i>V</i> ₄ , <i>V</i> ₅	0.125	0.125	-	0.0875	0.001875	1831
11	<i>V</i> ₁ , <i>V</i> ₂ , <i>V</i> ₄ , <i>V</i> ₅	0.100	0.100	-	0.0700	0.001500	1447
12	<i>V</i> ₁ , <i>V</i> ₂ , <i>V</i> ₄ , <i>V</i> ₅	0.075	0.075	-	0.0525	0.001125	1064
13	<i>V</i> ₁ , <i>V</i> ₂ , <i>V</i> ₄ , <i>V</i> ₅	0.050	0.050	-	0.0350	0.000750	681
14	V4, V5	-	-	-	0.0350	0.000750	4470
15	<i>V</i> ₄ , <i>V</i> ₅	-	-	-	0.0350	0.000750	4470
16	V4, V5	-	-	-	0.0350	0.000750	4470

^(a) Gaussian functions were added to the biasing potential acting on each variable at 5-ps intervals, and were initially 2 kJ/mol in height. The height of these Gaussians functions was progressively scaled down as prescribed by the Well-Tempered Metadynamics method (Branduardi, D. et al. *J. Chem. Theor. Comp.* **8**, 2247-2254, 2012). To avoid systematic errors, the inversion condition was applied to the upper and lower limits of each collective variable biased (Crespo, Y. et al. *Phys. Rev. E* **81**, 055701, 2010). Note the specified 'temperature bias' is not the simulation temperature, which was in all cases 298 K. This scheme allows for an efficient exploration of the multidimensional collective-variable space: replicas with larger values of the temperature-bias and/or Gaussians widths are able to access high free-energy regions, albeit at low spatial resolution. Replicas with smaller values primarily sample low free-energy regions but at high spatial resolution.

^(b) In the simulations of the Ca²⁺-bound state, all σ (V_2) values were scaled down by a factor 1.4, so as to provide greater spatial resolution.

Supplementary Table 2

Deviation in the geometry of the (truncated) ion-binding region of NCX_Mj upon optimization via quantum-mechanical calculations, with respect to the input structure obtained via classical MD simulations, for different ions and occupancies.

	3×Na⁺	$2 \times Na^+$	1×Ca ²⁺	Ca ²⁺ vs Sr ²⁺
RMSD, all atoms (Å) ^a	0.45	0.40	0.32 (0.40) ^c	0.10 ^d
RMSD, cation site (Å) ^b	0.26	0.42	0.17 (0.23) ^c	0.14 ^d

^(a) The truncated ion-binding regions are depicted in Supplementary Fig. 6; the all- atom RMSD value does not include hydrogen atoms.

^(b) This RMSD value is that of the bound ions and the coordinating oxygen atoms.

^(c) Values in parenthesis refer to the geometry optimization using the SDD basis set (rather than with cc-pv-dz).

^(d) These RMSD values compare the optimized geometries of the Ca^{2+} and Sr^{2+} -bound states (both with the SDD basis set).