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PARAMETERS

In Tab.I we provide parameters for the electromotility model (Figs. 2 and 3 in the main

text).

PERTURBATION

The predicted cell re-orientation seen in Fig. 2 in the main text can be explained by

a perturbative expansion that can be performed for a large class of ion transport models.

The calculation below will, however, be performed without the NKCC in favor of algebraic

simplicity. Let φ be a generic expression for any quantity under consideration, which can be

cc,n, Vc, or other variables. We can write

φ(x) = φ(0) + φ(1)(x) , (1)

where φ(0) represents the unpolarized, resting state quantities when ∆V = 0. φ(0) are the

steady state solutions when v0 = 0 and are constant in space. The perturbed part is small:

|φ(1)| � |φ(0)|. As an approximation, we assume that the flux from the Na+/K+ pump

remains the same when the external voltage drop ∆V is applied, i.e., J
b/f(1)
Na/K = 0. At the

resting state J
b/f(0)
n = 0 so that

Jb/f
n = Jb/f(0)

n + Jb/f(1)
n = Jb/f(1)

n,p . (2)

We also assume that the passive channels are not tension gated. Hence, the first order Taylor

expansion of the fluxes gives

Jb
n = −gnRTcb(1)c,n /c

(0)
c,n − gnznF (V b(1)

c −∆V ) , (3)

J f
n = −gnRTcf(1)c,n /c

(0)
c,n − gnznFV f(1)

c (4)

where gn = gbn = gfn for an unpolarized cell. From the electroneutrality condition we know

that V
(1)
c , and thus c

(1)
c,n, are linear in x. Therefore, the leading order of the intracellular flux

(Eq. 4) becomes

Jn = −Dn

(
cf(1)c,n − cb(1)c,n

)
/L

−DnznFc
(0)
c,n

(
V f(1)
c − V b(1)

c

)
/RTL− v0c(0)c,n . (5)
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TABLE I. Membrane channel related parameters in the model used in the electromotility model.

Parameters Description values

L (µm) Cell length 35

b (µm) Cell width 3

w (µm) Cell depth 10

η (Pa s) Fluid dynamic viscosity 1× 10−3

ξw (Pa s/m) Coefficient of friction of the channel wall 8× 108

DNa (m2/s) Diffusion constant of Na+ 1.33× 10−9

DK (m2/s) Diffusion constant of K+ 1.96× 10−9

DCl (m2/s) Diffusion constant of Cl− 2.03× 10−9

DA (m2/s) Diffusion constant of A− 5.0× 10−10

N− (mol) Total number of the intracellular A− 1.5× 10−13

c0,Na (mol/m3) Extracellular Na+ concentration 145

c0,K (mol/m3) Extracellular K+ concentration 5

c0,Cl (mol/m3) Extracellular Cl− concentration 110

c0,A (mol/m3) Extracellular A− concentration 40

αb/f (m/s/Pa) Water permeability constant 3.0× 10−11

G
b/f
0,Na (mol2/Kg/m3) Passive Na channel constant 7.5× 10−9

G
b/f
0,K (mol2/Kg/m3) Passive K channel constant 2.5× 10−7

G
b/f
0,Cl (mol2/Kg/m3) Passive Cl channel constant 1.25× 10−7

c
b/f
ATP (mol/m3) ATP concentration in JNa/K 1

α
b/f
ATP (m/s) Coefficient in JNa/K 1

α
b/f
Na/K,Na Calibration constant in JNa/K 1

α
b/f
Na/K,K Calibration constant in JNa/K 0.1

α
b/f
NKCC (mol/m2/s) Coefficient in JNKCC 5.× 10−9

β
b/f
1 Constant in Tm 1

β
b/f
2 (N/m) Constant in Tm 3.0× 10−4

β
b/f
3 Constant in GV 13

β
b/f
4 (mV) Constant in GV −150
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We then use the relation Jn|x=0+Jn|x=L = Jb
n−J f

n and sum over n. Note that
∑

n znc
(1)
c,n = 0

and v0 =
∑

n

(
c
f(1)
c,n − cb(1)c,n

)
/γ. The cell velocity can then be expressed as

v0 = − F
∑

n(H−1
n gnzn)

γ + 2
∑

nH
−1
n c

(0)
c,n

∆V , (6)

where Hn = 2Dn/L+gnRT/c
(0)
c,n. The denominator of Eq. 6 is always positive so that the sign

of v0, which is the direction of cell migration, depends on the sign of ∆V and
∑

n(H−1
n gnzn).

The latter is ∑
n

(H−1
n gnzn) =

∑
n

Lc
(0)
c,ngnzn

2Dnc
(0)
c,n + gnRTL

. (7)

Although not expressed explicitly, Eq. 7 depends on the active pump through its role in

setting the stationary concentrations c
(0)
c,n. To gain a physical understanding of Eq. 7, we

may consider a cell with membrane impermeable to anions. In this case, Eq. 7 can only

be positive and the cell moves in the direction of higher voltage. Indeed, impermeability to

anions makes the cell an enclosure of negative ions being pulled toward locations of higher

voltage. We also see from Eq. 7 that the velocity decreases with greater diffusion coefficient

because a high diffusion coefficient leads to nearly equal concentrations on the two ends,

reducing the discrepancy in osmotic pressure at the two ends of the cell.

In a typical cell, cc,K and G
b/f
0,K are much higher than those of other ions. Thus, Eq. 7

is dominated by the K+ contribution so that v0 is negative for a positive ∆V , indicating a

backward cell migration [Fig. 2(a-d)]. If G
b/f
0,Cl increases to a sufficiently high value, however,

Eq. 7 will become negative since zCl is negative. This explains the reversal cell migration

predicted in Fig. 2(e-h).

Figure 1 compares the analytical solution (Eq. 6 in the Supplemental Materials) with the

numerical solution in the main text. The cell velocity v0 is plotted against the unpolarized

channel constant of Cl−, G0,Cl. To obtain the unperturbed solution c
(0)
c,n, the numerical

solution is sought when ∆V = 0. As shown in the figure, the two solutions agree well, both

showing the reversed direction of cell migration as G0,Cl increases.

POLARIZATION

Here we examine a simple model of how cells can develop polarized membrane chan-

nels/pumps in a 1-D cell. These proteins can diffuse in the membrane due to concentration
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FIG. 1. Comparison of the analytical solution (Eq. 6 in the Supplemental Materials) with the

numerical solution in the main text. The cell velocity v0 is plotted against the unpolarized channel

constant of Cl−. ∆V = 2 mV. To make a fair comparison, tension gating of passive channels and

the NKCC are removed in the numerical solution. The transport rate of the Na/K pump is also

reduced by a factor of 500.

gradients. The fluidity of the lipid membrane contributes protein transport in the membrane

(convection). At the same time there is vesicle trafficking in the cytoplasm (mainly from

microtubule motors). Therefore membrane proteins can be transported from the back to the

front (see Fig. 2 for an illustration). Denote %p(x) as the 2D density of proteins in the cell

membrane. We assume that %p(x) is continuous and smooth. The dynamics of membrane

proteins can be described as

∂%p
∂t

=
∂

∂x

(
Dp

∂%p
∂x
− vlip%p

)
, (8)

where Dp is the diffusion constant of the proteins in the membrane and vlip is the velocity

of the membrane lipid (assumed constant). For steady-state solution, the flux

J = −Dp
d%p
dx

+ vlip%p (9)

must be a constant in x. Here we have used the same notation J for flux of the proteins.

This is different from the flux of ions in the main text. The fluxes of the proteins at the two

end of the cell through the vesicles are (see Fig. 2)

Jb = vbp%
f
p − vfp%bp , (10)
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J f = vfp%
b
p − vbp%fp , (11)

where v
b/f
p is the backward/forward transport velocity of the vesicles that carry proteins.

These fluxes determine the boundary condition of Eq. 9, i.e., J = Jb = −J f. Since J is a

constant, the membrane protein density, %p, can be solved from Eq. 9 as

%p = c1e
vlipx/Dp +

J

vlip
, (12)

where c1 is a constant to be determined. Define %bp = %p|x=0 and %fp = %p|x=L, from Eq. 12

we then have

%fp − %bp = c1
(
evlipL/Dp − 1

)
. (13)

This equation solves c1 as c1 = θ1(%
f
p − %bp), where θ1 = 1/(evlipL/Dp − 1). By substituting

the expression of c1 and using J = Jb, Eq. 12 yields

%bp = θ1(%
f
p − %bp) +

vbp%
f
p − vfp%bp
vlip

. (14)

Rearrangement of Eq. 14 gives the ratio of polarization of the proteins at the two ends of

the cell:

%fp
%bp

= θ2 =
1 + θ1 + vfp/vlip

θ1 + vbp/vlip
. (15)

A polarized channel/pump distribution (%fp/%
b
p 6= 1) requires vlip + vfp 6= vbp . The values of

%
b/f
p can be solved from the known total number of a specific protein, Np, in the membrane,

C

∫ L

0

%p(x)dx = Np , (16)

where C = 2(b+ w) is the circumference of the cross section. It is easy to find

%bp =
Npvlip
C

[
Dp(θ2 − 1) +

(
vbpθ2 − vfp

)
L
]−1

. (17)

We can perform some simple numerical estimates of parameters. Membrane protein

diffusion constant is on the order of Dp ∼ 1-10 µm2/s, and L = 20− 100 µm. Microtubule

motors, on the other hand, transports vesicles with velocity of ∼ 1 µm/s. The rate of arrival

of lipid vesicle is around 1/s. Therefore, for a vesicle of 2µm in diameter and a cell cross

sectional size of 6µm×6µm, vlip ∼ 0.2µm/s. Each vesicle also contains potentially many

proteins, therefore vfp � vlip and vbp ∼ 0. Therefore, depending on the values of vf,bp , nearly

any polarization ratio is possible.
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FIG. 2. (Color online) Schematics of the dynamics of membrane proteins. %
b/f
p is the areal density

of membrane proteins at the back/front end of the cell. These proteins diffuses in the membrane

(with diffusion coefficient Dp), are carried between the two ends of the cell within the cytoplasm

through vesicles (with the backward/forward transport velocity v
b/f
p ), and are transported within

the plasma membrane due to the fluidity of the lipid membrane (with the lipid velocity vlip).

OSMOTIC CONDITIONS

The current model also predicts the cell migration under different osmotic conditions, as

a model with electro-neutral ion does [1]. Figure 3 compares the model prediction with the

experimental data by Stroka et al. (Fig. 3 in Ref. [1]). As the properties of ion channels vary

with cell types, a different set of parameters were used in this case (see Tab. II). The flux

through each channel in this case is in the order of 10−14 mol/µm2/s. The relatively higher

ion fluxes compared to the electromotility model is due to the higher extracellular osmotic

pressure difference across the cell, which imposes higher chemical potential difference across

the membrane.

[1] K. M. Stroka, H. Jiang, S.-H. Chen, Z. Tong, D. Wirtz, S. X. Sun, and K. Konstantopoulos.

Cell, 157:611–623, 2014.
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TABLE II. Membrane channel related parameters used in the osmotic shock model.

Parameters Description values

N− (mol) Total number of the intracellular A− 1.3× 10−13

c0,Na (mol/m3) Extracellular Na+ concentration 155

c0,K (mol/m3) Extracellular K+ concentration 5

c0,Cl (mol/m3) Extracellular Cl− concentration 120

c0,A (mol/m3) Extracellular A− concentration 60

αb/f (m/s/Pa) Water permeability constant 3.0× 10−13

G
b/f
0,Na (mol2/Kg/m3) Passive Na channel constant 1.5× 10−7

G
b/f
0,K (mol2/Kg/m3) Passive K channel constant 5.0× 10−6

G
b/f
0,Cl (mol2/Kg/m3) Passive Cl channel constant 5.0× 10−5

c
b/f
ATP (mol/m3) ATP concentration in JNa/K 1

α
b/f
ATP (m/s) Coefficient in JNa/K 1

α
b/f
Na/K,Na Calibration constant in JNa/K 1

α
b/f
Na/K,K Calibration constant in JNa/K 0.1

α
b/f
NKCC (mol/m2/s) Coefficient in JNKCC 5.× 10−4

β
b/f
1 Constant in Tm 10

β
b/f
2 (N/m) Constant in Tm 3.0× 10−4

β
b/f
3 Constant in GV 13

β
b/f
4 (mV) Constant in GV −150
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FIG. 3. (Color online).Comparison between the theoretical model (solid lines) and the experimental

data (red stars, Fig. 3 in Ref. [1]). (a) Cell velocity under osmotic shocks at the front end. (b) Cell

velocity under osmotic shocks at the back end.
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