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Supplementary	Results	
	
1.	Rhythmic	components	describe	both	strongly	and	weakly	phase-coupled	oscillatory	networks	(PCNs)	
A	rhythmic	component	describes	the	spatial,	spectral	and	temporal	structure	of	phase	coupling	that	is	
induced	by	a	neuronal	population.	Neuronal	populations	can	form	phase-coupled	oscillatory	networks	
(PCNs)	and,	using	our	method,	we	can	distinguish	between	two	types,	strong	and	weak	PCNs.	A	strong	
PCN	is	a	spatially	distributed	neuronal	population	whose	subpopulations	(not	necessarily	connected	in	
space)	are	strongly	phase-coupled	(in	the	prototypical	case,	with	a	coherence	of	1).	As	we	will	explain	
below,	a	strong	PCN	is	captured	by	a	single	component.	A	weak	PCN	is	a	collection	of	neuronal	
populations	that	are	only	weakly	phase-coupled	(e.g.,	only	during	some	parts	of	an	extended	period).	As	
we	will	explain	below,	a	weak	PCN	is	captured	by	multiple	phase-coupled	components,	each	of	which	
reflects	one	neuronal	population.	These	populations	can	be	point	sources	or	they	can	also	be	spatially	
distributed.	In	the	latter	case,	this	neuronal	population	is	itself	a	strong	PCN.	Thus,	a	weak	PCN	can	be	a	
phase-coupled	network	of	strong	PCNs,	but	may	also	involve	components	that	reflect	point	sources.	

Strictly	speaking,	the	distinction	between	distributed	and	point	sources	is	not	biologically	
realistic.	However,	it	is	useful	because	it	allows	for	making	a	distinction	between	components	that	are	
strong	PCNs	(distributed	sources)	and	those	that	are	not	(point	sources).	In	practice,	we	will	consider	a	
component	to	be	a	point	source	if	its	spatial	amplitude	and	spatial	phase	map	closely	approximate	a	
current	dipole;	otherwise,	it	will	be	considered	a	distributed	source.	Note	that	a	distributed	source	can	
be	spatially	discontinuous,	and	when	the	disconnected	subpopulations	are	small,	the	source’s	spatial	
amplitude	and	spatial	phase	map	can	look	like	a	superposition	of	point	sources	(e.g.,	component	#2	in	
Fig	4).	
	 When	extracting	components,	we	have	to	deal	with	the	fact	that	a	single	component	can	be	split	
in	any	number	of	components	with	between-component	coherences	equal	to	1.	In	terms	of	the	matrices	
in	Figure	1,	this	splitting	of	components	corresponds	to	a	single	spatial	map	(a	column	in	the	leftmost	
cyan	matrix)	being	replaced	by	multiple	spatial	maps,	which	can	be	combined	into	the	original	one.	
Importantly,	after	this	split,	the	corresponding	columns	of	the	between-component	coherency	matrices	
are	equal	to	each	other	(and,	as	a	result,	the	whole	matrix	is	rank-deficient).	We	prevent	such	a	split-up	
of	components	by	putting	a	constraint	on	the	between-component	coherencies.	Specifically,	we	
constrain	these	matrices	to	be	identity	matrices	(zero	between-component	coherence).	Under	this	
constraint,	a	PCN	that	exhibits	perfect	phase	coupling	between	subpopulations	will	be	captured	by	a	
single	component.	In	fact,	if	this	PCN	would	be	split	over	multiple	components	then	some	off-diagonal	
elements	of	the	between-component	coherency	matrices	will	be	equal	to	1,	strongly	conflicting	with	the	
zero	coherence	constraint.	This	constraint	also	has	the	consequence	that	groups	of	sensors	that	
correspond	to	weakly	phase-coupled	neuronal	populations,	will	be	split	into	separate	components.	After	
estimating	the	component-specific	parameters	under	the	identity	matrix	constraint,	these	weak	PCNs	
are	identified	by	estimating	the	between-component	coherencies	while	keeping	the	component-specific	
parameters	fixed.	

The	zero	coherence	(identity	matrix)	constraint	unavoidably	leads	to	some	degradation	of	the	
component-specific	parameters	of	phase-coupled	components.	As	such,	our	strategy	is	only	valid	under	
two	assumptions:	(1)	the	resulting	component-specific	parameter	degradation	is	minimal,	and	(2)	the	



Van	der	Meij	R,	Van	Ede	F,	Maris	E,	Rhythmic	Components	in	Extracranial	Brain	Signals	Reveal	Multifaceted	Task	Modulation	of	Overlapping	
Neuronal	Activity,	PLOS	ONE	–	Supplementary	Material	
	

2	
	

between-component	coherencies	can	be	estimated	reasonably	from	these	parameters.	We	evaluated	
the	robustness	of	our	strategy	by	simulating	overlapping	phase-coupled	MEG	components,	and	varying	
the	strength	of	their	coherence.	The	simulations	and	their	results	are	described	in	detail	in	
Supplementary	Methods	section	1.	In	short,	this	simulation	study	showed	that	(1)	the	component-
specific	parameters	are	only	minimally	distorted	by	the	constraint,	(2)	between-component	coherence	
can	be	recovered	well,	but	(3)	the	between-component	phase	relation	cannot.		

In	the	following	two	sections	we	first	describe	strong	PCNs	that	are	revealed	by	single	
components	extracted	from	our	MEG	recordings.	Next,	we	will	describe	weak	PCNs	revealed	by	their	
between-component	coherencies.	
	
2.	Strong	PCNs	are	widespread	in	MEG	recordings	
To	identify	single-component	strong	PCNs	they	need	to	be	distinguished	from	components	that	reflect	
single	oscillating	point	sources.	This	is	achieved	by	investigating	their	spatial	amplitude	and	spatial	phase	
maps.	A	point	source	has	a	dipolar	pattern	at	the	sensor	level:	a	spatial	amplitude	map	with	two	peaks,	
and	a	between-peak	phase	relation	of	𝜋.	When	a	component	has	more	than	two	peaks	and/or	it	has	
different	between-peak	phase	relations,	it	cannot	reflect	a	point	source.	Instead,	such	a	component	
reflects	a	distributed	source,	or	multiple	phase-coupled	point	sources,	and	thus	it	reflects	a	PCN.	
	 We	show	identified	strong	PCNs	in	Figure	A	in	S1	File.	These	PCNs	were	identified	on	the	basis	of	
the	between-peak	phase	relation,	which	were	obtained	from	the	component’s	spatial	phase	map	(at	the	
peak	frequency	of	the	frequency	profile).	Spatial	peaks	were	detected	by	comparing	the	loadings	of	the	
spatial	amplitude	map	between	neighboring	sensors	(see	Supplementary	Methods	section	3;	peaks	of	
representative	subject	components	are	shown	in	Figure	B	in	S1	File).	Alpha,	beta,	and	gamma	all	showed	
(1)	components	with	two	spatial	peaks	and	between-peak	phase	relations	of	𝜋,	and	(2)	components	
with	more	than	two	peaks	and/or	between-peak	phase	relations	different	from	𝜋	(Figure	A	in	S1	File,	
panel	A).	Components	reflecting	beta	sources	most	often	had	more	than	two	peaks	(62%),	followed	by	
alpha	sources	(47%).	To	investigate	the	spatial	distribution	of	strong	PCNs,	we	show	the	peak-to-peak	
within-component	connections	of	each	component	reflecting	a	strong	PCN	(Figure	A	in	S1	File,	panel	B).	
Strong	PCNs	were	identified	on	the	basis	of	a	strategy	that	excludes	point	sources:	a	component	was	
considered	a	strong	PCN	if	at	least	one	of	the	between-peak	phase	differences	fell	between	− 3 4𝜋	and	
3 4 𝜋	on	the	right-hand	side	of	the	circle	(between	135°	and	225°).	Alpha,	beta	and	gamma	sources	all	
reflected	widespread	strong	PCNs.	Beta	components	reflected	strong	PCNs	more	often	(60%)	than	alpha	
components	(50%),	and	gamma	components	(18%).	Additionally,	strong	PCNs	in	the	beta	band	appeared	
more	widely	distributed	than	strong	PCNs	in	the	alpha	band.	These	numbers	also	indicate	how	many	
components	reflected	point	sources:	in	the	alpha,	beta	and	gamma	band,	these	percentages	were,	
respectively,	40%,	50%	and	82%.	To	investigate	whether	the	emergence	of	strong	PCNs	was	task-
dependent,	we	also	show	strong	PCNs	separately	for	the	suppressed	and	the	enhanced	component	
types	(Figure	A	in	S1	File,	panel	C).	There	were	strong	PCNs	both	among	the	suppressed	and	enhanced	
component	types,	and	this	was	the	case	for	both	alpha	(46%	and	54%	resp.)	and	beta	(65%	and	49%	
resp.)	components.	Because	of	the	low	number	of	components,	we	did	not	investigate	gamma	PCNs.	In	
sum,	the	above	results	show	that	strong	PCNs	(1)	are	common,	(2)	widely	distributed,	and	(3),	were	
common	both	among	suppressed	and	enhanced	component	types.	
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Figure	 A.	 Strongly	 phase-coupled	 oscillatory	 networks	 (PCNs)	 are	 widespread	 in	MEG	 recordings.	 Single	 components	 that	
describe	 distributed	 sources	 reflect	 strong	 PCNs,	 and	 to	 identify	 them	 they	 need	 to	 be	 distinguished	 from	 oscillating	 point	
sources.	This	is	achieved	by	investigating	their	spatial	amplitude	and	spatial	phase	maps.	A	point	source	has	a	spatial	amplitude	
map	with	 two	peaks	 (local	maxima),	and	a	between-peak	phase	relation	of	𝜋.	When	a	component	has	more	 than	two	peaks	
and/or	it	has	different	between-peak	phase	relations,	it	cannot	reflect	a	point	source.	Such	a	component	describes	a	distributed	
source	 (which	 can	 include	 multiple	 phase-coupled	 point	 sources)	 and	 thus	 reflects	 a	 strong	 PCN.	 Here	 we	 present	 single-
component	 PCNs	 identified	 in	 components	 from	 all	 datasets.	A,	 within-component	 peak-pair	 phase	 relations	 of	 the	 spatial	
phase	map	at	the	peak	frequency	of	the	frequency	profile.	Each	dot	represents	a	peak-pair	within	a	component,	and	is	color	
coded	w.r.t.	to	the	total	number	of	peaks	in	the	spatial	amplitude	map	of	the	component.	Peak-pair	magnitude	is	determined	
by	the	product	of	the	amplitude	of	the	peaks,	with	the	spatial	amplitude	maps	normalized	to	have	a	maximum	value	of	1.	Peaks	
were	 detected	 by	 comparing	 the	 loadings	 of	 the	 spatial	 amplitude	 map	 between	 neighboring	 sensors	 (see	 Supplementary	
Methods	section	3;	example	peaks	are	shown	in	Figure	B	in	S1	File).	Alpha,	beta,	and	gamma	all	showed	(1)	components	with	
two	spatial	peaks	and	between-peak	phase	relations	of	𝜋,	and	(2)	components	with	more	than	two	peaks	and/or	between-peak	
phase	relations	different	from	𝜋.	B,	peak-to-peak	within-component	connections	of	each	component	likely	reflecting	a	strong	
PCN.	 Line	 color	 reflects	 peak-pair	 phase	 difference	 and	 line	 thickness	 reflects	 peak-pair	 magnitude.	 Components	 were	
considered	as	a	PCN	when	they	had	at	least	one	peak-to-peak	phase	difference	between	− 3 4 𝜋	and	3 4𝜋	on	the	right	hand	
side	of	the	circle.	To	avoid	showing	connections	between	poles	of	a	dipole	we	only	show	connections	inside	this	phase	interval.	
Alpha,	beta	and	gamma	sources	all	reflected	single-component	strong	PCNs	and	were	widely	spatially	distributed.	Beta	sources	
described	strong	PCNs	most	often	(60%),	followed	by	alpha	sources,	(50%)	and	gamma	sources	(18%).	Additionally,	beta	PCNs	
appeared	more	widely	distributed	than	alpha	strong	PCNs.	Non-PCN	components	reflected	point	sources,	being	40%,	50%	and	
82%.	 C,	 peak-to-peak	 within-component	 connections	 as	 in	 B	 but	 for	 ‘suppressed’	 and	 ‘enhanced’	 components	 separately.	
Suppressed	 and	 enhanced	 components	 had	 either	 both	 negative	 t-values	 or	 both	 positive	 t-values	 on	 the	 experimental	
contrasts	 used	 in	 Figure	 7	 and	 8.	 There	 were	 single-component	 strong	 PCNs	 both	 among	 the	 suppressed	 and	 enhanced	
component	types,	and	this	was	the	case	for	both	alpha	(resp.,	46%	and	54%)	and	beta	(resp.	65%	and	49%)	components.	We	
did	not	 investigate	 this	 for	gamma	components	due	to	 their	 low	number.	The	above	results	 show	that	 (1)	 single-component	
strong	PCNs	are	common,	(2)	are	widely	distributed,	and	(3),	were	common	among	‘suppressed’	and	‘enhanced’	components.	
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3.	Weak	PCNs	are	revealed	by	between-component	coherence	
In	Figure	B	in	S1	File,	we	present	weak	PCNs	formed	by	components	of	our	representative	subject.	We	
show	the	between-component	coherence	and	spatial	distribution	for	the	alpha	band	weak	PCNs	in	
panels	A	and	B.	The	spatial	distribution	is	shown	as	connecting	lines	between	the	peaks	of	distinct	
components	(which	is	different	from	the	visualizations	in	Figure	A	in	S1	File	panel	B	and	C,	but	the	peaks	
were	detected	in	the	same	way;	see	Supplementary	Methods	section	3).	The	colors	of	the	connecting	
lines	reflect	the	strength	of	their	between-component	coherence	(obtained	by	averaging	between-
component	coherence	over	frequencies,	weighted	by	the	frequency	profiles).	Many	of	the	alpha	
components	were	coherent	and	thus	reflected	weak	PCNs.	Interestingly,	there	was	diversity	in	the	
between-component	coherence:	coherence	between	some	components	was	weak,	even	though	their	
coherence	with	other	components	was	strong.	Surprisingly,	no	weak	PCNs	were	found	in	the	beta	band	
(Figure	B	in	S1	File,	panel	C	and	D).	
The	weak	PCNs	that	were	found	in	all	datasets	are	shown	in	Figure	C	in	S1	File.	Between-component	
coherence	and	its	spatial	distribution	are	visualized	in	the	same	way	as	for	the	representative	subject.	
For	alpha	components,	weak	PCNs	were	common,	and	were	mostly	observed	over	posterior	areas.	In	
contrast,	beta	and	gamma	components	did	not	show	substantial	between	component	coherence,	and	
therefore	did	not	form	weak	PCNs.		

	

	
Figure	 B.	 Weakly	 phase-coupled	 oscillatory	 networks	 (PCNs)	 are	 revealed	 by	 between-component	 coherence	 of	 the	
representative	subject.	Weak	PCNs	reflect	neuronal	populations	that	are	phase-coupled	only	in	parts	of	a	recording,	and	they	
can	be	identified	by	between-component	coherence.	Here	we	show	weak	PCNs	formed	by	components	of	the	representative	
subject.	A,	between-component	coherence	matrix	for	components	reflecting	alpha	sources.	Between-component	coherence	is	
calculated	for	each	frequency,	but	only	that	of	the	peak	frequency	is	shown	(11	Hz).	B,	spatial	distribution	of	alpha	weak	PCNs.	
Lines	 show	peak-to-peak	between-component	 connections	 (different	 from	Figure	A	 in	 S1	 File	panel	B	 and	C)	 and	are	drawn	
between	 peaks	 of	 different	 components.	 Line	 color	 indicates	 between-component	 coherence	 computed	 as	 the	 sum	 over	
frequencies,	weighted	by	the	product	of	the	frequency	profiles	of	the	respective	component-pair.	Line	thickness	is	the	product	
of	 the	 amplitude	 at	 the	 peaks	 (spatial	 amplitude	 maps	 normalized	 to	 maximum	 of	 1)	 and	 the	 coherence	 between	 both	
components.	 Peaks	 were	 detected	 by	 comparing	 the	 spatial	 amplitude	 map	 loadings	 between	 neighboring	 sensors	 (see	
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Supplementary	Methods	section	3),	and	are	shown	in	A.	C,D	same	as	A,B	but	for	beta	components.	Many	alpha	components	
were	 coherent	 and	 thus	 described	 weak	 PCNs.	 Interestingly,	 there	 was	 diversity	 in	 the	 between-component	 coherence:	
coherence	 between	 some	 components	 was	 weak,	 even	 though	 their	 coherence	 with	 other	 component	 was	 strong.	 Beta	
components	did	not	have	substantial	between-component	coherence	and,	as	such,	did	not	reveal	any	weak	PCNs.	

	

	
Figure	C.	Weakly	phase-coupled	oscillatory	networks	(PCNs)	are	revealed	by	components	from	all	datasets.	We	show	weak	
PCNs	formed	by	components	from	all	recordings.	The	spatial	distribution	of	between-component	coherence	for	alpha,	beta	and	
gamma	components	is	shown.	Peak-pair	connectivity	is	constructed	as	before	(Figure	B	in	S1	File,	panel	B	and	D)	but	now	
components	from	all	recordings	are	displayed	together.	Weak	PCNs	of	alpha	components	were	common,	and	were	mostly	
posterior.	Beta	and	gamma	components	did	not	show	substantial	between-component	coherence,	and	as	such	did	not	describe	
weak	PCNs.	
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Supplementary	Discussion	
	
Investigating	PCNs	using	rhythmic	components:	strong	alpha	and	beta	networks	and	weak	alpha	
networks	
Our	method	estimates	phase	relations	between	interacting	neuronal	populations	in	two	ways:	within	a	
component,	and	between	components.	These	phase	relations	are	the	basis	for	identifying	two	types	of	
PCNs	(weak	and	strong),	and	allows	for	distinguishing	them	from	single	point	sources.	Distinguishing	
between	PCNs	and	such	point	sources	is	important,	because	the	sensor-level	phase	coupling	produced	
by	a	point	source	reflects	a	single	isolated	population,	whereas	the	sensor-level	phase	coupling	of	PCNs	
reflects	communication	between	networks	of	neuronal	populations.	We	additionally	distinguish	
between	strong	and	weak	PCNs,	which	differ	in	the	strength	of	the	phase	coupling	between	the	
underlying	populations.	We	identified	many	alpha	and	beta	strong	PCNs,	which	most	likely	reflect	
interactions	between	distributed	neuronal	populations.	Communication	between	distributed	
populations	by	alpha	and	beta	phase	coupling	is	in	line	with	a	possible	role	in	top-down	control	and	
routing	of	information	[1-3].	Phase	coupling	between	distant	areas	has	been	reported	before	at	beta	[4-
8],	and	at	alpha	[9-12]	frequencies.	

Our	approach	also	allows	us	to	identify	weak	PCNs.	Whereas	strong	PCNs	reflect	highly	
consistent	phase	coupling	between	neuronal	populations,	weak	PCNs	are	the	result	of	weaker	phase	
consistency	between	populations.	Weak	PCNs	could	reflect	temporary	networks:	networks	whose	nodes	
(neuronal	populations)	interact	for	shorter	periods	of	time	(shorter	than	the	duration	of	a	trial).	We	only	
found	alpha	weak	PCNs,	and	they	mostly	involved	posterior	sensors.	This	suggests	a	complex	picture	for	
the	generation	of	posterior	alpha,	where	nodes	of	the	network	may	come	and	go.	Temporary	networks	
have	been	the	topic	of	recent	EEG/MEG	studies	[13-16],	which	show	that	these	networks	can	form	and	
dissolve	at	a	time-scale	as	short	as	several	hundred	milliseconds.	Interestingly,	most	of	these	studies	
find	such	networks	in	the	beta	band,	whereas	we	only	found	alpha	weak	PCNs.	This	could	be	the	result	
of	different	task	demands,	as	these	studies	found	either	networks	in	resting	state	activity	[13,	14,	16]	or	
motor	networks	during	a	repetitive	motor	task	[13].	In	contrast,	our	tactile	attention	paradigm	only	had	
minimal	motor	demands.	Alternatively,	these	different	results	could	also	be	due	to	the	fact	that	our	
networks	are	defined	by	phase	coupling,	whereas	the	other	studies	defined	networks	by	correlations	
between	band-limited	amplitude	envelopes.	
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Supplementary	Methods	
	
1.	Between-component	coherence	can	be	accurately	reconstructed	in	a	two-step	estimation	procedure		
To	prevent	 components	 from	splitting	up	 into	an	arbitrary	number	of	 sub-components,	we	estimated	
the	 component-specific	 parameters	 under	 the	 constraint	 that	 the	 between-component	 coherency	
matrices	 are	 identity	 matrices.	 Then,	 in	 a	 second	 step,	 the	 between-component	 coherency	 matrices	
were	estimated	while	keeping	the	component-specific	parameters	fixed.	The	identity	matrix	constraint	
unavoidably	 leads	 to	 some	degradation	of	 the	 component-specific	parameters.	As	 such,	 this	 two-step	
strategy	 is	 only	 valid	 under	 two	 assumptions:	 (1)	 the	 resulting	 component-specific	 parameter	
degradation	 is	 minimal,	 and	 (2)	 the	 between-component	 coherency	 matrices	 can	 be	 estimated	
reasonably	well	from	these	(degraded)	parameters.		

We	 evaluated	 the	 robustness	 of	 this	 two-step	 strategy	 in	 a	 simulation	 study	 in	 which	 we	
generated	spatially	overlapping	MEG	components	with	different	levels	of	source-level	coherence.	From	
the	 simulated	data,	we	extracted	 two	components	using	 the	pipeline	described	above,	and	evaluated	
how	well	these	components	recovered	the	true	parameter	values	(the	component-specific	parameters	
and	 the	 between-component	 coherency	 matrices).	 More	 specifically,	 we	 simulated	 two	 oscillatory	
neuronal	sources	with	peak	frequency	at	10Hz	and	dipolar	MEG	sensor-level	representations.	We	varied	
the	sources’	coherence	by	linearly	mixing	the	source	signals	using	three	different	degrees	of	mixing.	This	
resulted	in	two	source	signals	with	a	coherence	of	approximately	0.1,	0.5,	and	0.9.	The	signals	from	the	
second	source	had	a	delay	of	25ms	relative	to	the	first	source	(a	quarter	cycle	at	10Hz).	The	two	source	
signals	were	created	from	white	noise	to	which	the	following	operations	were	applied:	(1)	scaling	of	the	
amplitudes	of	 its	Fourier	coefficients	such	that	the	amplitude	spectrum	was	proportional	to	1/f,	giving	
the	 power	 spectrum	 a	 1/f2	 shape	 (Miller	 et	 al.,	 2009),	 and	 (2)	 band-pass	 filtering	 the	 resulting	 time	
domain	signals	between	8	and	12	Hz,	using	a	6th	order	Butterworth	filter.	The	source	signals	were	then	
projected	to	the	sensor-level	using	lead	fields	that	were	obtained	as	follows.	We	started	from	a	single-
shell	 volume	 conduction	 model	 (Nolte,	 2003),	 calculated	 from	 a	 T1-weighted	 MR	 image	 of	 the	
representative	subject.	Next,	the	two	source	locations	and	their	source	strengths	in	the	x,	y,	z	directions	
were	chosen	such	that	their	lead	fields	were	most	similar	to	the	spatial	amplitude	map	and	the	spatial	
phase	map	of	two	components	of	the	representative	subject	(see	Results	section	3;	#6	and	#8.	Finally,	
these	 lead	 fields	were	 scaled	with	 trial	profile	 loadings,	as	described	 in	 the	 following.	The	 trial	profile	
loadings	were	either	0.25,	0.50,	or	0.75,	and	pairs	of	loadings	(one	loading	for	every	component)	were	
always	non-identical.	Each	unique	pair	of	coefficients	was	used	equally	often.	To	vary	the	signal-to-noise	
ratio	(SNR),	different	amounts	of	spatially	uncorrelated	sensor-level	noise	(with	a	1/f2	power	spectrum)	
was	added.	However,	as	SNR	did	not	substantially	 influence	recovery,	we	only	present	the	simulations	
with	the	lowest	SNR	(0.01).	For	each	level	of	source	mixing,	we	simulated	100	datasets,	also	denoted	as	
runs.	Each	of	these	datasets	consisted	of	12	trials	of	100s	each.	

The	simulated	datasets	were	analyzed	in	the	same	way	as	the	real	MEG	recordings	except	that	
we	only	obtained	CSDs	for	frequencies	from	6	to	20Hz	instead	of	from	6	to	40Hz.	After	extracting	two	
components	 from	 each	 dataset,	 we	 investigated	 their	 recovery	 of	 the	 simulated	 parameters.	 The	
simulated	 spatial	 amplitude	 and	 spatial	 phase	 maps	 were	 obtained	 from	 the	 lead	 fields,	 and	 the	
simulated	 frequency	 profiles	 and	 between-component	 coherency	 matrices	 were	 obtained	 from	 a	
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spectral	analysis	of	the	source	signals.	This	spectral	analysis	was	identical	to	the	one	used	for	calculating	
the	sensor-level	CSDs.	The	simulated	trial	profiles	are	described	above.	The	to-be-recovered	parameters	
are	shown	in	Figure	D	in	S1	File,	panel	A.	Recovery	was	quantified	by	coefficients	that	range	from	0	to	1.	
These	coefficients	are	described	in	Supplementary	Methods	section	2.		

We	show	the	recovery	of	the	simulated	spatial	amplitude	maps	and	spatial	phase	maps	in	Figure	
D	in	S1	File,	panel	B,	the	simulated	frequency	profiles	in	Figure	D	in	S1	File,	panel	C,	the	simulated	trial	
profiles	in	Figure	D	in	S1	File,	panel	D,	and	the	simulated	between-component	coherency	in	Figure	D	in	
S1	File,	panel	E.	Recovery	is	shown	as	a	function	of	source	signal	coherence.	The	main	findings	are	the	
following:	 (1)	 spatial	 amplitude	maps,	 spatial	 phase	maps,	 frequency	 profiles,	 and	 trial	 profiles	 show	
near	 perfect	 recovery	with	 low	 source	 signal	 coherence,	 (2)	with	 increasing	 source	 signal	 coherence,	
recovery	 of	 the	 spatial	 phase	 maps	 and	 trial	 profiles	 diminishes	 slightly,	 (3)	 estimated	 between-
component	coherence	increases	with	source	signal	coherence	but	systematically	underestimates	it,	and	
(4)	 the	 average	 phase	 relation	 between	 the	 source	 signals	 are	 poorly	 recovered	 by	 the	 phase	 of	
between-component	coherency.	
	 In	sum,	we	have	shown	that	the	component-specific	parameters	of	phase-coupled	components	
can	 be	 recovered	 well	 under	 the	 constraint	 of	 zero	 between-component	 coherence.	 Differences	 in	
source	 signal	 coherence	 are	 reflected	 in	 the	 estimated	 between-component	 coherence,	 although	 the	
source	 signal	 coherence	 itself	 is	 underestimated.	 The	 average	 phase	 relations	 between	 the	 source	
signals	are	estimated	very	poorly,	and	should	therefore	not	be	interpreted.	

	
2.	Coefficients	for	assessing	the	recovery	of	the	simulated	parameters	
We	 calculated	 a	 number	 of	 coefficients	 to	 assess	 the	 recovery	 of	 the	 simulated	 parameters	 by	 the	
extracted	components.	We	use	three	different	coefficients:	(1)	one	for	the	spatial	amplitude	maps,	the	
frequency	profiles,	and	the	trial	profiles,	(2)	one	for	the	spatial	phase	maps,	and,	(3)	one	for	the	phase	of	
the	between-component	coherence.	Each	coefficient	had	ranged	from	0	to	1,	with	1	reflecting	perfect	
recovery.	 The	 first	 recovery	 coefficient	 was	 constructed	 as	 the	 component-specific	 inner	 product	
between	 the	 normalized	 extracted	 parameter	 vector	 (spatial	 amplitude	 map,	 frequency	 profile,	 trial	
profile)	 and	 its	 simulated	 counterpart.	 The	 recovery	 coefficient	 for	 the	 spatial	 phase	 maps,	 which	 is	
more	complicated,	is	calculated	as	follows:	

𝑠𝑢𝑚 𝐴! ∘ 𝑒𝑥𝑝 𝑖𝜆! ⋅ 𝐴! ∘ 𝑒𝑥𝑝 𝑖𝜆!
∗
∘ 𝐴! ∘ 𝑒𝑥𝑝 𝚤λ!! ⋅ 𝐴! ∘ 𝑒𝑥𝑝 𝚤λ!!

∗
∙ 𝐵!!!

!!!

𝐵!!!
!!!

	

The	calculation	involves	four	steps.	In	the	first	step,	we	compute	the	frequency-specific	between-sensor	
phase	 relations	 on	 the	 basis	 of	 the	 extracted	 phases	𝑒𝑥𝑝 𝑖𝜆! 	and	 weight	 these	 by	 the	 normalized	
simulated	 spatial	 amplitude	 map,	𝐴!.	 The	 results	 of	 this	 operation	 are	 stored	 in	 the	 square	 matrix	
𝐴! ∘ 𝑒𝑥𝑝 𝑖𝜆! ⋅ 𝐴! ∘ 𝑒𝑥𝑝 𝑖𝜆!

∗
,	in	which	𝑒𝑥𝑝 𝑖𝜆! 	is	a	column	vector,	⋅	denotes	the	matrix	product,	and	

∘	the	 element-wise	 product.	 The	 weighting	 with	 the	 normalized	 simulated	 spatial	 amplitude	 map	𝐴!	
ensures	that	the	recovery	coefficient	is	mostly	determined	by	the	sensors	that	are	strongly	affected	by	
the	 simulated	 sources.	 In	 the	 second	 step,	we	 calculate	 the	 simulated	 counterpart	 of	 the	 first	matrix	
(using	 the	 simulated	 phases	𝑒𝑥𝑝 𝑖λ!! ),	 take	 its	 conjugate	 (denoted	 by	 the	 horizontal	 bar	 ),	 and	
perform	an	element-wise	multiplication	of	 the	 two	matrices.	 This	operation	produces	 large	values	 for	
sensor	pairs	whose	extracted	phase	relation	differs	strongly	from	the	simulated	one.	 In	the	third	step,	
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we	 summed	 these	 phase	 differences	 over	 all	 sensor-pairs,	 and	 take	 its	 absolute	 value,	 such	 that	 we	
obtain	a	frequency-specific	recovery	coefficient	that	has	a	range	of	0	to	1.	(To	keep	the	formula	simple,	
we	define	𝑠𝑢𝑚 	to	be	 the	 sum	over	 all	 sensor-pairs,	which	 are	organized	 in	 a	matrix.)	 In	 the	 fourth	
step,	 we	 compute	 their	 weighted	 average	 over	 frequencies,	 with	 the	 weights	 obtained	 from	 the	
simulated	 frequency	 profile	𝐵! .	 The	 resulting	 coefficient	 is	 sensitive	 to	 differences	 between	 the	
extracted	 and	 simulated	 spatial	 phase	 maps,	 and	 is	 determined	 most	 strongly	 by	 frequencies	 and	
sensors	that	are	strongly	affected	by	the	simulated	sources.	
	 The	 recovery	 coefficient	 for	 the	 phase	 of	 between-component	 coherence	was	 constructed	 as	
follows:	

𝑒𝑥𝑝 𝑖𝜑! ∙ 𝑒𝑥𝑝 𝚤𝜑!! ∙ 𝐵!!! ∙ 𝐵!!!!
!!!

𝐵!!! ∙ 𝐵!!!!
!!!

	

Computing	this	coefficient	involves	two	steps.	In	the	first	step,	we	compute	the	frequency-specific	phase	
difference	between	the	phase	of	the	extracted	between-component	coherency	𝑒𝑥𝑝 𝑖𝜑! 	and	the	phase	
of	 its	simulated	counterpart	𝑒𝑥𝑝 𝑖𝜑!! .	 In	 the	second	step,	we	compute	the	weighted	average	of	 these	
phase	 differences	 over	 frequencies,	 where	 the	 weights	 are	 obtained	 from	 the	 simulated	 frequency	
profiles	 of	 both	 components	 (𝐵!! ,	 and	𝐵!! ).	 The	 resulting	 coefficient	 is	 sensitive	 to	 the	 phase	 of	
between-component	 coherency,	 with	 a	 weighting	 that	 ensures	 that	 it	 is	 mostly	 determined	 by	
frequencies	that	dominate	the	simulated	sources.	
	
3.	Identifying	peaks	in	spatial	amplitude	maps	
To	 investigate	phase-coupled	oscillatory	networks	 (PCNs)	we	 identified	peaks	 in	 the	 spatial	 amplitude	
maps.	These	peaks	were	identified	in	two	steps.	In	the	first	step,	we	identified	sensors	that	were	a	local	
maximum	 in	 the	 mini-map	 defined	 by	 this	 sensor	 plus	 its	 neighboring	 sensors,	 and	 which	 had	 an	
amplitude	of	at	least	30%	of	the	maximum	within	the	whole	map.	In	the	second	step,	we	pruned	these	
local	maxima	such	that	sensors	identified	as	peaks	did	not	share	neighboring	sensors.	In	other	words,	no	
sensor	 identified	 as	 a	 peak	 shared	 a	 neighbor	with	 another	 peak	 sensor.	When	 peak	 sensors	 shared	
neighbors,	 only	 the	peak	 sensor	with	 the	highest	 amplitude	was	 kept.	 It	 has	 to	be	 admitted	 that	 this	
procedure	 was	 not	 grounded	 in	 a	 biophysical	 rationale.	 Rather,	 it	 was	 chosen	 because	 it	 was	 both	
intuitively	plausible	and	because	it	performed	well	in	separating	dipolar	from	non-dipolar	spatial	maps.	
Representative	examples	of	detected	peaks	are	shown	in	the	Figure	B	in	S1	File.	
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Figure	D.	Simulations	show	phase-coupled	components	can	be	accurately	extracted.	Weak	PCNs	can	be	formed	by	multiple	
phase-coupled	components	and	are	revealed	by	between-component	coherence.	However,	components	are	extracted	under	a	
zero	coherence	constraint,	and	coherence	is	computed	afterwards.	This	is	to	prevent	a	split-up	of	components	into	arbitrary	
numbers	of	subcomponents.	This	strategy	is	only	valid	if:	(1)	the	resulting	component-specific	parameter	degradation	is	
minimal,	and	(2)	between-component	coherence	can	be	estimated	reasonably	from	these	(degraded)	parameters.	Here	we	
present	simulations	to	test	this	strategy	(for	details	see	Supplementary	Methods	section	1	and	2).	We	simulated	MEG	
recordings	of	two	sources	and	systematically	varied	their	coherence	(source	mixing	of	0.05,	0.25,	and	0.6).	We	generated	100	
datasets	per	level	of	source	mixing.	Sensor-level	measurements	were	generated	by	projecting	the	source	signals	through	lead	
fields	from	the	representative	subject.	Source	signals	were	generated	as	band-passed	noise	with	a	1/f^2	shaped	power	
spectrum	and	consisted	of	12	trials	of	100s	weighted	by	the	trial	profile.	Spatially	uncorrelated	noise	with	a	1/f^2	shaped	power	
spectrum	was	added	after	projecting	source	signals	to	the	sensor-level.	We	only	show	results	for	the	worst	signal-to-noise	ratio	
(0.01).	Components	were	extracted	from	each	of	3x100	datasets	using	the	same	analysis	pipeline	as	for	the	real	MEG	
recordings,	and	we	evaluated	whether	these	components	accurately	recovered	the	simulated	sources.	A,	source	lead	fields,	
frequency	profiles,	trial	profiles,	and	source	signal	coherence.	Frequency	profiles	shown	are	the	average	of	the	two	simulated	
components,	averaged	over	runs.	Source	signal	coherence	shown	is	the	average	over	runs	of	the	sum	of	coherence	over	
frequencies,	weighted	by	the	product	of	both	frequency	profiles.	The	phase	of	coherence	shown	in	polar	plots	was	constructed	
as	the	mean	resultant	vector	over	runs,	of	the	run-specific	average	phase	over	frequencies,	which	was	weighted	by	the	product	
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of	both	frequency	profiles.	Thin	lines	in	the	frequency	profiles	and	shaded	area	of	the	source	signal	coherences	reflects	the	SD.	
B,	recovery	of	the	simulated	spatial	amplitude	map	and	spatial	phase	maps	(constructed	from	the	lead	fields).	Spatial	amplitude	
maps	shown	are	averaged	over	runs.	Spatial	phase	maps	shown	are	also	averaged	over	runs,	weighted	by	the	simulated	
frequency	profiles.	Recovery	coefficients	reflect	average	recovery	accuracy	over	runs	(shaded	areas	reflects	SD),	averaged	over	
both	components	and	range	from	0	to	1	(perfect	recovery).	C,	same	as	B	but	for	the	frequency	profiles.	Thick	lines	display	the	
average	frequency	profiles,	thin	lines	the	SD.	D,	identical	to	C	but	for	the	trial	profiles.	E,	recovery	of	source	coherence	by	
between-component	coherence.	Between-component	coherence	shown	is	averaged	over	runs	(shaded	area	reflects	SD),	and	
was	constructed	as	the	sum	over	frequencies	per	run,	weighted	by	the	product	of	the	simulated	frequency	profiles.	Polar	plots	
show	the	run-specific	average	phase,	weighted	in	the	same	way	(red	arrow	reflects	mean	resultant	vector	over	runs).	The	
results	show	that	the	spatial	amplitude	maps,	spatial	phase	maps,	frequency	profiles,	and	trial	profiles	are	minimally	impacted	
by	the	zero	coherence	constraint.	Between-component	coherence	was	estimated	reasonably	well,	but	its	phase	relations	were	
not.	As	such,	our	analysis	strategy	is	valid	as	long	as	phase	relations	between	components	are	not	interpreted.	
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