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ABSTRACT Coordinated motions of close-packed multicellular systems typically generate cooperative packs, swirls, and clus-
ters. These cooperative motions are driven by active cellular forces, but the physical nature of these forces and how they
generate collective cellular motion remain poorly understood. Here, we study forces and motions in a confined epithelial mono-
layer and make two experimental observations: 1) the direction of local cellular motion deviates systematically from the direction
of the local traction exerted by each cell upon its substrate; and 2) oscillating waves of cellular motion arise spontaneously.
Based on these observations, we propose a theory that connects forces and motions using two internal state variables, one
of which generates an effective cellular polarization, and the other, through contractile forces, an effective cellular inertia. In
agreement with theoretical predictions, drugs that inhibit contractility reduce both the cellular effective elastic modulus and
the frequency of oscillations. Together, theory and experiment provide evidence suggesting that collective cellular motion is
driven by at least two internal variables that serve to sustain waves and to polarize local cellular traction in a direction that
deviates systematically from local cellular velocity.
INTRODUCTION
During wound repair, embryonic development, and cancer in-
vasion, cells migrate in cooperative packs (1–3) that generate
swirls (4,5) and waves (6,7). Our understanding of how
cellular forces generate these collective behaviors is limited,
but recent experiments have offered some clues. First, within
a confluentmonolayer cells tend tomigrate along orientations
ofminimal intercellular shear stress (8–10); cell-cell junctions
along these orientations carry appreciable normal stresses but
only minimal shear stresses. Second, far from any boundary,
each cell exerts local tractions upon its substrate that tend to
align with the direction of local motion (8,11); near a bound-
ary, by contrast, tractions tend to align systematically toward
the cell-free boundary regardless of the direction of local
cellular motion (11).

Some previous theoretical models (12–15), but not all
(16), have recognized that local tractions can align in a di-
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rection that deviates transiently, but not systematically,
from that of the local velocity. This transient misalignment
has been modeled by introducing noisy fluctuations around
a tendency toward realignment (15,17) or via an internal
variable that regulates the correlation between traction and
velocity (12–14). Here, we provide further evidence that
each cell polarizes so as to apply local traction in a direction
that can deviate systematically from its local velocity, and
that this systematic deviation is a general property of collec-
tive cellular motion. If local traction and local velocity are
not aligned, it follows logically that tractions cannot result
solely from viscous friction between the moving cell and
its motionless substrate; rather, tractions must be regulated
by variables in addition to velocity (12–14).

To identify state variables that control cellular motion and
propulsive forces, we study oscillating collective waves of
cellular motion that are known to arise spontaneously in a
confined epithelial monolayer (7). Oscillations in passive
mechanical systems result from the exchange of elastic po-
tential energy and inertial kinetic energy. Previous work has
established that cell layers behave elastically (6) but have
negligible inertia (13–15). To account for the collective
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oscillations of cellular motion, we therefore propose an in-
ternal variable that provides an effective inertia in the sense
that it sets a timescale for turnover in intracellular contrac-
tile tension (14). To account for the local angular deviation
between cell traction and velocity, we propose a second in-
ternal variable that we call cell polarization. Using a mini-
mal physical model, we show that these two internal state
variables account for both the experimentally observed
oscillatory waves of motion and local systematic angular de-
viation between cell traction and velocity. We conclude that
the collective modes of cellular motion result from an inter-
play between cell contraction and polarization.
MATERIALS AND METHODS

Cell culture

Madin-Darbvy canine kidney type II cells, expressing GFP with a nuclear

localization signal (pAcGFP1-Nuc vector, Clontech), were supplied by A.

Pegoraro and D. Weitz (Harvard University). The cells were maintained

in low-glucose Dulbecco’s modified Eagle’s medium (12320-032; Life

Technologies, Carlsbad, CA) with 10% fetal bovine serum (Corning) and

1% penicillin-streptomycin (Sigma-Aldrich. St. Louis, MO) in an incubator

at 37�C and 5% CO2.
Preparation of polyacrylamide substrates

Polyacrylamide gels with Young’s modulus of 6 kPa and thickness of

100 mm were polymerized by preparing a solution of 5.5% weight/volume

(w/v) acrylamide (Biorad Laboratories, Hercules, CA), 0.20% w/v

bisacrylamide (Biorad Laboratories), 0.014% w/v fluorescent particles

(diameter 0.5 mm, carboxylate-modified; Life Technologies), 0.05% w/v

ammonium persulfate (Biorad Laboratories), and 1/2000 volume/volume

TEMED (Biorad Laboratories). The gel solution was pipetted onto no.

1.5 glass bottom dishes (In Vitro Scientific, Mountain View, CA), a glass

coverslip (no. 1 thickness, 18-mm diameter circle) was placed on top, and

the dishes were centrifuged upside down so that the fluorescent particles

collected at the top surface of the gel. The gels were functionalized

with type l rat tail collagen (BD Biosciences, Franklin Lakes, NJ;

0.01 mg/mL, 1 mL per 18-mm diameter gel) using the covalent cross-

linker sulfo-SANPAH (Pierce Biotechnology, Waltham, MA) as described

previously (18).
Micropatterning expanding and confined cellular
islands

Masks were prepared with circular holes (diameter 700 mm) using standard

techniques in soft lithography similar to those described previously (6). Sil-

icon-photoresist masters were custom fabricated (MicroFit, Seongnam-si,

Gyeonggi-do, Korea), and polydimethylsiloxane (PDMS) (Sylgard 184,

Dow Corning, Midland, MI) was poured onto the masters to cure overnight

on a hot plate at 80�C. The PDMS masks were sterilized with 70% ethanol

and incubated at 37�C in 2% Pluronic F-127 (Sigma-Aldrich) for 4 h to pre-

vent cell adhesion to the masks. For expanding islands, masks were placed

on the collagen-coated polyacrylamide gels, and a 200 mL droplet of cell

suspension (4 � 105 cells total) was placed on each mask. The gels were

transferred to a 37�C/5% CO2 incubator for 45 min for the cells to adhere

to the collagen. Afterward, the 200 mL droplets were aspirated off of the

PDMS masks, the masks were removed with tweezers, and the gels were

rinsed with phosphate-buffered saline (PBS) before addition of 3 mL fresh

medium. For confined islands, masks were placed onto the polyacrylamide
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gels before functionalizing with collagen, thus leaving a circular island of

collagen to which the cells adhered. Imaging of the cell monolayers began

approximately 1 h after seeding and continued for ~30 h.
Microscopy

Images of the cells, nuclei, and beads were captured every 20 min using

phase-contrast (for cells) or fluorescent (for nuclei and beads) microscopy

using a DMI6000B microscope with a 5� NA 0.12 objective and a

DFC345FX CCD camera (Leica Microsystems, Wetzlar, Germany). Fluo-

rescent particles and cell nuclei were imaged with fluorescence; cells

were imaged with phase contrast. The imaging environment was main-

tained at 37�C/5% CO2 in a heated enclosure (PeCon, Erbach, Germany).

For experiments with expanding cellular islands a 2 � 2 grid of images

was captured and stitched together using the freely available Fiji distribu-

tion of ImageJ (http://fiji.sc/Fiji) (19). After each time-lapse experiment,

cells were removed from the polyacrylamide substrates by incubating in

0.05% trypsin for 20 min, and images of the fluorescent particles were

collected; these images captured a stress-free reference state of the poly-

acrylamide substrates for subsequent computation of tractions.
Measuring cell velocity and rate-of-strain

The velocity fields were measured using custom particle image velocimetry

(also called digital image correlation) software of phase contrast images

written in Matlab (The Mathworks, Natick, MA). Interrogation windows

of 64 � 64 pixels were used; this window size allowed for a spatial resolu-

tion of ~16 pixels (14 mm). Boundaries of the cell islands were detected

automatically using a previously described protocol (20). The rate-of-strain

tensor was computed by numerically differentiating the velocity fields in

space.
Traction force microscopy and monolayer stress
microscopy

Displacements of the particles were measured using digital image correla-

tion, and tractions exerted between the cell layer and its substrate were

computed using unconstrained Fourier transform traction microscopy

(21) taking into account the effects of finite substrate thickness (18,22).

From these measured tractions we computed the distribution of internal

stresses within the cell layer using monolayer stress microscopy (MSM)

(8,23).

MSM rests upon the main assumptions that the cell layer is flat, contin-

uous and thin. Regardless of material properties of the cell layer,

including any effects of nonlinearity and viscoelasticity, Newton’s laws

in one dimension demand that these internal stresses and boundary trac-

tion stresses must always remain in precise balance, and the MSM solu-

tion in that case is therefore exact (8,23). In two dimensions, matters are

slightly more complicated, because the Poisson effect makes the solution

inexact. Nevertheless, the sensitivity to the Poisson effect has been shown

to be quite small, and the solution has been shown to be insensitive to a

remarkably wide range of assumptions about material properties of the

cell layer itself, its nonlinearity, and its viscoelasticity (8,23); this finding

was further validated independently by Zimmermann et al. (17), who used

a particle-based simulation to show that the stresses in the simulation are

recovered by MSM with a high degree of accuracy. In two dimensions,

three independent components of the stress tensor within the monolayer

are obtained by solving three coupled equations. Two of those equations

describe force balance, making no assumptions about the properties of the

monolayer (8,23). The third equation is the compatibility of the deforma-

tion field. (For more information, see the Supporting Material.) Displace-

ments, tractions, and stresses are measured at the same spatial resolution

as the velocity field, 14 mm.

http://fiji.sc/Fiji
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Measuring cell area and density

The position of each cell’s nucleus was computed from the fluorescent im-

ages of nuclei using the watershed transform in Matlab. For each cell, the

distance between its nucleus and the nuclei of the nearest six neighbors

was computed and averaged; this distance was taken to be the diameter

of that cell. From each cell’s diameter, its area was computed. Density is

computed by taking the inverse of the cell area. To compute the gradient

in density, each 3 � 3 window of data points is fit to a linear equation in

the x direction and to a second linear equation in the y direction. The slopes

give the derivatives in the x and y directions, respectively.
Chemical treatments

Chemical treatments were blebbistatin (20 mM), U0126 (10 mM), and

epidermal growth factor (EGF) (20 ng/mL). Blebbistatin and U0126 were

dissolved in dimethyl sulfoxide (DMSO); EGF was dissolved in PBS. Bleb-

bistatin and U0126 stock solutions were 20 mM and 10 mM, respectively.

They were diluted by a factor of 1000 when added to the medium, leading to

a DMSO concentration of 0.1% in the cell culture medium. All comparisons

were made to matching concentrations of a vehicle control (DMSO or

PBS).
Statistics

Statistical comparisons were made using the nonparametric Wilcoxon rank

sum test in Matlab.
RESULTS

To investigate the relationship between cellular tractions
and velocities, we confined monolayers of Madin-
Darby canine kidney cells to circular islands (diameter
700 mm) of adhesive collagen type I. We measured cell
velocities with particle image velocimetry and simulta-
neously measured tractions with traction force microscopy
(18,21,22) (Fig. 1; Fig. S1). Similar to reports in a previous
study (7), we observed sustained oscillations of inward and
outward cellular motion comprising waves with a period of
~6 h (Fig. 1 b; Movie S1). To visualize the data at all points
in space and time, we averaged the velocity data over the
azimuthal angle to collapse all spatial data onto a single
axis specifying the radial position. We then plotted the
data over time to generate a kymograph. As shown in the
kymograph of velocity (Fig. 1 d), the cellular motion was
highly coordinated with standing waves of outward and in-
ward collective motion, similar to seiches observed in lakes
or other confined bodies of water.

Surprisingly, even though the monolayer velocity varied
little with the radial position at a given time, tractions
were organized in a standing wave with finite wavelength
(Fig. 1 e). Although the tractions at the perimeter of the is-
land pointed radially inward, tractions at any point within
the bulk of the island oscillated radially inward and outward
over time akin to the velocity field. At the perimeter of the
island, all cells applied inward-pointing tractions (Fig. 1 c),
indicating that these cells pulled themselves toward the
exterior free space, a behavior called kenotaxis (11). How-
ever, across the island, the correlation between traction
and velocity was negligible (the typical correlation coeffi-
cient magnitude was jRj < 0.1; Fig. 1, b and c). Further-
more, the angles between the directions of velocity and
traction showed a nearly uniform distribution across the
monolayer (Fig. 1 f), indicating that the orientation of
each cell’s traction is not linked solely to its velocity.

To investigate further the relationship between traction
and velocity, we considered cellular motion within an ex-
panding cellular island wherein the cells were not restricted
by a boundary. We seeded cells onto a mask with 700 mm
holes placed atop a compliant polyacrylamide gel coated
with collagen type I. As shown previously (4), removing
this mask induces cell migration into the newly created
free space. Upon sensing the free space created by mask
removal, cells located at the perimeter of the island migrated
first, and their outward motion caused cells just inside the
perimeter to follow (Fig. S2). Over time, more and more
cells began to move, creating a wave of radial motion that
propagated from the perimeter to the center of the island
(Fig. S2, b and d), similar to the waves of motion observed
for cells in a rectangular monolayer (6). Much like the cells
in the confined islands, the cells near the perimeter of the ex-
panding islands applied inward tractions to pull themselves
toward free space (Fig. S2, c and e). For cells in the bulk of
the expanding island, however, we observed no alignment
between directions of traction and velocity (Fig. S2 f).

These findings suggest that cells tend to apply local pro-
pulsive forces in a direction that can deviate systematically
from the direction of local cellular motion. In the specific
case of cells near the edge of the freely expanding
monolayer, local tractions and velocities were aligned, but
elsewhere they were not. Why this independence of orienta-
tions? In contrast to previous models (24,25) which predict
that cells apply traction along a gradient of cellular density,
our data showed no correlations between the orientations of
cellular tractions, velocities, or gradients in number density
(Fig. S3).

We tracked the position of each cell’s nucleus to compute
the average distance between each nucleus and its neigh-
bors; from these distances, we then computed the local
area covered by each cell. Within the confined islands,
cellular areas increased as cells collectively moved outward
and then decreased as they moved inward (Fig. 2 a). We
compared the cellular areas to the stresses within the mono-
layer, which we measured using MSM (8,23). MSM applies
the principle of force equilibrium to the cell monolayer to
compute the in-plane monolayer stresses from the cell-to-
substrate tractions. We found that the tension s (defined as
the mean of the two principal stresses within the cell mono-
layer) periodically increased and decreased with the same
frequency as the radial waves in cellular velocity and with
the same phase as the cellular area (Fig. 2 b), thus implying
an elastic relationship. To investigate further the elastic
behavior of the monolayer, we examined the relationship
Biophysical Journal 110, 2729–2738, June 21, 2016 2731
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between stress and strain rate, and found no correlation
(Fig. S4). The lack of correlation implied that viscous con-
tributions to the monolayer stress are negligible. We then
compared the time derivative of stress to the strain rate.
Specifically, we plotted the time derivative of the tension
(ds/dt) and the trace of the strain-rate tensor (dε/dt), which
were well correlated over time along a single radial position
(Fig. 2 c). The correlation is further evident by a scatter plot
(Fig. 2 d). The elastic modulus K of the cell monolayer
is given by the slope of a line fit to the scatter plot, K ¼
113 5 28 Pa (mean 5 SD of n ¼ 8 islands).

Similarly, cells in a freely expanding island displayed
elastic behavior. As an island expanded due to outward
migration, each cell within that island became stretched,
thereby increasing its area (Fig. S5, a and b). Similar to
the confined islands, when cells increased in area, the ten-
2732 Biophysical Journal 110, 2729–2738, June 21, 2016
sion consequently increased (Fig. S5 c). As above, when
we plotted ds/dt against dε/dt, the data were well correlated
for a single radial position (Fig. S5 d) and for all positions
within the island (Fig. S5 e). For the expanding islands,
we found a modulus of K ¼ 62 5 17 Pa (mean 5 SD of
n ¼ 7 islands). Our findings thus demonstrated that both
confined and expanding cellular monolayers behave as an
elastic material, albeit with different elastic moduli.

To examine the internal variables that generate cellular
polarization and oscillatory waves, we developed a minimal
physical model, which describes the monolayer as an elastic
continuum with a displacement field~uð~r; tÞ. The assumption
of elastic behavior is supported by our data and those of
others (6,26) that show a linear relationship between the
rate of stress and the rate of strain. As in a previously
described one-dimensional model of an expanding cell
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monolayer (14), we couple this displacement field to a scalar
field cð~r; tÞ describing the concentration of a chemical signal
controlling cell contractility, as elaborated below. In addi-
tion, we introduce a dimensionless vector polarization field,
~pð~r; tÞ, whose magnitude describes the local degree of polar-
ization in the cell layer. The orientation of~p defines the local
direction of the propulsive thrust internally generated by
each cell through its adhesion to the substrate (Fig. 3 a)
(12–15). The traction exerted by the cell layer on its sub-
strate is therefore the difference between the viscous friction
and the thrust,

~T ¼ zvt~u� f~p; (1)

where z describes viscous friction with the substrate and f is
the strength of the coupling between cell polarization and
thrust (Fig. 3 a). The motivation for introducing the polari-
zation field comes from our experimental data described
above, which show that local cell traction is not aligned
with local cell velocity, indicating that there must be an
additional internal driving force in the equation of motion
for the monolayer. The dynamics of the cell monolayer is
overdamped and is governed by the force-balance equation,

hvjsij ¼ Ti; (2)

where h is the thickness of the monolayer, and sij is the
tensor describing the in-plane stresses within the cellular
monolayer, with the Latin indices representing in-plane
spatial coordinates. The monolayer stress tensor sij consists
of stresses exerted by elastic and active elements within the
cell and connected in parallel. As such, sij ¼ selij þ saij,
where selij is the stress tensor of a linearly elastic material
(27) (see the Supporting Material) and saij is the active stress
due to intracellular contractile signaling (Fig. 3 b). We take
this to be of the form saij ¼ b logðc=c0Þdij, where dij is the
Kronecker delta, and b > 0 controls the strength of the
active contractile stresses. The active stress arises from a
distribution of contractile force dipoles generated by myosin
clusters cross-linking actin filaments in the cytoskeleton.
In general, the stress contains both an isotropic term repre-
senting an active contractile tension (i.e., a negative pres-
sure) and an anisotropic term proportional to the local
polarization. Here, we neglect this anisotropic component,
having verified that it does not change the behavior
described below. We also neglect, for simplicity, nonlinear
elasticity of the monolayer (13). The active stresses might
be generated, for example, by a chemical reaction such as
ATP hydrolysis, described by a concentration field, c, repre-
senting the concentration of phosphorylated myosins, with
the equilibrium value given by c0 (14). Eq. 2 is supple-
mented by equations governing the dynamics of the internal
variables c and ~p. The concentration of the chemical is
described by a reaction-advection equation,

vtcþ V$ðcvt~uÞ ¼ �1
t
ðc� c0Þ þ ac0V$~u; (3)

where t is the timescale of relaxation to equilibrium and a>
0 is the rate of production of the chemical due to cellular
stretching. Thus, in agreement with the experimental data
Biophysical Journal 110, 2729–2738, June 21, 2016 2733



FIGURE 3 Minimal physical model capturing the wave-like motion and the distribution of traction of the cell monolayer. (a) Schematic of the forces

acting on the cell monolayer. Tractions exerted by the monolayer on the substrate point inward (red arrows) at the monolayer edge and balance the forces

due to viscous friction, zv (black arrows), and propulsion, f p! (green arrows). The monolayer is in mechanical equilibrium, such that the tractions are locally

balanced by the divergence of the monolayer stress, Ti ¼ hvjsij . (b) Constitutive elements of the mechanochemical model. The elastic and active elements

exert stresses in parallel, and a local gradient in stress is balanced by the traction exerted by the cell on the substrate. (c) Kymograph of radial velocity in the

cell monolayer captures the experimentally observed collective inward and outward cellular motions. (d) Kymograph of cellular tension in the monolayer,

which increases and decreases periodically with the same frequency as the velocity. (e) Kymograph of radial traction. See Table S1 for a complete list of the

model parameter values. To see this figure in color, go online.
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(Fig. 2) and previous results for single cells (28) and multi-
cellular monolayers (26), a local increase in cell area gener-
ates a local increase in the contractile stress sa (and vice
versa). It is instructive to note that for small changes in c
around its equilibrium value, Eq. 3 essentially describes
the dynamics of active monolayer stress that is similar to
a Maxwell constitutive model for intercellular stress pro-
posed by Lee and Wolgemuth (12). Here, in addition, we
consider an elastic contribution to the active stress,
described by the term a. The dynamics of the polarization
field is given by

vtpi ¼ a
�
1� j~p j 2�pi þ kV2pi þ wvic

�
c0; (4)

where a > 0 controls the rate of relaxation to a homoge-
neously polarized cell monolayer, and k controls the
strength of nearest-neighbor alignment of the polarization
field. The active coupling w > 0 describes the rate of align-
ment of cell polarization with the gradients in the concentra-
tion field, such that local cell motion is propelled over time
toward regions of high contractility. It is useful to compare
our model to those of (12) and (13). The model of (13) is
very similar to the one used here. Both models describe a tis-
sue as an active elastic medium in terms of coupled equa-
tions for displacement field, polarization, and an internal
scalar degree of freedom describing a deformation-induced
chemical signal. Our model is a minimal version of that of
(13), where many of the nonessential nonlinearities and
anisotropies are ignored. In (12), in contrast, the authors
describe the tissue as a fluid and retain the anisotropic part
2734 Biophysical Journal 110, 2729–2738, June 21, 2016
of the active stress proportional to polarization. Internal dy-
namics is introduced by assuming that the stress is visco-
elastic, with dynamics described by a Maxwell model.
This has a similar effect to our assumption of relaxational
dynamics for the chemical signal that controls the isotropic
active stress. Both introduce an additional timescale that
provides an effective inertia for the overdamped monolayer,
be it a liquid or an elastic medium. Less direct is the com-
parison with the work by Basan et al. (15), who propose a
particle model and assume a tendency toward alignment be-
tween cell polarization and velocity, which leads to an over-
all antialignment between traction and cell velocity, which
does not agree with our experimental data.

By solving the coupled system given by Eqs. 2–4,
assuming in-plane circular symmetry, we applied this model
to the confined monolayers in our experiments (see the
Supporting Material). The results are displayed in a series
of kymographs showing the spatiotemporal evolution of
the radial velocity, the monolayer tension, and the traction
(Fig. 3, c–e). The model quantitatively captured multiple as-
pects of our experimental data, namely, that the monolayer’s
velocity field alternated between inward and outward mo-
tion (Fig. 3 c) with a time period equal to that of the oscil-
lations in the monolayer tension (Fig. 3 d). This wave-like
motion is predicted by the model to arise through the che-
momechanical feedback between the mechanical strain
and the internal state variable c (14,29). In the limiting
case c ¼ c0, when the deformation ~u is only coupled to ~p,
no oscillatory behavior is observed (Fig. S6, d–f). However,
if the deformation ~u is coupled to c only, the traction is
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proportional to velocity, which contradicts our experimental
observations (Fig. S6, a–c). This indicates that the polariza-
tion field,~p, is crucial to capture the misalignment between
traction and velocity. Thus, coupling of the deformation~u to
both c and ~p is required to capture the experimentally
observed distribution of tractions, which pointed inward at
the exterior of the cell island and oscillated between out-
ward and inward within the bulk of the island (Fig. 3 e).

To test the model’s prediction that a feedback between me-
chanical strain and cellular contraction generates collective
oscillations,we inhibited contractionwith themyosin II inhib-
itor blebbistatin (20 mM). For an expanding island, blebbista-
tin has no effect on the speed of migration (6), but in confined
islands, blebbistatin reduced each cell’s speed (Fig. 4,a and c).
Further, blebbistatin eliminated the multicellular oscillations
(Fig. 4 a; Movie S2), and reduced the modulus K to ~20 Pa
(Fig. 4 d). This observation is consistent with our model,
which predicts that the coupling between strain and contrac-
tility yields an effective modulus KzBþ atðbþ fw=2ahÞ
(14), larger than the modulus B of the monolayer in the
absence of contractility. Removing the coupling between
strain and contractility by setting a ¼ 0 eliminated the oscil-
latory waves in our model (Fig. 4 b). These findings suggest
that the elasticity is primarily active: the oscillations inmotion
cause oscillations in cellular strain, which, through active
contraction, cause oscillations in tension. To further test
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tion. We found that EGF (20 ng/mL) increased the period of
oscillation (Fig. 4, e and g; Movie S3). In an oscillatory sys-
tem, modulus and period are inversely related, and in accord
with increasing the period, treatment with EGF decreased
the modulus K (Fig. 4 h). When we reduced the magnitude
of the constants that couple tension and strain, a and b, we
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(Fig. 4 f). From these findings—that the waves require
contraction and that the period depends inversely on
modulus—we conclude that the elasticity is not passive in na-
ture; rather, it is the result of myosin-driven contractility
within the cell.
DISCUSSION

Here, we have studied motions and forces in a confined
monolayer of epithelial cells. Spontaneous oscillations arise
wherein cells alternate between outward and inward corre-
lated motions that resemble the sloshing seiches that are
observed in confined bodies of water. The direction of local
cellular velocity is generally independent of the direction of
local traction, thus indicating that the relationship between
force and motion requires additional state variables. Two
cellular state variables, the concentration of contractile ele-
ments and the polarization of cell motion, were introduced
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to reproduce the experimental results. The coupling between
the cellular strain and chemical concentration generates
effective inertia, which, together with cellular elasticity,
supports the oscillatory waves of motion observed in the
experiments. Decreasing the elastic modulus with EGF
increased the period of oscillation (Fig. 4, g and h), in agree-
ment with the theory.

Elasticity of the monolayer has been previously attributed
to a passive spring-like behavior of the cytoskeleton, its con-
tractile apparatus, and cell-cell adhesions (6,7). In contrast,
our model now incorporates a feedback between cellular
strain and contractility such that a local increase in cell
area induces larger contractility. This mechanism is consis-
tent with recent experiments on single cells (28) and multi-
cellular clusters (26,30), which show that cells with larger
area are more contractile than cells with smaller area.
When we suppressed cell contractility with the myosin-II in-
hibitor blebbistatin, the elastic modulus decreased by an or-
der of magnitude (Fig. 4 d), and the waves were suppressed
(Fig. 4 a). From this observation we conclude that the elas-
ticity required to generate the waves is not simply a passive
spring-like behavior; rather, it results from the active con-
tractile elements inside the cell (26). Adding blebbistatin
reduced the average cell speed in these confined islands,
but such a reduction in speed is unlikely to be the mecha-
nism that inhibits the oscillations in cellular motion. A pre-
vious study showed that blebbistatin in an expanding
cellular island has no effect on cell speed, but it does elim-
inate propagating waves of contractile tension (6). This
observation agrees with our finding that active cell contrac-
tion is required to generate the oscillatory waves.

The molecular mechanisms that link changes in cellular
stretching to changes in contractile tension are unknown,
but theoretical studies (13) and experimental evidence point
toERKMAPkinase (ERK1/2) as being associatedwith exten-
sion of muscle tissue (31) and stretching of stress fibers (32).
Moreover,when amonolayer begins to expand into free space,
a wave of ERK1/2 phosphorylation propagates from the
monolayer’s free edge into the bulk (33,34) at a speed approx-
imately the same as that of the waves of cellular motion that
occur in our experiments of expanding cellular islands
(Fig. S2 d) and have been reported elsewhere (6). This slow-
moving wave results not from damage to the monolayer, but
rather from the free space offered to the monolayer’s edge
(34). When we inhibited ERK1/2 with U0126 (10 mM), the
effectivemodulus decreased bya factor of 2, andcollective os-
cillations were suppressed (Fig. S7; Movie S4).

Collective cellular oscillations similar to the ones
described here have been reported by Deforet et al. (7),
who performed stochastic particle-based simulations that
balanced the forces of inertia, friction, intercellular adhe-
sions, and active propulsion. In their simulation, each cell
was given a tendency to adapt its velocity to that of its near-
est neighbors. Although the model by Deforet et al. and the
one presented here are both based on local force-balance,
2736 Biophysical Journal 110, 2729–2738, June 21, 2016
they differ in spirit. Instead of simulating the dynamics of
individual cells, we propose a continuum model formulated
in terms of a few coarse-grained fields such as traction and
velocity, which are measured directly in the experiments.
Our model contains only a small number of parameters
that represent effective material properties of the monolayer
and describe the combined effect of a number of signaling
pathways. The model makes testable predictions that pro-
vide a way of correlating the macroscopic parameters of
the theory with specific pathways.

Oscillatory or wavelike motion requires second-order dif-
ferential equations in time, corresponding to the tradeoff be-
tween two independent timescales. The dynamics of cellular
monolayers is overdamped, hence governed by a first-order
differential equation, with a single timescale determined by
the interplay of viscous friction and elasticity. Until now, the
origin of the second timescale required for oscillatory
behavior has remained mysterious. Deforet et al. accounted
for the second timescale by introducing cellular inertia (7).
Serra-Picamal et al. accounted for the second timescale by
assuming that stretched cells became fluidized (i.e., they
flowed under tensile forces) for a specified period of time
(6). There is evidence that cells fluidize when stretched
and unstretched quickly (35–37), but whether stretches
due to slow cellular motion induce fluidization remains an
open question. Our model and experiments point to a second
timescale that comes from the mechanochemical feedback
(13) between the local strain and the rate of change in con-
tractile tension. This feedback mechanism results in self-
sustained periods of stiffening and fluidization in the cell
monolayer (14).

Dynamics of the chemical concentration c does not
explain the apparent independence between the local orien-
tations of traction and velocity (Fig. 1 f; Figs. S2 f and S8).
Whereas Kim et al. showed that velocity and tractions do
not align near a boundary (11), we show here that an angle
of misalignment between traction and velocity occurs even
in the absence of a boundary. The histogram of the angle be-
tween traction and velocity at all points in time (Fig. 1 f,
blue line) shows a very small peak near zero, indicating a
slight tendency for cells to pull on the substrate in the
same direction that they move. This occasional alignment
between motion and traction is consistent with the presence
of a viscous drag exerted by the moving cells onto the
substrate, as described by our model and those of others
(12–15). In these models, the viscous-drag term connects
tractions to motion, and thus, our observation of occasional
alignment between traction and velocity serves as a confir-
mation of this connection.

To account for the deviation between the local directions
of traction and velocity, we propose a vector polarization
field that locally directs the cellular motion. Other theoret-
ical models have also incorporated a cell polarization field
defining the orientation of an anisotropic dipole-like con-
tractile stress (12), with dynamics governed by general
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nonlinear hydrodynamic equations of polar liquid crystals
(13,38). In contrast, our work considers a minimal model
where cell polarization does not generate shear stresses, in
agreement with our experimental data that show an isotropic
distribution of the monolayer stress field (Fig. S9). Impor-
tantly, we identify two physical mechanisms that control
the dynamics of cell polarization. First, cells tend to polarize
their traction toward free space, consistent with kenotaxis
(11). Our model accounts for kenotaxis in the first term on
the righthand side of Eq. 4, which tends to polarize the
monolayer toward free space. Second, the polarization field
evolves in time so as to locally align toward regions of high
contractile tension in the monolayer (Fig. S10). These two
tendencies are required to reproduce the spatial patterning
of the traction field (Figs. 1 e and 3 e), and they provoke
the question of what molecular mechanism generates the po-
larization. The cytoskeletal protein merlin may be involved,
as the feedback between merlin and Rac1 has been shown to
direct formation of lamellipodia in collective cellular migra-
tion (9). If merlin indeed polarizes the cells, it is likely only
one of several molecular mechanisms controlling the forces
that drive collective cellular motion.

Here, we have found that the various biological mecha-
nisms controlling the waves of collective motion combine
together to relate force and motion through two physical
variables, one controlling intracellular contractility and the
other controlling polarized cell motion. These two state
variables are present within each cell, but perhaps even
more striking is the fact that each cell coordinates these state
variables with its neighbors to generate emergent waves of
correlated motion that span multiple cell diameters. Emer-
gent phenomena like these multicellular waves control the
motion and final positioning of the cellular collective, and
thus, they are likely to play a key role in development and
disease. The two internal variables that we describe
here—cell contraction and polarization—provide a frame-
work for further investigation.
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Monolayer stress microscopy

Here we detail our experimental technique for recovering intercellular stresses from tractions, called mono-
layer stress microscopy (MSM; Refs. 8, 23). The concept underlying monolayer stress microscopy is force
equilibrium applied to the cell layer. Assuming the layer to be thin with no variation through the thickness,
the two equilibrium equations are

∂σxx

∂x
+

∂σxy

∂y
+

Tx

h
= 0

∂σxy

∂x
+

∂σyy

∂y
+

Ty

h
= 0,

(1)

where σi j are components of the in-plane stress tensor, Ti is the i-th component of the traction vector applied
by the substrate to the monolayer, and h is the thickness of the monolayer. These equations are independent
of the constitutive properties of the monolayer; they result directly from a balance of forces. Note that in
one dimension (chosen in the x direction) Eqs. (1) would reduce to the single equation

∂σxx

∂x
+

Tx

h
= 0 , (2)

which can immediately be integrated to obtain the cellular stress σxx with no assumption on the form of the
constitutive equation.

In two dimensions, however, the stress tensor has three unique components, so a third equation is required.
In the original implementation of MSM (8, 23), the monolayer was assumed to behave as a linear elastic
material, giving the following two-dimensional (2D) constitutive relationship between stress and strain:

σi j =
Eν

1−ν2 εkkδi j +
E

1+ν
εi j, (3)

where E is Young’s modulus, ν is Poisson’s ratio, and εi j are components of the in-plane strain tensor. Here
summation over repeated indices is implied. Assuming the monolayer is homogeneous, the constitutive
equation combined with Eqs. 1 and compatibility of strain (requiring that the strain be the derivative of a
unique vector field),

∂ 2εxx

∂y2 +
∂ 2εyy

∂x2 = 2
∂ 2εxy

∂x∂y
, (4)

give the Beltrami–Michell equation (23),

∇
2 (σxx +σyy) =−

1+ν

h

(
∂Tx

∂x
+

∂Ty

∂y

)
. (5)

Together, Eqs. 1 and 5 can be solved for the three independent components of the stress tensor σi j. Note
that the equations are independent of Young’s modulus; furthermore it has been shown that dependence on
Poisson’s ratio is sufficiently weak to make it negligible (23).

We now discuss the case where the cell layer is a linear viscous material. In this case the 2D constitutive
equation is

σi j =−pδi j +(µb−µs) ε̇kkδi j +2µsε̇i j, (6)

where p is the thermodynamic pressure, µb and µs are the bulk and shear viscosities, respectively, and the
overdot represents a partial derivative in time. Requiring that the strain rate ε̇i j be the derivative of a unique
vector field (the local velocity) yields a compatibility equation

∂ 2ε̇xx

∂y2 +
∂ 2ε̇yy

∂x2 = 2
∂ 2ε̇xy

∂x∂y
. (7)
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If we assume the layer to be incompressible and neglect pressure gradients, we can combine Eqs. 1, 6, and
7 to obtain

∇
2 (σxx +σyy) =−

(
2µb

µb+µs

)
h

(
∂Tx

∂x
+

∂Ty

∂y

)
, (8)

which is equivalent to Eq. 5. In this case the conventional method used to infer stress from traction in
MSM applies regardless of whether a material is elastic or viscous. In general, however, in a fluid density
fluctuations are not slaved to strain fluctuations and an additional condition is needed to determine the
pressure. Whether such a pressure exists in a cell monolayer remains unknown.

Recent work by Zimmermann et al. (17) has provided independent validation of the method used in MSM.
In their verification, Zimmermann et al. simulated collective cell motion using a particle-based model. The
particles in the model represented cells, and were able to flow freely past one another with no memory of
their previous position, therefore behaving like a fluid where particles do not maintain the same neighbors
in the course of time. Zimmermann et al. then computed the stresses directly from the simulations and
compared them to stresses computed with MSM. The comparison showed close agreement (17), suggesting
that MSM can be applied to either an elastic or a viscous material, and that pressure variations do not play
an important role in the viscous case.

Minimal physical model of collective cell motion

Continuum model. Here we provide a detailed description of the minimal physical model introduced in
the main text. We consider a thin film of cell monolayer confined to a circular micro-pattern of radius R
with average height h. We describe the monolayer as an elastic continuum whose vector displacement at
position r and at time t is given by u(r, t). The local displacements of the monolayer are coupled to two
internal degrees of freedom, the concentration c(r, t) of a regulatory chemical controlling cell contractility,
and a dimensionless vector field p(r, t) controlling the angle of misalignment between local cell motion
and propulsive traction forces. The magnitude of p accounts for the amount of misalignment between cell
motion and traction, whereas its orientation defines the direction of the thrust force acting on the cell. In the
absence of external forces, in-plane force balance gives,

∂ jΣi j +∂zΣiz = 0 , (9)

where Σ is the stress tensor of the monolayer and latin indices denote in-plane coordinates x and y. For
h� R, we average the force balance across the z-direction, assuming that the top surface of the monolayer
at z = h is stress free, i.e. Σiz|z=h = 0. This gives us,

h∂ jσi j = Σiz|z=0, (10)

where σi j(x,y) = h−1 ∫ h
0 dz Σi j(x,y,z) is the thickness averaged stress tensor of the monolayer equivalent to

what is measured in experiments. We identify the shear stress at the cell–substrate interface, Σiz|z=h, as the
traction stress Ti exerted by the cell on the substrate. This gives us the following relation between monolayer
stress and traction,

Ti = h∂ jσi j, (11)

The monolayer stress tensor is given by the sum of passive elastic and active elements connected in parallel
(Fig. 3b), σi j = σ el

i j +σ a
i j, where the passive elastic component of the stress tensor, σ el

i j , is assumed to be
isotropic and homogeneous. It is given by,

σ
el
i j = Bεkkδi j +2G

(
εi j−

1
2

δi jεkk

)
. (12)
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B and G are respectively the in-plane bulk and shear elastic moduli of the monolayer, εi j the symmetrized

strain tensor, εi j =
1
2
(∂iu j +∂ jui) and δi j the Kronecker delta. The active stress σ a

i j is taken to be pro-

portional to the logarithm of the concentration field, log(c/c0), where c0 is the concentration at chemical
equilibrium when no stress is generated. Although we are not aware of any direct measurement of active
stress in live cells and their relationships with myosin concentration and chemical potential of ATP, the loga-
rithmic dependence of active stress on concentration follows from two simple assumptions. First, we assume
the presence of weak to moderate activity level in cells such that the stress depends linearly on the chemical
potential. Second, the chemical potential difference is related logarithmically the concentration of reactants
and products given the partial pressure of the molecules are linearly dependent on the concentration. We
thus have,

σ
a
i j = β log(c/c0)δi j , (13)

where β > 0 is the magnitude of the active contractile stresses generated by molecular motors and c0 is the
equilibrium concentration. The assumption of isotropic stress is consistent with the stress field measured
in our experiments using monolayer stress microscopy. Our principal stress analysis reveals that the stress
ellipses in the monolayer typically have low aspect ratio with a quotient of maximum shear to tension less
than 0.2 (Supporting Fig. S9). The dynamics of the displacement field, u(r, t), is given by

ζ ∂tui = f pi +h∂ jσi j (14)

where ζ describes viscous friction with the substrate and the constant f is the magnitude of the coupling
between polarization and motion and quantifies the strength of the propulsion force. The resultant traction
applied by the cells on the substrate is thus, T = ζ ∂tu− f p. The dynamics of the concentration field c(r, t)
is given by,

∂tc+∇∇∇ · (c∂tu) =−
1
τ
(c− c0)+αc0εkk , (15)

where τ is the timescale of actomyosin relaxation to equilibrium and α is the rate of production of c due to
cellular stretching. The second term on the left hand side of Eq. (15) describes convection of chemicals by
local cell motion. The dynamics of the polarization field p(r, t) is given by,

∂t pi = a
(
1−|p|2

)
pi +κ∇

2 pi +w∂i(c/c0) , (16)

where the first two terms allow for the onset of a homogeneously polarized system, |p|= 1, and a (> 0) is the
rate of relaxation to the homegeneous state |p|= 1. Local cost of fluctuations in polarization is characterized
by an isotropic stiffness κ with dimensions of diffusivity; it describes the tendency of cell polarization to
align with its neighbors. The active coupling w describes the local rate of alignment of cell polarization with
the gradients of the concentration field.

Numerical solution in circular geometry. We numerically solve the model equations in a circular geome-
try by assuming in-plane rotational symmetry such that all quantities depend solely on the radial coordinate,
r. Rotational symmetry in polar coordinates implies that shear stresses σrθ vanish and the dynamics of
the radial displacement field are solely governed by normal stresses, in agreement with the experiments
(Supporting Fig. S9). The equation of motion for radial displacements ur is given by,

ζ ∂tur = f pr +h
(

∂rσrr +
1
r
(σrr−σθθ )

)
, (17)
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where σrr and σθθ define the radial and orthoradial components of the normal stress in the monolayer, given
by,

σrr = B
(

∂rur +
ur

r

)
+G

(
∂rur−

ur

r

)
+β log(c/c0) , (18)

σθθ = B
(

∂rur +
ur

r

)
−G

(
∂rur−

ur

r

)
+β log(c/c0) . (19)

The equation governing the dynamics of c is given by,

∂tc+
1
r

∂r (rc∂tur) =−
1
τ
(c− c0)+αc0

(
∂rur +

ur

r

)
. (20)

Finally, the equation governing the dynamics of radial polarization, pr, is given by

∂t pr = a
(
1− p2

r
)

pr +
κ

r
∂r(r∂r pr)+w∂r(c/c0) . (21)

The homogeneous solutions to the above equation, pr =±1, describe uniformly polarized states of the cell
monolayer with the cell motion pointing radially outwards for pr = 1 and inward for pr =−1. The solution
pr = 1 describes the tendency of cell motion to polarize towards the free space at the exterior of the cell
island, consistent with kenotaxis (10).

To solve the above equations, we assume that no external forces act at the outer boundary such that σi jn j = 0
where n j is the outward unit normal vector to the boundary. This translates to the boundary condition
σrr(R) = 0 in circular geometry. We model adhesion with the micropattern by anchoring a hookean spring
of stiffness 0.03 Pa/µm at the boundary of the cell monolayer. We choose a no-flux boundary condition
for c and pr, such that ∂rc(R) = 0, and the gradients of the polarization variable at the outer boundary is
zero, ∂r pr(R) = 0. We also assume that the monolayer is initially undeformed, u(r,0) = 0, and unpolarized,
pr(r,0) = 0, with an equilibrium concentration of contractile elements, c(r,0) = c0. We then integrate
numerically Eqs. (17), (20) and (21) with the given initial and boundary conditions by means of the Runge–
Kutta–Fehlberg method. We solve three different implementations of the model:

• u-p model. Radial displacement ur is coupled only to pr and the concentration field is assumed to be
constant, c = c0. In this case no wave-like behavior is obtained (Supporting Fig. S6 d–f), indicating
that the mechanochemical coupling between c and ur is crucial to reproduce the waves of oscillatory
motion.

• u-c model. Displacement ur is coupled to c only. The polarization field and hence the propulsion
force f pr are set to zero. In this case we obtain standing waves qualitatively similar to those seen in
experiments (Supporting Fig. S6 a–c). However, the traction is proportional to velocity, in contrast to
the misalignment observed in experiments.

• u-c-p model. Here we use the full equations of motion, coupling ur to both c and pr and are able to
quanitatively reproduce the experimental trends (Fig. 3).

Finite difference spatial discretization scheme. To solve Eqs. (17), (20) and (21) numerically, we first
spatially discretize the equations using the central finite difference method and then integrate them numeri-
cally by means of the Runge–Kutta–Fehlberg method. At every time step, the spatial domain spans from 0 to
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R, where R is the radius of the cell monolayer. The numerical approximation to the functions ur(r, t), c(r, t)
and pr(r, t) at the spatial grid point ri = i∆r with ∆r = R/(N− 1) and i = 1,N− 2, are denoted as ui

n(tn),
ci

n(tn) and pi
n(tn) respectively. In the following, we drop the argument tn of the functions for convenience.

Substituting Eqs. (18) and (19) in Eq. (17), the equation of motion is spatially discretized as follows,

ζ ∂tui
n = f pi

n +h
[
(B+G)

((
ui+1

n +ui−1
n −2ui

n

∆r2

)
+

(
ui+1

n −ui−1
n

2ri∆r

)
− ui

n

r2
i

)
+β

(
ci+1

n − ci−1
n

2ci
n∆r

)]
. (22)

The spatial discretization of Eq. (20) gives,

∂tci
n +

1
ri

(
ci

n∂tui
n
)
+

(
ci+1

n − ci−1
n

2∆r

)
∂tui

n + ci
n

(
∂tui+1

n −∂tui−1
n

2∆r

)
=−1

τ

(
ci

n− c0
)
+αc0

(
ui+1

n −ui−1
n

2∆r
+

ui
n

ri

)
.

(23)

The spatial discretization of Eq. (21) gives,

∂t pi
n = a

(
1− (pi

n)
2) pi

n +κ

(
pi+1

n + pi−1
n −2pi

n

∆r2

)
+κ

(
pi+1

n − pi−1
n

2ri∆r

)
+w

(
ci+1

n − ci−1
n

2c0∆r

)
. (24)

At i = 0, the boundary conditions for the above discretized equations are given by: ζ ∂tu0
n = 0, ∂tc0

n =

−1
τ

(
c0

n− c0
)

and ∂t p0
n = a

(
1− (p0

n)
2
)

p0
n+2κ

(
p1

n− p0
n

∆r2

)
. Here we applied the same boundary conditions,

∂rc(0)= ∂r pr(0)= 0 and l’Hospital’s Rule to resolve the singularity at i= 0. At i=N−1, the boundary con-

dition σrr(R)= 0 gives the value of the ghost point uN
n = uN−2

n − 2∆r
B+G

[
(B−G)

(
uN−1

n

R

)
+β log

(
(cN−1

n )

c0

)]
in Eqs. (22) and (23). The boundary condition ∂rc(R) = 0 gives the value of the ghost point cN

n = cN−2
n in

Eqs. (22), (23) and (24) while the boundary condition ∂r pr(R) = 0 gives the value of the ghost point
pN

n = pN−2
n in Eq. (24). Eqs. (22), (23) and (24) are then integrated numerically with the given initial and

boundary conditions, using the Runge–Kutta–Fehlberg method.

Model parameters. While the model parameters are cell-type dependent, they are chosen so as to quanti-
tatively reproduce our experimental data on MDCK cell monolayers for traction, velocity and intercellular
stress. Specifically, the radius of the cell monolayer is taken to be R = 350 µm and the values of the elastic
moduli, B and G, and the contractile stress β are taken to be of the same order of magnitude with the experi-
mentally measured effective elastic modulus K of the monolayer. The values of the timescales regulating the
chemical dynamics, τ and α−1, are tuned so as reproduce the experimentally measured time period of oscil-
lations ∼6 hrs. The remaining values are chosen within the order of magnitudes reported in prior literature.
A complete list of the parameter values is given in Supporting Table S1.

Experimental validation of the model predictions.

• Contractile activity generates effective elasticity and mechanical waves. Our model predicts that
the coupling between contractility and the monolayer strain yields an effective bulk modulus, K =
B+ατ(β + f w/2ah) that is greater than the passive bulk elastic modulus of the material (13). Fur-
thermore, in our model waves arise due to a local feedback between rate of production of c and
mechanical strain in the monolayer. This is consistent with our experimental data which shows that
the treatment with blebbistatin (an inhibitor of myosin-based contractility) reduces the effective elastic
modulus K of the cell monolayer by an order of magnitude and eliminates the waves (Fig. 4 a–d).
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Supporting Table S1: Model parameters.
Parameter Physical Meaning Numerical Value

ζ Viscous friction with the substrate 0.2 Pa hr/µm
f Propulsion force 10 Pa
R Monolayer radius 350 µm
h Monolayer thickness 3 µm
B Bulk elastic modulus 300 Pa
G Shear elastic modulus 200 Pa
β Magnitude of the active stress 600 Pa
τ Timescale of relaxation of c 1.17 hrs
α Rate of production of c due to cell stretching 2.14 hr−1

a Rate of relaxation to a homogeneously polar state 0.78 hr−1

κ Stiffness constant characterizing the cost of local changes in p 8.75 µm2/min
w Controls the rate of alignment of p with the gradients of c 2.08 µm/min

• Cell polarization aligns with the gradients of contractile tension. Our minimal model incorporates
feedback between p and c such that ∂tp ∝ ∇(c/c0). Because the active stress σa goes as log(c/c0),
we expect that ∂tp ∝ ∇σ . Furthermore, since T = ζ v− f p, and v averages to 0 over one period of
oscillation, we expect that 〈∂ (−T)/∂ t〉 ∼ 〈∇σ〉, where the angular brackets denote time average over
one period of oscillations. When we compare directions of 〈∂ (−T)/∂ t〉 and 〈∇σ〉, we find alignment
(Supporting Fig. S10).

• Cell polarization exists even in the absence of contractility. Our experimental data show that after
treatment with blebbistatin, the traction and the velocity field of the monolayer are misaligned on av-
erage, with the traction vectors pointing radially inward at the perimeter of the island and cell motion
polarized radially outwards (Supporting Fig. S11). This behavior of cells to polarize their motion
radially outward is consistent with the results of the u–p model that reproduces the anti-alignment
between traction and velocity in the absence of contractility (Supporting Fig. S6 d,e).

• Scaling of the time period with monolayer size. A linear stability analysis of our continuum model
predicts a characteristic frequency of oscillatory waves in the monolayer given by (13),

ω0(q)' q
√

hK/τζ , (25)

where q is the radial wave vector. At length scales comparable to the monolayer size, q' 1/R, we get
the following analytical expression for the time period,

T ' 2πR
√

τζ/hK . (26)

Our model thus predicts a linear scaling relation between the time period of oscillations and the
monolayer radius, in agreement with experimental measurements (7).
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Supporting Figures
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Supporting Figure S1: Full velocity field of the the monolayer shown in Fig. 1. (a) Phase contrast images at three
different time points. (b, c) Radial (b) and angular (c) components of the cellular velocity.
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Supporting Figure S2: In expanding cellular monolayers, cellular tractions align in a different direction than
cellular velocities. (a) MDCK cells are micropatterned into 700 µm islands using a PDMS mask on a polyacrylamide
gel. When the mask is removed, the cells migrate outward. Times are in minutes after removing the mask. (b) Cell
velocities are measured using particle image velocimetry, and the radial component of the velocity vector is plotted.
The positive direction (red) represents outward motion. At early times (220 min), cells at the periphery move outward;
later (300 min), all cells move outward. Once the island is fully spread (720 min), cells move either inward or outward.
(c) Radial component of traction applied by the cells to the substrate. Areas in blue indicate regions where the cells pull
inward on the substrate; this inward force, if unbalanced, would accelerate the cells outward. The relationship between
velocity and traction is evaluated with Pearson’s correlation coefficient, R. (d, e) Kymographs of radial velocity (d)
and radial traction (e). At all points in time, neither the spatial map of tractions (c) nor the averaged tractions (e)
correlate with the velocity. (f) Histogram of the angle between the velocity and traction vectors. Each gray line shows
a single point in time for the cell island; the blue line shows all points in time.
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Supporting Figure S3: Gradients in local number density do not drive collective motion in expanding or con-
fined monolayers. (a) Phase contrast image of MDCK cells in an expanding island 720 min after removing the mask.
(b–d) The radial components of velocity (b) and traction (c) are uncorrelated with the radial component of the density
gradient (d) (Pearson’s correlation coefficient R = -0.06 and 0.07, respectively). (e–h) For a confined monolayer (e),
radial velocity (f) and radial traction (g) are similarly uncorrelated with the radial component of density gradient (h)
(Pearson’s correlation coefficient R = 0.03 and -0.12, respectively). (i–l) Histograms of the angle between the direc-
tions of density gradient and velocity (i, k) or density gradient and traction (j, l) for the expanding (i, j) or confined
(k, l) islands. Each gray line shows the histogram for a single point in time for a cell island; the blue lines show
histograms for all points in time. Computation of all density gradients reports data points located at least 50 µm from
the boundary of the cell island so as to avoid errors in computing the density gradient near the outside of the island
where density is zero.
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Supporting Figure S4: Negligible viscous stress in the monolayer. To investigate the role of viscosity in the
monolayer, the tension (defined as the mean of the principal stresses) is compared to the sum of the principal strain
rates, and the maximal shearing stress (defined as half the difference of the principal stresses) is compared to the
difference of the principal strain rates. The data shown is for the cell island of Fig. 1 at time points 160, 400, and
640 min. Each dot represents a different location in the island; the blue lines show linear fits. Correlation coefficient
magnitudes are typically smaller than 0.1, indicating viscosity has a negligible contribution to the stress tensor.
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Supporting Figure S5: The elasticity of the monlayer is tested using an expanding island of MDCK cells. (a)
As shown in the kymograph of radial velocity, when a circular island of cells expands outward, a wave of motion
propagates from the periphery to the interior. (b) Kymograph of cell area showing area increases when each cell
begins to move. (c) Kymograph of tension shows tension within each cell increases as area increases. (d) A trace
of the kymographs of area strain rate dε/dt (defined as the trace of the rate-of-strain tensor) and time derivative of
tension dσ/dt along a radial position of 100 µm shows a correlation (Pearson’s correlation coefficient R = 0.67). (e)
A scatter plot of all points in space and time for this monolayer shows dσ/dt is correlated with dε/dt (R = 0.64),
indicating elastic behavior with a modulus K (given by the slope of a linear fit) of 71 Pa for this cell island. An average
over 8 cell islands gives K = 62±17 Pa (mean ± standard deviation).
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Supporting Figure S6: Limiting cases of the minimal physical model. (a–c) u-c model: Deformation u is coupled
to c only. The polarization field p is set to zero and τ = 0.12 hrs. Rest of the parameters are the same as in Supporting
Table S1. In this case we obtain standing waves seen in the kymograph of velocity (a) qualitatively similar to our
experiments. However, the traction (b) is proportional to velocity and is very different from the traction observed
in our experiments. The monolayer tension (c) oscillated out of phase with velocity with both positive and negative
values in disagreement to our experimental data. (d–f) u-p model: Deformation u is coupled to p only with the
concentration field c set to its equilibrium value c0. Simulation parameters are the same as in Supporting Table S1. In
this case no wave-like behavior is obtained, indicating that the feedback between mechanical strain and the regulatory
biochemistry of c is essential to explain the presence of wave-like dynamics.
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Supporting Figure S7: ERK inhibition. The ERK inhibitor U0126 (10 µM) decreases the velocity and eliminates
the waves. (a) Kymograph of velocity shows no waves of cellular motion are present. (b) Compared to control, cell
islands treated with U0126 move at a slower speed. (c) Compared to control, treatment with U0126 reduces the elastic
modulus K. For the plots in (b) and (c), each dot corresponds to a different cell island. P values are computed using a
rank sum statistical test.

Supporting Figure S8: Dynamics of the internal state variables in the cell monolayer. (a) Kymograph of the
polarization field in the full u-c-p model shows that cells at the boundary and at the center of the monolayer are
polarized outwards separated by a band of inward polarized cells. (b) Kymograph of the concentration field in the full
u-c-p model showing oscillations similar to the monolayer tension. (c) In the absence of coupling to c, the polarization
field is uniform and points radially outward. (d) Kymograph of the concentration field in the absence of coupling to
polarization field.
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Supporting Figure S9: The stress tensor within the circular monolayers is isotropic. The first and second prin-
cipal stresses, σ1 and σ2, are computed. (a, b) Representative plots of the mean principal stress, (σ1 +σ2)/2 (a) and
the maximum shear stress, (σ1−σ2)/2 (b) for a circular monolayer at one point in time. (c) Visualization of the stress
tensor in the monolayer where the major and minor axes of each ellipse correspond to the magnitude of σ1 and σ2,
and the orientation of the major axis corresponds to the orientation of the first principal stress σ1. An ellipse that is
more circular indicates a stress tensor that is more isotropic. (d) As a measure of stress isotropy, the difference in the
principal stresses is divided by the sum of the principal stresses with a value of zero indicating a fully isotropic state.
Histograms of (σ1−σ2)/(σ1 +σ2) are generated for each point in time (gray lines) and for all time points (blue line).
The mean and median are <0.2, indicating the stress tensor is nearly isotropic.
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Supporting Figure S10: Cells polarize along gradients of contractility. The difference in the orientations of the
gradient of tension, θ〈∇σ〉, and the opposite of the time derivative of traction, θ〈∂ (−T)/∂ t〉, is plotted as a histogram for
various points in time (gray lines) and for all time points (blue line). Here, the angle brackets represent a time average
over one period of oscillation. The peak near zero indicates that directions of 〈∇σ〉 and 〈∂ (−T)/∂ t〉 tend to align, in
agreement with the model. The alignment between directions of 〈∇σ〉 and 〈∂ (−T)/∂ t〉 means that the cell tractions
evolve in time so as to propel the cells towards regions of high tension.
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Supporting Figure S11: Blebbistatin treatment. Kymographs of (a) radial velocity and (b) radial traction for a
cell island treated with blebbistatin (20 µM). The tractions are generally aligned in the opposite direction as the radial
velocity. The observed anti-alignment agrees with the model when contractility is inhibited (Supporting Fig. S6 d–f).
In this figure, panel (a) is the same as Fig. 4a.
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Supporting Movie Legends

Supporting Movie 1: Oscillations of motion in a cell monolayer. Left: phase contrast; right: nuclei expressing
green fluorescent protein.

Supporting Movie 2: Motion of a cell monolayer treated with blebbistatin. Left: phase contrast; right: nuclei
expressing green fluorescent protein.

17



Supporting Movie 3: Motion of a cell monolayer treated with EGF. Left: phase contrast; right: nuclei expressing
green fluorescent protein.

Supporting Movie 4: Motion of a cell monolayer treated with U0126. Left: phase contrast; right: nuclei express-
ing green fluorescent protein.
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