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Appendix A. Apparent flexural rigidity of beams with both flexural rigidity and shear stiffness 

We compare the apparent flexural rigidity of a beam with shear stiffness, simply supported and 
loaded at the midpoint (three-point bending), to the apparent flexural rigidity of the fixed-free 
beam (Eq. 10 in the main text). The equilibrium equations for beam with intrinsic flexural 
rigidity 𝐸𝐸 and shear resistance 𝑘𝑠 in three-point bending with central load 𝐹 (Fig. A1) are. 

𝐸𝐸
𝜕2𝜃
𝜕𝜕2

− 𝑘𝑠𝜃 = −
𝐹
2

.                  0 < 𝜕 <
𝐿
2

                                                (𝐴. 1𝑎) 

𝐸𝐸
𝜕2𝜃
𝜕𝜕2

− 𝑘𝑠𝜃 = +
𝐹
2

.                  
𝐿
2
≤ 𝜕 < 𝐿                                                (𝐴. 1𝑏) 

Relevant boundary conditions for the beam are: 
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The solution for the tangent angle of the beam in the left half of the beam is: 
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where 𝛽2 = 𝑘𝑠/𝐸𝐸. 

The deflection at the midpoint in three-point bending in beam: 
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For comparison, the deflection at the midpoint of an ideal Euler-Bernouilli beam with no shear 

resistance, in three-point bending is: 𝛿0 = 𝐹𝐿3

48𝐸𝐸
. Accordingly we define the apparent flexural 

rigidity of a beam with shear resistance, in three-point bending as:  𝐸𝐸��� = 𝐹𝐿3

48𝛿
.  The ratio of 

apparent flexural rigidity to intrinsic flexural rigidity is thus. 
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As expected, this ratio approaches unity in the limit as 𝛽𝐿 → 0, and increases with 𝛽𝐿.  

 
Figure A1. Free-body diagram of beam in three-point bending. 
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Comparing Eq. A.5 with Eq. 10 of this paper, we see that the apparent flexural rigidity of beams, 
for a given shear stiffness, increases with length in both loading scenarios, but at different 
rates. This can be seen in the graph of the non-dimensional ratio 𝐸𝐸���/𝐸𝐸 vs the non-dimensional 
parameter 𝛽𝐿 (Fig. S2). The dimensional value of apparent flexural rigidity , 𝐸𝐸���, is plotted vs 
length for representative parameter values, for both three-point bending of a simply-supported 
beam and tip loading of a fixed-free beam. It is clear that the two measurement protocols give 
very different estimates of 𝐸𝐸���, and that the estimates diverge as length increases. 

 
Figure A2. (a) Non-dimensional ratio of apparent flexural rigidity 𝐸𝐸��� to intrinsic flexural rigidity 𝐸𝐸 for 
beams under different test conditions, as a function of the non-dimensional parameter 𝛽𝐿.  (b) 
Apparent (dimensional) flexural rigidity 𝐸𝐸��� of a beam with intrinsic flexural rigidity 𝐸𝐸 = 860 pN ∙ µm2 
and shear stiffness 𝑘𝑠 = 50 pN/rad, under different test conditions. Solid red curves: 𝐸𝐸��� estimated from 
the deflection of a fix-free beam loaded at the tip. Dashed blue curves: 𝐸𝐸��� estimated from the deflection 
at the mid-point of a simply-supported beam loaded at its midpoint (three-point bending). 

 
Figure A3. Apparent flexural rigidity 𝐸𝐸��� of flagella measured by optical trap technique in wild-type 
Chlamydomonas, and in pf3; cnk11-6 and pf13A mutants. 
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Appendix B. Details of the closed form solution for the counterbend experiment 
 
The analytical solution for the shape of a beam subjected to a perpendicular point load at 𝜕0 is 
given by Eqs. (12-16) from the main text: 

𝜃(𝜕) = 𝜃1(𝜕) =
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The four boundary conditions (Eqs. 13-16 in the paper) are also repeated here: 
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These boundary conditions lead to algebraic equations which determine the four  coefficients 
(𝑐1, 𝑐2, 𝜃1, 𝜃2) for given  values of 𝐹, 𝑘𝑠 (or 𝐸𝐸),  𝛽, 𝐿,  and 𝜕0.  
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where  γ0 = 𝐿 − 𝜕0  (the length of the section distal to the point load). 
 

These equations may be solved simultaneously to give the coefficients 
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Appendix C. General relationships between tip compliance and flagellar length 

If the tip deflection in response to a point load were solely due to simple bending (as in an 
Euler-Bernouilli beam with flexural rigidity 𝐸𝐸) the tip compliance would be:  

𝐵 =
𝛿
𝐹
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𝐿3

3𝐸𝐸
                                                   (𝐵. 1) 

If the tip deflection were solely due to rotation at the base, subject to the restoring force of a 
spring with torsional stiffness 𝑘𝐵  (pN ∙ µm/rad) the tip compliance would be: 

𝐵 =
𝛿
𝐹

=
𝐿2

𝑘𝐵
                                                   (𝐵. 2) 

If the tip deflection were solely due to shear deformation, resisted by shear stiffness  
𝑘𝑠 (pN/rad) the tip compliance would be: 

𝐵 =
𝛿
𝐹

=
𝐿
𝑘𝑠

                                                   (𝐵. 3) 

For the first case (pure bending) the log-log plot of compliance vs. length would have a slope of 
3, in the second case (pure base rotation) the log-log plot would have a slope of 2, and in the 
third case the log-log plot would have a slope of 1. 

Figure C1 shows the raw compliance measurements for wild-type, pf3; cnk11-6, and pf13A 
mutants plotted on log-log scales. Also shown are simple linear fits to the log-log data.   

 
Figure C1.  Log-log plots of tip compliance vs flagellar length in Chlamydomonas flagella, measured using 
optical tweezers. The slopes of the best-fit lines to the log-log data are 1.11 (wild-type), 1.47 (pf3; cnk11-
6) and 0.24 (pf13A). 

The slopes of the log-log plots of compliance vs length are all much less than 3. Since 
counterbend experiments confirm minimal rotation at the base, it is likely that shear stiffness 
plays an important role in determining the tip compliance. The very low slope of the 
compliance-length relationship in the pf13A mutant suggests unmodeled physical 
characteristics, such as a non-uniform longitudinal distribution of shear stiffness. 
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Appendix D. Structural finite element models of flagellar bending  
 
To directly examine the effect of inter-doublet sliding resistance on the overall apparent 
flexural rigidity and the counterbend response of the axoneme, nonlinear 2D finite-element 
computational models for the axoneme were created, using the finite-element software 
ABAQUS (v.6.7, Abaqus, Inc., Providence, RI). Utilizing built-in mechanical elements in the 
software, the microtubule doublets were represented by two elastic beams (10 µm long and 
240 nm separation) and all interconnecting structures (nexin links, radial spokes, e.g.) by an 
array of 100 trusses (to control spacing) and 100 springs (to resist sliding) (Fig. D1). Despite its 
simplicity, this axoneme model recapitulates the overall structural and mechanical properties of 
the axoneme. The intrinsic flexural rigidity (𝐸𝐸 pN·µm2) was provided by two beam elements 
each with flexural rigidity 𝐸𝐸/2, while the values of the elastic constant, 𝑘𝑘, for the springs were 
varied over a wide range.  

 

 
Figure D1. The 2D finite element model of the axoneme. The axoneme is modeled as two 10-µm-long 
elastic beams cross-linked by an array of 100 truss elements (to maintain spacing) and 100 springs (to 
resist sliding, inset in a). (a) A concentrated force is applied perpendicular to the beam at the tip of the 
beam, to cause a slight bending deformation (in analogy to the optical tweezers experiment). (b) A 
concentrated force is applied perpendicular to the beam at the mid-point to bend the proximal half of 
the beam (as in the counterbend experiment). Models in (a) and (b) were used to study how the 
apparent flexural rigidity and the counterbend response of the beam depend on the inter-beam shear 
stiffness provided by the interconnecting springs. (c) A concentrated force along the longitudinal axis of 
the beam is applied at the mid-point to cause a small shear displacement of one beam relative to the 
other, as in Minoura et al [1]. (d) For small deflections, the elasticity of the springs, 𝑘𝑘, is directly related 
to the shear stiffness, 𝑘𝑠, through Eq. D.3. (e) For small inter-beam sliding displacements, the total 
longitudinal stiffness, 𝐾𝐿, is directly related to the shear stiffness, 𝑘𝑠, through Eq. D.8.  
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To simulate the tip compliance test, a small point force was applied at the tip of the beam 
assembly (Fig. D1a) and the resulting tip deflection was recorded. The apparent flexural rigidity 
of the beam was also determined using Eq. 10 of this paper. To simulate the counterbend 
experiment, a point force was applied to the midpoint of the flagellum (Fig. D1b) to induce a 
large bend in the proximal section, and the response of distal portion of the beam was 
examined. To simulate longitudinal shear testing on the isolated axoneme (as in Minoura et al. 
[1]), we fixed one of the two beams and applied a small concentrated force along the length of 
the other beam (Fig. D1c). Division of the applied force by the resulting longitudinal 
displacement of the beam yields a cumulative longitudinal stiffness, 𝐾𝐿, that resists inter-
doublet sliding.  
 
Due to the simplicity of our structural model for the axoneme, both the individual spring and 
longitudinal elastic constants can be expressed in terms of the shear stiffness, 𝑘𝑠. First, consider 
a unit cell during a small bending deformation accompanied by a small angular displacement, 
∆𝜃 ≪ 1 (Fig. D1d), then the extension of the spring is given by 

∆𝑙𝑘 = 𝑙 − 𝑙0 = �(𝑤 + ℎ sin∆𝜃)2 + (ℎ cos∆𝜃)2 − �𝑤2 + ℎ2 ≈
ℎ𝑤∆𝜃

√𝑤2 + ℎ2
.            (𝐷. 1) 

The perpendicular component of the resulting spring force can be determined and also related 
to the shear stiffness, 𝑘𝑠 , as  

𝐹𝑘⊥ = 𝑘𝑘∆𝑙𝑘 cos𝜑 = 𝑘𝑠∆𝜃.                                                                    (𝐷. 2)                 
Using cos𝜑 =𝑤 √𝑤2 + ℎ2⁄ , the spring stiffness can be related to shear stiffness, 𝑘𝑠: 

𝑘𝑘 = 𝑘𝑠 ∙
ℎ2+𝑤2

ℎ𝑤2 .                                                                                            (𝐷. 3) 
Next, consider a unit cell from the model with one of the two beams having a small relative 
displacement, ∆𝐿, along the longitudinal direction (Fig. D1e), then the corresponding extension 
of the spring is given by 

∆𝑙𝑘 = 𝑙 − 𝑙0 = �𝑤2 + (ℎ + ∆𝐿)2 − �𝑤2 + ℎ2 ≈
ℎ∆𝐿

√𝑤2 + ℎ2
.            (𝐷. 4) 

Thus, the longitudinal (along the beam length) component of the resulting spring force can be 
determined and also related to the longitudinal stiffness as  

𝐹𝑘∥ = 𝑘𝑘∆𝑙𝑘 sin𝜑 = 𝑘𝑙∆𝐿.                                                                           (𝐷. 5)                 
Using  sin𝜑 =ℎ √𝑤2 + ℎ2⁄ , we can write:  

𝑘𝑙 = 𝑘𝑘 ∙
ℎ2

ℎ2+𝑤2 .                                                                                            (𝐷. 6) 
Finally, combining Eqs. 19 and 22, we can express the longitudinal stiffness in terms of the 
shear stiffness 

𝑘𝑙 = 𝑘𝑠 ∙
ℎ
𝑤2 .                                                                                                    (𝐷. 7) 

Both the spring element stiffness 𝑘𝑘 and the resulting longitudinal shear stiffness 𝑘𝑙  of each 
spring element both have units of pN/nm. The cumulative longitudinal stiffness, 𝐾𝐿 = 𝑘𝑙𝑁, 
where 𝑁 = 𝐿/ℎ  is the number of spring elements (100 in our models). In terms of 𝑘𝑠: 

𝐾𝐿 = 𝑘𝑠 ∙
𝐿
𝑤2                                                                                                    (𝐷. 8) 
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We used the simplified 2D finite element computational model above to simulate the tip-
bending and counterbend experiments. This model confirms that the apparent flexural rigidity 
depends on the shear stiffness (Appendix A). When the shear stiffness (as implemented 
through the elastic constant of the interconnecting springs) is relatively small, there are 
negligible connections between the two component beams so each individual beam can bend 
along its own neutral axis. As a result, the apparent flexural rigidity is simply the same as the 
combined intrinsic flexural rigidity from the two component beams, or 𝐸𝐸��� 𝐸𝐸 = 1⁄  (Fig. D2a). 
The apparent flexural rigidity increases with increasing shear stiffness until it reaches a plateau 
for very high spring stiffness (Fig. D2a). The plateau value for the apparent flexural rigidity with 
very high spring stiffness (higher than the tensile stiffness of the doublets) can be predicted by 
the parallel axis theorem; the two component beams would extend and compress due to 
bending along a neutral axis centered between them.     
 
The finite element model also shows that magnitude of the shear stiffness determines the 
behavior of the distal portion of the flagellum when the proximal region is bent by a 
concentrated force (Fig. D2b). Small shear stiffness provides little resistance to sliding, and the 
distal portion of the complex beam remains straight and rotates with the base (Fig. D2b-left  
panel). For large shear stiffness, there is a sharp, local bend near the point of loading, and the 
distal portion of the complex beam remains relatively straight (Fig. D2b-right panel). It is only 
when the shear stiffness is intermediate that the complex beam exhibits a clear counterbend 
(Fig. D2b-middle panel), like those observed in our experiments.         
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Figure D2. Results from a finite element model of the axoneme show that the tip compliance, apparent 
flexural rigidity, and counterbend response of the axoneme strongly depend on the inter-doublet shear 
stiffness, 𝑘𝑠, which depends in turn on the stiffness of connecting springs, 𝑘𝑘 (Eq. D.3). (a) The apparent 
flexural rigidity increases with increasing spring stiffness. When the spring stiffness, 𝑘𝑘, is very small, the 
apparent flexural rigidity is about the same as the simple sum of the flexural rigidities of the component 
beams. When the spring stiffness 𝑘𝑘 is too large to allow any inter-beam sliding, the apparent flexural 
rigidity of the whole structure reaches a plateau that can be predicted by the parallel-axis theorem. The 
shaded region of the data corresponds to the intermediate shear stiffness values estimated from 
experimental studies of wild-type flagella. Also shown is theoretical curve for the ratio based on Eq. 10 
of this paper. (b) When the proximal half of the axoneme model is bent by a concentrated force applied 
at the mid-point, only the beam with the intermediate shear stiffness (𝑘𝑘=0.94 pN/nm estimated from 
the experimental value of 𝑘𝑠=80 pN/rad for wild-type flagella) exhibits a clear counterbend response. 
From left to right: small, intermediate, and large shear stiffness, respectively. 
 

REFERENCES 

[1] I. Minoura, T. Yagi, and R. Kamiya, "Direct measurement of inter-doublet elasticity in flagellar 
axonemes," Cell Struct Funct, vol. 24, pp. 27-33, Feb 1999. 

 

(a)                                                              (b) 


