## **Supplemental Material**

## Supplemental Figure Legends

**Supplemental Fig. 1.** Brush Cells Are Eliminated in the GI Tract of *Skn-1* KO Mice (a) Immunostaining revealed that the Trpm5 protein was present in the duodenum of WT mice (upper panel) but absent in *Skn-1* KO mice (lower panel). By contrast, of ChgA and GLP-1 signals were observed in WT (upper panels) and *Skn-1* KO mice (lower panels). Arrowheads indicate signals.

(b) Double immunostaining indicated that nearly all Trpm5-positive cells were also positive for Dclk1. Arrows indicate cells expressing Trpm5 and Dclk1. Scale bars: 100  $\mu$ m.

Supplemental Fig. 2. Metabolic Phenotypes of Skn-1 KO Mice Fed a Normal Chow Diet

(a) Although body weight at birth did not differ significantly between *Skn-1* KO and WT littermates (n=60–62), *Skn-1* KO mice exhibited lower body weight than WT littermates at 3 weeks of age under normal chow diet conditions (n=25–33).

(b) There were no significant differences in RER between *Skn-1* KO and WT littermates (n=8–9).

(c) There were no significant differences in spontaneous motor activity between *Skn-1* KO and WT littermates (n=8–9). The data are presented as the mean  $\pm$  SEM; \*p<0.05.

**Supplemental Fig. 3.** Metabolic Phenotypes of *Skn-1* KO Mice Fed a High-Fat Diet No differences in food intake (n=8-10) (a), fecal triacylglycerol (n=8-10) (b), or fecal energy (n=5-9) (c) were observed between *Skn-1* KO and WT littermates at 15 weeks of

age. The data are presented as the mean  $\pm$  SEM.

**Supplemental Fig. 4.** Expression of Catecholamine Biosynthetic Enzymes in the Adrenal Gland

qRT-PCR analysis revealed that gene expression of catecholamine biosynthetic enzymes, including tyrosine hydroxylase (Th), dopa decarboxylase (Ddc), dopamine- $\beta$ -hydroxylase (Dbh), and phenylethanolamine N-methyltransferase (Pnmt), in the adrenal gland was comparable between *Skn-1* KO and WT littermates (n=5). The data are presented as the mean ± SEM.

**Supplemental Fig. 5.** Insulin Secretion and Insulin Resistance in *Skn-1* KO Mice Fed a Normal Chow Diet

(a) Plasma total GIP was comparable between *Skn-1* KO and WT littermates for 60 min after glucose gavage (3.0 mg/g of body weight) (n=6–7).

(b) Plasma active GLP-1 was comparable between *Skn-1* KO and WT littermates for 40 min after glucose gavage (5.0 mg/g of body weight) (n=6–7).

(c) Insulin secretion from isolated islets in response to 25 mM glucose was comparable between *Skn-1* KO and WT littermates (n=10).

(d and e) Blood glucose (d) and plasma insulin (e) after intraperitoneal administration of glucose (1.5 mg/g of body weight). Blood glucose was comparable between *Skn-1* KO and WT littermates for 120 min after administration (n=10–13) (d). Plasma insulin was also comparable between *Skn-1* KO and WT littermates before and 15 min after administration (n=17–20) (e).

(f) ITT revealed that insulin resistance was comparable in Skn-1 KO and WT littermates

(n=12). The data are presented as the mean  $\pm$  SEM.



Figure S1 Ushiama et al.







□wt, ∎ко

Figure S3 Ushiama et al.





Figure S5 Ushiama et al.

|                      | WT (n=28)    | KO (n=18)     |
|----------------------|--------------|---------------|
| Total protein (g/dL) | 5.1 ± 0.1    | $5.3 \pm 0.1$ |
| AST (IU/L)           | 184 ± 21     | 181 ± 22      |
| ALT (IU/L)           | 40 ± 3       | $40 \pm 3$    |
| ALP (IU/L)           | 221 ± 10     | 241 ± 15      |
| LDH (IU/L)           | $528 \pm 38$ | $599 \pm 72$  |
| T-CHO (mg/dL)        | $103 \pm 6$  | 118 ± 7       |
| F-CHO (mg/dL)        | 28 ± 1       | $32 \pm 2^*$  |
| E-CHO (mg/dL)        | $75 \pm 5$   | $86 \pm 6$    |
| Total lipid (mg/dL)  | $354 \pm 25$ | 412 ± 33      |
| Triglyceride (mg/dL) | 105 ± 13     | 124 ± 17      |
| NEFA (μEq/L)         | 454 ± 35     | 515 ± 41      |
| Glucose (mg/dL)      | $203 \pm 8$  | 182 ± 10      |

Table S1 Blood serum components of CD-fed animals under ad lib feeding schedule

\* indicates p < 0.05.

|                      | WT (n=13)     | KO (n=13)    |
|----------------------|---------------|--------------|
| Total protein (g/dL) | $5.3 \pm 0.0$ | 5.1 ± 0.1    |
| AST (IU/L)           | 195 ± 23      | 214 ± 18     |
| ALT (IU/L)           | $40 \pm 3$    | 46 ± 2       |
| ALP (IU/L)           | $350 \pm 21$  | 447 ± 18**   |
| LDH (IU/L)           | 544 ± 46      | $529 \pm 41$ |
| T-CHO (mg/dL)        | $98 \pm 3$    | 98 ± 2       |
| F-CHO (mg/dL)        | 29 ± 1        | 29 ± 1       |
| E-CHO (mg/dL)        | $70 \pm 2$    | $70 \pm 2$   |
| Total lipid (mg/dL)  | 326 ± 7       | 349 ± 12     |
| Triglyceride (mg/dL) | 94 ± 8        | 107 ± 10     |
| NEFA (μEq/L)         | 772 ± 43      | 871 ± 35     |
| Glucose (mg/dL)      | 83 ± 4        | 77 ± 5       |

Table S2 Blood serum components of CD-fed animals under fasting schedule

\*\* indicates p < 0.01.

|            | Organ weight (mg/g BW) |               |
|------------|------------------------|---------------|
|            | WT (n=6)               | KO (n=12)     |
| Liver      | $45.5 \pm 4.6$         | 52.1 ± 1.7    |
| Spleen     | $2.7 \pm 0.2$          | $2.7 \pm 0.1$ |
| Pancreas   | 8.7 ± 1.0              | $8.1 \pm 0.6$ |
| Kidney     | 9.1 ± 3.5              | $7.4 \pm 0.6$ |
| BAT        | $4.9 \pm 0.3$          | $4.3 \pm 0.2$ |
| Thigh bone | $2.5 \pm 0.1$          | $2.4 \pm 0.1$ |

## Table S3 Weight of various organs in HFD fed animals

|                     | WT (n=8)        | KO (n=7)        |
|---------------------|-----------------|-----------------|
| Adiponectin (µg/mL) | 13.4 ± 1.7      | 11.5 ± 0.9      |
| FGF21 (ng/mL)       | $0.93 \pm 0.18$ | $0.57 \pm 0.33$ |
| Insulin (ng/mL)     | $1.99 \pm 0.60$ | $1.27 \pm 0.39$ |
| Leptin (ng/mL)      | $2.59 \pm 0.99$ | $0.55 \pm 0.17$ |

Table S4 Plasma hormones of HFD-fed animals