
Supplementary text for “Exploiting expression patterns
across multiple tissues to map expression quantitative trait

loci”

1 Our model

For a given gene-SNP pair, we begin with a linear mixed effects model that models expression
patterns across tissues as a function of genotype, i.e.,

Y = Jα +Gβ + Zu+Xv + ξ (1)

where Y is a nt-dimensional vector of expression levels in t tissues and n individuals, α is
a vector of tissue-specific intercepts, G is a nt-dimensional vector of genotypes, β is a fixed
effect of genotype across tissue, u ∼ N

(
0, τZZT

)
is a vector of subject-specific random effect,

v ∼ N
(
0, γXXT

)
is a vector of tissue-specific random effects, and ξ ∼ N (0, εInt). The matrices

J , Z and X are design matrices with X being a function of genotype. J is nt × t dimensional
matrix denoting the design matrix for the tissue-specific intercepts. Z is nt×nt design matrix for
the subject-specific intercepts. X is a nt×t design matrix of stacked genotypes. The parameters
of interest are β and γ; α, τ and ε are nuisance parameters.

We test the null hypothesis that H0 : β = γ = 0, i.e. the variant does not affect gene expression
across any of the tissues.

2 Derivation

From equation 1, the log-likelihood function of Y conditioned on the genotype is –

` (β, θ) = c− 1

2
log|Σ|−1

2
(Y − Jα−Gβ)T Σ−1 (Y − Jα−Gβ) (2)

where θ represents the vector of all the variance components involved in Σ and c is a constant.
Alternatively, under equation 1 and normality, we have

Y ∼ N(Jα +Gβ,Σ) with Σ = εI + τZZT + γXXT
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From Jiming Jiang’s Linear and Generalized Linear Mixed Models and Their Applications [1] –

∂`

∂β
= GTΣ−1Y −GTΣ−1Gβ

∂`

∂θr
=

1

2

{
(Y −Gβ − Jα)T Σ−1

∂Σ

∂θr
Σ−1 (Y −Gβ − Jα)− Tr

(
Σ−1

∂Σ

∂θr

)}
where θr is the rth component of θ such that θ ∈ (τ, γ, ε).

E

[
∂2`i
∂β∂βT

]
= −GTΣ−1G

E

[
∂2`i
∂β∂θr

]
= 0

E

[
∂2`i
∂θr∂θs

]
= −1

2
Tr

(
Σ−1

∂Σ

∂θr
Σ−1

∂Σ

∂θs

)

2.1 Score test

Let the parameters of interest be ψ = (β, γ)T and the nuisance parameters be η = (α, τ, ε)T .
The following is constructed under the null (H0)

Uψ =

( ∂l
∂β

∂l
∂γ

)
−
[
Iβα Iβτ Iβε
Iγα Iγτ Iγε

]Iαα Iατ Iαε
Iτα Iττ Iτε
Iεα Iετ Iεε

−1  ∂l
∂α
∂l
∂τ
∂l
∂ε


Some algebra will result in the following –

Uβ =
(
G− Ḡ

)T
Σ̂−1n (Y − Jα̂) (3)

and

Uγ =
1

2
(Y − Jα̂)T Σ̂−1n XXT Σ̂−1n (Y − Jα̂) (4)

Uψ =
(
aβU

2
β + aγUγ

)
= (Y − Jα̂)T Σ̂−1n

[
aβ
(
G− Ḡ

) (
G− Ḡ

)T
+ aγ

1

2
XXT

]
Σ̂−1n (Y − Jα̂)

(5)
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2.2 Missing response data

Let Yi = {Y o
i , Y

m
i } with Y o

i the observed part and Y m
i the missing part. Also, let Ri,j = 1 if Yi,j

is observed and Ri,j = 0 otherwise. Assume that all the explanatory variables are completely
observed. θ and ψ describe the measurement and missingness, respectively.

f (Y o, R|θ, ψ) =

∫
f (Y o, Y m|θ) f (R|Y o, Y m, ψ) dY m

Assuming that the data are missing at random (MAR),

f (Y o, R|θ, ψ) =

∫
f (Y o, Y m|θ) f (R|Y o, ψ) dY m

= f (R|Y o, Y m, ψ)

∫
f (Y o, Y m|θ) dY m

= f (R|Y o, ψ) f (Y o|θ)

If the parameter space of (θ′, ψ′)′ is the product of the parameter spaces of θ and ψ (separability
condition), then the inference is based on the observable data only (ignorability) [3, 2].

If x = [x1, x2] and x ∼ N (x, µ,Σ) and x1 constitute gene expression data available for samples
with all the tissues/groups while x2 constitutes gene expression data for samples with depleted
tissues/groups. The multivariate gaussian theorem states that the marginal distribution of x1
and x2 are also normal with mean vector µi and covariance matrix Σii (i = 1, 2), respectively.
The conditional distribution of xi given xj is also normal with mean vector such that µi|j =
µi + ΣijΣ

−1
ij (xj − µj) and Σi|j = Σjj − ΣT

ijΣ
−1
ij Σij.

The joint density of x is given by

Ln (x1, x2) =
n∏
i=1

(2π)−
n
2 | Σi |−

1
2 exp

[
−1

2
Q (x1, x2)

]
where

Q (x1, x2) = (x− µ)T Σ−1 (x− µ)

After some algebra, we can show that the marginal distribution of x1 can be written as

f1 (x1) =

∫
f (x1, x2) dx2 =

1

(2π)
p
2 | Σ11 |

1
2

exp

[
−1

2
(x1 − µ1)

T Σ−111 (x1 − µ1)

]
...and the conditional distribution of x2 given x1 is given by
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f2|1 (x1, x2) =
f (x1, x2)

f (x1)

=
1

(2π)
q
2 | A | 12

exp

[
−1

2
(x2 − b)T A−1 (x2 − b)

]

where b = µ2 + ΣT
12Σ

−1
11 (x1 − µ1) and A = Σ22 − ΣT

12Σ
−1
11 Σ12.

In this way, we can show that the observed data likelihood has the exact same model form as
the full data likelihood.

3 Variance-covariance of U 2
β and Uγ

We have
Y = Jα +Gβ + Zu+Xv + ξ Y ∼ N(Jα +Gβ,Σ) (6)

From section 2.1, at global null i.e. H0 : β = 0; γ = 0, we have

Uγ =
1

2
Y TΣ−1n XXTΣ−1n Y (7)

where Σ = ε̂I + τ̂ZZT , τ̂ and ε̂ are the maximum likelihood estimates of the individual-specific
and tissue-specific random effects. Using the theory of quadratic forms [1], estimated variance
of Uγ under the null is given by

V arH0 (Uγ) = 2 Tr

[(
Σ−1

1

2
XXTΣ−1

)
Σ

(
Σ−1

1

2
XXTΣ−1

)
Σ

]
(8)

Similarly, from section 2.1,

U2
β = Y TΣ−1

(
G− Ḡ

) (
G− Ḡ

)T
Σ−1Y (9)

From the theory of quadratic forms [1], estimated variance of U2
β under the null is

V arH0

(
U2
β

)
= 2 Tr

[(
Σ−1

(
G− Ḡ

) (
G− Ḡ

)T
Σ−1

)
Σ
(

Σ−1
(
G− Ḡ

) (
G− Ḡ

)T
Σ−1

)
Σ
]

(10)

U2
β and Uγ share the same ε. Again, from the theory of the quadratic forms, the covariance

between U2
β and Uγ is

CovH0

(
U2
β , Uγ

)
= 2 Tr

[(
Σ−1

(
G− Ḡ

) (
G− Ḡ

)T
Σ−1

)
Σ

(
Σ−1

1

2
XXTΣ−1

)
Σ

]
(11)
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3.1 Optimal weights for minimum variance linear combination

Let a = (aβ, aγ)
T , Uψ =

(
U2
β , Uγ

)
, and Vψ = V ar (Uψ). We want to find the minimum variance

linear combination aTVψ, subject to the constraint that aβ + aγ = 1 or aT1 = 1. Specifically, we
wish to minimize aTVψa.

Using Lagrangian multipliers to perform constrained optimization, we see that

L (a|λ) = aTVψa− λ
(
aT1− 1

)
where 1 =

[
1 1

]T
and λ > 0.

∂

∂ (aT , λ)
=
(
aTVψa− λ

(
aT1− 1

))
= 0

From the above equations, we have the following system of equations–

2Vψa− λ1 = 0 aT1 = 1Ta = 1

a =
λ

2
V −1ψ 1

and

1 = a1T =
λ

2
1TV −1ψ 1

so that,

λ =
2

1TV −1ψ 1

This gives our optimal weights –

a =
V −1ψ 1

1TV −1ψ 1

aγ =
var

(
U2
β

)
− cov

(
U2
β , Uγ

)
var

(
U2
β

)
+ var (Uγ)− 2cov

(
U2
β , Uγ

) (12)

and

aβ =
var (Uγ)− cov

(
U2
β , Uγ

)
var

(
U2
β

)
+ var (Uγ)− 2cov

(
U2
β , Uγ

) (13)
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4 MetaTissue method

MetaTissue (MT) method was proposed by Sul et al that jointly models all tissues by utilizing
a meta-analysis by extending it to a mixed-model framework. A mixed model is used to account
for the correlation of expression between tissues, and perform meta-analysis to combine results
from multiple tissues. The following model description is from the original paper.

Consider the following mixed-model –

Y = 1α +Xjβ + u+ e

where u ∼ N
(
0, σ2

µD
)

and e ∼ (0, σ2
eI) and Xj is the matrix denoting SNP j for T tissues. The

variances are estimated using EMMA and β̂s are jointly estimated using the following equation
–

β̂ =
(
X ′jΣ

−1Xj

)−1
X ′jΣ

−1Y

Given the β̂ =
(
β̂1, . . . , β̂T

)
, information from multiple tissues is combined by applying meta-

analysis to β̂.

4.1 Fixed-effects model

A statistic of FE and its distribution under the null hypothesis are –

SFE =

T∑
i=1

V −1i Bi√
T∑
i=1

V −1i

∼ N (0, 1)

where B1 . . . BT and V1, . . . , VT are the estimates of effect-size and the standard error of Bi in
T tissues. Let µ be the unknown true effect size and so the null hypothesis of FE is µ = 0 or in
other words the effect size in all tissues is zero. A p-value of SFE is obtained from the standard
normal distribution.

Under the null hypothesis, β̂√
var(β̂)

will approximately follow t-distribution with k degrees of

freedom.

pt = 2

1− φt(k)

 | β̂ |√
var

(
β̂
)


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4.2 Random-effects model

The general assumption behind the random-effects model is that the effect size of a variant is
different among datasets and follows a probability distribution with mean µ and variance τ 2.
The H0 is the same as that of the fixed-effects model – H0 : µ = 0. The statistic for the random
effects model is defined as –

SRE =
∑

log

(
Vi

Vi + τ̂ 2

)
+
∑ B2

i

Vi
−
∑ (Bi − µ̂)2

Vi + τ̂ 2

where µ̂ and τ̂ 2 are estimated mean and variance of the effect size, and the maximum likelihood
estimates of the two parameters that are iteratively calculated using Hardy and Thompson
approach or some other iterative approach. The statistic follows a half and half mixture of χ2

0

and χ2
1 under the null.

5 eQTL-BMA method

eQTL-BMA, proposed by Flutre et al, investigates whether the SNP is an eQTL in any tissue,
and, if so, in which tissues. The primary model is

ysi = µs + βsgi + εsi εsi ∼ N
(
0, σ2

s

)
where ysi denotes gene expression vector in tissue s, for ith individual, µs is the mean expression
level of the gene in tissue s, βs is the effect of the gene on the genotype in tissue s and gi is
the genotype of individual i coded as 0,1 or 2 copies of the reference allele. Statistical inference
is made on γ, a binary variable (called configuration) whose status indicates the presence or
absence of an eQTL. The length of γ depends on the number of tissues. Null hypothesis is
indicated by γ = {0, . . . , 0} and any other combination is considered an alternative hypothesis.
The statistical inference on γ is done using Bayes Factors such that –

BFγ =
P (data|γ)

P (data|H0)

In order to account for many possible alternatives, the overall strength of evidence against at
the candidate SNP is obtained by ”Bayesian Model Averaging” (BMA), which involves av-
eraging over the possible alternative configurations, weighting each by its prior probability,
ηγ = P (γ|H0 = FALSE):

BFBMA =
P (data|H0 = false)

P (data|H0 = true)
=
∑
γ 6=0

ηγBFγ

Large values of BFBMA indicate a strong evidence against the H0. Another flavor BFHM
BMA

indicates a hierarchical model where the hyperparameters are estimated from the data (data-
driven approach). BFBMAlite is a more computationally scalable version of the above flavors as
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it averages the test statistic over S+ 1 configurations. In general, eQTL-BMA method does not
scale well with increasing number of tissues because the number of terms in the sum of above
equation is 2S − 1.

In the presence of a strong evidence against the H0, posterior probability on each configuration
indicating that the SNP is an eQTL in tissue s is computed by –

P (γ = TRUE|data,H0 = false) =
ηγBFγ∑

γ=0

ηγBFγ

A frequentist interpretation to Bayes Factors computed by eQTL-BMA is given by performing
adaptive permutations at the gene-level at a given FDR.

6 A note on statistical software

Our simulations were run to compare the statistical power (and type I error rate) between our
method, eQTL-BMA, MetaTissue and Tissue-by-Tissue methods.

eQTL-BMA software is available for download at https://github.com/timflutre/eqtlbma.
In order to expedite the analysis, we ran BFBMAlite version of the software, 1,000 adaptive per-
mutations (using trick 1) to obtain the gene-level p value. These p values were then extracted
from output.log˙jointPermPvals.txt.gz file for further analysis. We used eQTL-BMA software
version 1.2 to perform all the analyses. In case of the real data analyses, we increased the
number of permutations to the author recommended 10,000.

MetaTissue model software is made available at http://genetics.cs.ucla.edu/metatissue/.
We used default setting for each step described by the author on the website. We used MetaTis-
sue software version 0.3 for our analyses.
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