Table S1. An overview of genes involved in DNA methylation, DNA demethylation, and one-carbon metabolism pathway that were analyzed in this study

Gene	Full Name	Role	Detailed Role	Reference ^a
DNMT1	DNA methyltransferase 1	Maintenance DNA methylation	Maintenance DNA methyltransferase	[1]
DNMT3A	DNA methyltransferase 3A	De novo DNA methylation	De novo DNA methylation	[1]
DNMT3B	DNA methyltransferase 3B	De novo DNA methylation	De novo DNA methylation	[1]
DNMT3L	DNA methyltransferase 3-like protein	Stimulates enzymatic activity of DNMT3A	Stimulation of enzymatic activity of DNMT3A	[1]
TET3	Tet methylcytosine dioxygenase 3 (ten-eleven translocation-3)	DNA demethylation	Conversion of 5-mC to 5-hmC, 5-fC and 5- caC	[1, 2]
AICDA (AID)	Activation-induced cytidine deaminase	DNA demethylation	DNA demethylation via deamination of 5- mC or 5-hmC	[2-4]
APOBEC1	Apolipoprotein B mRNA editing activity DNA deaminase 1	DNA demethylation	DNA demethylation via deamination of 5- mC or 5-hmC	[2-4]
APOBEC2	Apolipoprotein B mRNA editing activity DNA deaminase 2	DNA demethylation	DNA demethylation	[2-4]
APOBEC3A	Apolipoprotein B mRNA editing activity DNA deaminase 3A	DNA demethylation	DNA demethylation, possibly via deamination of 5-mC or 5-hmC	[2-4]
APOBEC3C	Apolipoprotein B mRNA editing activity DNA deaminase 3C	DNA demethylation	DNA demethylation, possibly via deamination of 5-mC or 5-hmC	[2-4]
TDG	Thymine-DNA glycosylase	DNA demethylation	Excision of target bases including 5-fC and 5-caC to initiate BER pathway	[2-4]
GADD45A	Growth arrest and DNA damage 45 protein A	DNA demethylation, DNA repair	DNA repair-mediated DNA demethylating factor that can reactivate genes which had been silenced by methylation; also involved in apoptosis	[5-8]
IDH1	Isocitrate dehydrogenase 1	Produces metabolites that interfere with TET-mediated DNA demethylation	IDH1 mutations lead to accumulation of 2- HG, TET inhibition and DNA hypermethylation	[2, 9-13]
IDH2	Isocitrate dehydrogenase 2	Produces metabolites that interfere with TET-mediated DNA demethylation	IDH2 mutations lead to accumulation of 2- HG, TET inhibition and DNA hypermethylation	[2, 9-13]
MGMT	O(6)-methylguanine-DNA methyltransferase	DNA repair via demethylation of O ⁶ -meG	Demethylates O ⁶ -methylguanine lesions. MGMT also removes larger O ⁶ -alkyl	[14]

			adducts, and is thereby involved in	
			resistance to nitrosourea-based anticancer	
			drugs	
MBD1	Methyl-CpG-binding domain	Binding to methylated DNA,	Transcriptional repression, DNA repair	[1, 15-17]
	protein 1	transcriptional modulation		
MBD2	Methyl-CpG-binding domain	Transcriptional modulation, possible	Possible roles in transcriptional activation or	[1, 15, 18]
	protein 2	DNA demethylation, binding to	repression, possible DNA demethylation	
		methylated DNA		
MBD3	Methyl-CpG-binding domain	Binding to 5-hmC	Transcriptional repression	[1, 15]
	protein 3			
MBD4	Methyl-CpG-binding domain	DNA repair	DNA repair, possible roles in demethylation	[4, 16, 17]
(MED1)	protein 4		and maintenance DNA methylation	
MeCP2	Methyl-CpG-binding protein 2	Binding to methylated DNA,	Transcriptional repression, participation in	[1, 15]
		transcriptional modulation, forms a	TET1 complexes that lead to DNA	
		complex with TET1	demethylation	
PCNA	Proliferating cell nuclear antigen	DNA repair and replication; interactions	Participates in DNA repair and replication.	[11, 19]
		with DNMT1 and TET1	It may affect both DNA methylation via	
			interaction with DNMT1 and DNA	
			demethylation by forming a complex with	
			TET1	
USP7	Herpes virus-associated ubiquitin	Promotes DNA methylation via control	Regulates DNMT1 abundance, stability and	[19, 20]
(HAUSP)	specific protease	of DNMT1	activity	
SMUG1	Single-strand-selective	DNA demethylation, DNA repair	A member of the uracil-DNA glycosylase	[1, 2, 4]
	monofunctional uracil-DNA		superfamily which is involved in DNA	
	glycosylase		repair and DNA demethylation via the base	
			excision repair (BER) pathway by	
			participating in degradation of 5-	
			hydroxymethyluracil (5-hmU) to	
			unmethylated cytosine	
MTHFR	5, 10-methylenetetrahydrafolate	OCM: regulation of folate metabolism	Catalyzes one of the central OCM reactions:	[21, 22]
	reductase		the NADPH-dependent reduction of 5,10-	
			methylenetetrahydrafolate (5,10-	
			methyleneTHF) to 5-methylTHF	
MTHFD1	Methylenetetrahydrafolate	OCM: Cytoplasmic roles as FTHF	Combines the functions of 10-formyl-THF	[21, 23,
	dehydrogenase 1	synthetase, CH ⁺ -THF cyclohydrolase,	synthetase, 5,10-methenyl-THF	24]
		and CH ₂ -THF dehydrogenase	cyclohydrolase, and 5,10-methylene-THF	

			dehydrogenase that catalyze the reversible	
			interconversion in the cytoplasm of THF	
			into 5,10-methyleneTHF, via 10-formylTHF	
			and 5,10-methenylTHF. These reactions	
			produce 5,10-methyleneTHF, a cofactor	
			required for thymidylate biosynthesis.	
MTR	Methionine synthase	OCM: remethylation of Hcy to	Remethylates Hcy to methionine	[23]
		methionine		
MTRR	5-methyltetrahydrafolate-	OCM: generates functional methionine	Produces active methionine synthase, MTR	[25, 26]
	homocysteine methyltransferase	synthase		
	reductase			
CBS	Cystathionine β -synthase	OCM: catalyzes the condensation of Hcy	Participates in the reactions that lead to the	[25]
		and Ser to cystathionine	conversion of Hcy to cysteine, removing	
			Hcy from the methylation cycle	
TCN2	Transcobalamin II	OCM: vitamin B12 transport	Transport protein for cobalamin	[27]
SHMT1	Serine hydroxymethyl transferase	OCM: catalyzes the reversible	Catalyzes the synthesis of 5-formylTHF	[21]
	1	conversion of Ser and THF to glycine	from 5,10-methenylTHF in the cytoplasm	
		and CH ₂ -THF	and limits the availability of 5-methylTHF	
			for Hcy remethylation and SAM	
			biosynthesis; some reports also noted its	
			possible activity in the nucleus	
TYMS	Thymidylate synthase	OCM: catalyzes the conversion of dUMP	Catalyzes the 5,10-methyleneTHF-	[21, 23]
(TS)		to dTMP	dependent conversion of	
			deoxyuridinemonophosphate (dUMP) into	
			deoxythymidine monophosphate (dTMP),	
			which serves as a precursor for DNA	
			synthesis and is used DNA repair	
DHFR	Dihydrofolate reductase	OCM: conversion of dihydrofolate to	Catalyzed the reduction of dihydrofolate	[21, 23]
	-	THF	(DHF) to THF	
BHMT	Betaine-homocysteine	OCM: remethylation of Hcy to	Participates in remethylation of Hcy to	[23, 28]
	methyltransferase	methionine	methionine via a reaction that is an	
			alternative to the reactions regulated by	
			MTR and MTRR	
СТН	Cystathionase (cystathionine v-	OCM: conversion of cystathione	Irreversible degradation of cystathionine,	[25, 29,
	lyase)	to cysteine	which is derived from Hcy, to cysteine,	30]
			which contributes to removal of Hcy from	

			the methylation cycle	
AHCY	S-adenosyl-L-homocysteine	OCM: hydrolysis of SAH to adenosine	Catalyzes reversible hydrolysis of S-	[30, 31]
(SAHH)	hydrolase	and Hcy	adenosyl-L-homocysteine to Hcy and	
			adenosine	
ALDH1L1	10-formyl tetrahydrofolate	OCM: irreversible oxidation of FTHF to	Encodes 10-formyltetrahydrofolate	[32, 33]
	dehydrogenase (aldehyde	THF and CO_2	dehydrogenase (FDH), a major regulator of	
	dehydrogenase I family, member		folate metabolism in the cytoplasm via	
	L1), cytosolic		NADP -dependent irreversible oxidation of	
			10-formy11HF to 1HF. This process	
			controls the availability of folate-bound	
			call growth and remethylation of Hey, and	
			it affects the availability of methyl groups	
			for cellular methylation reactions	
ATIC	5-aminoimidazole-4-carboxamide	OCM: purine biosynthesis	Purine biosynthesis	[34]
-	ribonucleotide formyltransferase	· · · · · · · · · · · · · · · · · · ·		
GART	Phosphoribosylglycinamide	OCM: purine biosynthesis	Purine biosynthesis	[34]
	formyltransferase			
MTHFS	Methylenetetrahydrofolate	OCM: purine biosynthesis	Encodes 5,10-methenylTHF synthetase	[21]
	synthase		which catalyzes the irreversible conversion	
			of 5-formylTHF to 5,10-methenylTHF	
FTCD	Glutamate formiminotransferase	OCM: histidine catabolism	Provides one-carbon units resulting from	[21]
			histidine catabolism to the folate pool	[0.5]
MATIA	L-methionine S-	OCM: catalyzes SAM biosynthesis from	Catalyzes biosynthesis of SAM, the major	[35]
	adenosyltransferase I, alpha	methionine and ATP	source of methyl groups for methylation	
MATTA	L mothioning S	OCM: antalyzas SAM biogynthesis from	Catalyzas biosynthesis of SAM	[25]
MAIZA	L-incurionine S-	methioning and ATP	Catalyzes biosynthesis of SAM	[33]
MAT2R	I -methionine S-	OCM: catalyzes SAM biosynthesis from	Catalyzes biosynthesis of SAM	[35]
W1112D	adenosyltransferase II beta	methionine and ATP		[55]
NNMT	Nicotinamide N-methyltransferase	OCM: N-methylation of nicotinamide	Generates 1-methylnicotinamide in a	[36, 37]
		and other pyridines using SAM as	reaction that consumes methyl units from	
		methyl donor	SAM and reduces the ratio of SAM to Hey	
PON1	Paraoxonase 1	OCM: generates Hcy from homocysteine	Generates Hcy from homocysteine	[38]
		thiolactone	thiolactone	_
SLC19A1	Reduced folate carrier	OCM: transport of folate and drugs	Major transporter of folate and of antifolate	[22, 25,

(RFC1)		across cell membrane	cancer drugs across cell membrane	39-42]
FOLR1	Folate receptor 1	OCM: folate endocytosis	Folate endocytosis	[40]
(FRa)				
FOLR2 (FRβ)	Folate receptor 2	OCM: folate endocytosis	Folate endocytosis	[40]
FOLR3 (FRy)	Folate receptor 3	OCM: folate endocytosis	Folate endocytosis	[40]
SHMT2	Serine hydroxymethyl transferase	OCM: mitochondrial folate metabolism	Encodes the mitochondrial isozyme of	[43]
	2	for glycine synthesis	serine hydroxymethyltransferase	
AMT	Aminomethyltransferase	OCM: glycine cleavage system in	Involved in the glycine cleavage system in	[21]
		mitochondria	mitochondria that generates 5,10-methylene-	
			THF	
MTHFD2	Methylenetetrahydrofolate	OCM: mitochondrial NAD ⁺ -dependent	Bifunctional mitochondrial NAD ⁺ -	[43]
	dehydrogenase 2	CH ₂ -THF dehydrogenase and CH ⁺ -THF	dependent 5,10-methylene-THF	
		cyclohydrolase	dehydrogenase /5,10-methenyl-THF	
			cyclohydrolase	
MTHFD2L	Methylenetetrahydrofolate	OCM: Mitochondrial dual redox	5,10-methyleneTHF dehydrogenase and	[18]
	dehydrogenase 2-like	cofactor-specific CH ₂ -THF	5,10-methenyl-THF cyclohydrolase in the	
		dehydrogenase and CH ⁺ -THF	mitochondrial OCM pathway	
		cyclohydrolase		
PEMT	Phosphatidylethanolamine-N-	OCM: biosynthesis of phosphatidyl	Catalyzes the <i>de novo</i> synthesis of	[30]
	methyltransferase	choline via interaction with SAM	phosphatidylcholine using SAM as methyl	
			donor	
FOLH1	Folate hydrolase (glutamate	Conversion of dietary folate to folate and	Intestinal absorption of dietary folate and its	[24]
(GCPII,	carboxypeptidase II)	its intestinal absorption	conversion to folate	
PSMA)				
ALDH2	Aldehyde dehydrogenase 2	Metabolizes acetaldehyde, which may	Affects folate levels in vivo by producing	[44]
	(mitochondrial)	affect folate levels and inhibit DNA	high levels of acetaldehyde in alcohol	
		methylation	metabolism and reducing the cleavage of	
			folate	

2-HG, 2-hydroxyglutarate; **5-hmU**, 5-hydroxymethyluracil; **5-caC**, 5-carboxylcytosine; **5-fC**, 5-formylcytosine; **5-hmC**, 5-hydroxymethylcytosine; **5-mC**, 5-methylcytosine; **BER**, base excision repair; **CH**⁺-**THF**, 5,10-methenyl-tetrahydrofolate; **CH**₂-**THF**, 5,10-methylene-tetrahydrofolate; **FDH**, 10-formyltetrahydrofolate; **HCy**, homocysteine; **OCM**, folate-mediated one-carbon metabolism pathway; **SAH**, *S*-adenosylhomocysteine; **SAM**, *S*-adenosylmethionine; **Ser**, serine; **THF**, tetrahydrafolate

^a The list of references for Table S1 is provided after Table S2.

Drug	Concentration	Time	Number of genes with	<i>P</i> -value
		(hours)	concerted expression	
5-Azacytidine	High	2	3	0.6237
5-Azacytidine	High	6	15	0.1694
5-Azacytidine	High	24	36	0.3517
5-Azacytidine	Low	2	2	0.4805
5-Azacytidine	Low	6	8	0.0245**
5-Azacytidine	Low	24	24	0.1042
Doxorubicin	High	2	5	0.9307
Doxorubicin	High	6	20	0.1309
Doxorubicin	High	24	28	0.4328
Doxorubicin	Low	2	1	0.6757
Doxorubicin	Low	6	7	0.0205**
Doxorubicin	Low	24	19	0.0034**
Vorinostat	High	2	11	0.2011
Vorinostat	High	6	24	0.5076
Vorinostat	High	24	33	0.0076**
Vorinostat	Low	2	9	0.3379
Vorinostat	Low	6	23	0.3160
Vorinostat	Low	24	24	0.0463**
Paclitaxel	High	2	0	1.0000
Paclitaxel	High	6	0	1.0000
Paclitaxel	High	24	16	0.0001*
Paclitaxel	Low	2	0	1.0000
Paclitaxel	Low	6	1	0.4355
Paclitaxel	Low	24	16	0.0000*
Cisplatin	High	2	0	1.0000
Cisplatin	High	6	10	0.1481
Cisplatin	High	24	17	0.4196
Cisplatin	Low	2	1	0.2785
Cisplatin	Low	6	0	1.0000
Cisplatin	Low	24	5	0.1270

Table S2. Numbers of genes with concerted expression and their empirical *p*-values for each treatment condition

Empirical *p*-values were computed using 10,000 replications of random sampling of 56 genes from the 12,704 genes for which expression data were available in the TP Workbench. Genes were determined to have concerted expression when nearly all cell lines had a change in the same direction, with \leq 15 cell lines showing a change in the opposite direction.

* P < 0.00167 (Bonferroni-adjusted *p*-value threshold for 5 agents, 2 concentrations, and 3 time points)

**P< 0.05

References for Table S1

- 1. Pleyer L, Greil R. Digging deep into "dirty" drugs modulation of the methylation machinery. Drug Metab Rev. 2015;47:252-79.
- 2. Shen L, Song CX, He C, Zhang Y. Mechanism and function of oxidative reversal of DNA and RNA methylation. Annu Rev Biochem. 2014;83:585-614.
- Sadakierska-Chudy A, Kostrzewa RM, Filip M. A comprehensive view of the epigenetic landscape part I: DNA methylation, passive and active DNA demethylation pathways and histone variants. Neurotox Res. 2015;27:84-97.
- 4. Franchini DM, Petersen-Mahrt SK. AID and APOBEC deaminases: balancing DNA damage in epigenetics and immunity. Epigenomics. 2014;6:427-43.
- 5. Niehrs C, Schafer A. Active DNA demethylation by Gadd45 and DNA repair. Trends Cell Biol. 2012;22:220-7.
- 6. Schneider-Stock R, Diab-Assef M, Rohrbeck A, Foltzer-Jourdainne C, Boltze C, Hartig R et al. 5-Azacytidine is a potent inhibitor of DNA methyltransferase 3a and induces apoptosis in HCT-116 colon cancer cells via Gadd45- and p53-dependent mechanisms. J Pharmacol Exp Ther. 2005;312:525-36.
- Nguyen AN, Hollenbach PW, Richard N, Luna-Moran A, Brady H, Heise C et al. Azacitidine and decitabine have different mechanisms of action in non-small cell lung cancer cell lines. Lung Cancer: Targets and Therapy. 2010;1:119-40.
- 8. Barreto G, Schafer A, Marhold J, Stach D, Swaminathan SK, Handa V et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature. 2007;445:671-5.
- 9. Shen H, Laird PW. Interplay between the cancer genome and epigenome. Cell. 2013;153:38-55.
- 10. Baubec T, Ivanek R, Lienert F, Schubeler D. Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell. 2013;153:480-92.
- 11. Cartron PF, Nadaradjane A, Lepape F, Lalier L, Gardie B, Vallette FM. Identification of TET1 Partners That Control Its DNA-Demethylating Function. Genes Cancer. 2013;4:235-41.
- 12. Prensner JR, Chinnaiyan AM. Metabolism unhinged: IDH mutations in cancer. Nat Med. 2011;17:291-3.
- 13. Suetake I, Shinozaki F, Miyagawa J, Takeshima H, Tajima S. DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem. 2004;279:27816-23.
- 14. Fahrer J, Kaina B. O6-methylguanine-DNA methyltransferase in the defense against N-nitroso compounds and colorectal cancer. Carcinogenesis. 2013;34:2435-42.
- 15. Das PM, Singal R. DNA methylation and cancer. J Clin Oncol. 2004;22:4632-42.
- 16. Xu J, Zhu W, Xu W, Cui X, Chen L, Ji S et al. Silencing of MBD1 reverses pancreatic cancer therapy resistance through inhibition of DNA damage repair. Int J Oncol. 2013;42:2046-52.
- 17. Prokhortchouk E, Hendrich B. Methyl-CpG binding proteins and cancer: are MeCpGs more important than MBDs? Oncogene. 2002;21:5394-9.
- Cheishvili D, Chik F, Li CC, Bhattacharya B, Suderman M, Arakelian A et al. Synergistic effects of combined DNA methyltransferase inhibition and MBD2 depletion on breast cancer cells; MBD2 depletion blocks 5-aza-2'-deoxycytidine-triggered invasiveness. Carcinogenesis. 2014;35:2436-46.
- 19. Bronner C. Control of DNMT1 abundance in epigenetic inheritance by acetylation, ubiquitylation, and the histone code. Sci Signal. 2011;4:pe3.
- 20. Varol N, Konac E, Bilen CY. Does Wnt/beta-catenin pathway contribute to the stability of DNMT1 expression in urological cancer cell lines? Exp Biol Med (Maywood). 2014.
- 21. Fox JT, Stover PJ. Folate-mediated one-carbon metabolism. Vitam Horm. 2008;79:1-44.
- 22. Ulrich CM, Robien K, McLeod HL. Cancer pharmacogenetics: polymorphisms, pathways and beyond. Nat Rev Cancer. 2003;3:912-20.
- 23. Blom HJ, Smulders Y. Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. J Inherit Metab Dis. 2011;34:75-81.

- 24. Hazra A, Wu K, Kraft P, Fuchs CS, Giovannucci EL, Hunter DJ. Twenty-four non-synonymous polymorphisms in the one-carbon metabolic pathway and risk of colorectal adenoma in the Nurses' Health Study. Carcinogenesis. 2007;28:1510-9.
- 25. Nazki FH, Sameer AS, Ganaie BA. Folate: metabolism, genes, polymorphisms and the associated diseases. Gene. 2014;533:11-20.
- 26. Mostowska A, Myka M, Lianeri M, Roszak A, Jagodzinski PP. Folate and choline metabolism gene variants and development of uterine cervical carcinoma. Clin Biochem. 2011;44:596-600.
- 27. Martinelli M, Scapoli L, Mattei G, Ugolini G, Montroni I, Zattoni D et al. A candidate gene study of one-carbon metabolism pathway genes and colorectal cancer risk. Br J Nutr. 2013;109:984-9.
- 28. Teng YW, Mehedint MG, Garrow TA, Zeisel SH. Deletion of betaine-homocysteine Smethyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas. J Biol Chem. 2011;286:36258-67.
- 29. Iacobazzi V, Castegna A, Infantino V, Andria G. Mitochondrial DNA methylation as a nextgeneration biomarker and diagnostic tool. Mol Genet Metab. 2013;110:25-34.
- Tehlivets O, Malanovic N, Visram M, Pavkov-Keller T, Keller W. S-adenosyl-L-homocysteine hydrolase and methylation disorders: yeast as a model system. Biochim Biophys Acta. 2013;1832:204-15.
- 31. Li Q, Mao L, Wang R, Zhu L, Xue L. Overexpression of S-adenosylhomocysteine hydrolase (SAHH) in esophageal squamous cell carcinoma (ESCC) cell lines: effects on apoptosis, migration and adhesion of cells. Mol Biol Rep. 2014;41:2409-17.
- 32. Oleinik NV, Krupenko NI, Krupenko SA. Epigenetic Silencing of ALDH1L1, a Metabolic Regulator of Cellular Proliferation, in Cancers. Genes Cancer. 2011;2:130-9.
- 33. Stover PJ. Polymorphisms in 1-carbon metabolism, epigenetics and folate-related pathologies. J Nutrigenet Nutrigenomics. 2011;4:293-305.
- 34. Lane AN, Fan TW. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 2015;43:2466-85.
- 35. Murray B, Antonyuk SV, Marina A, Van Liempd SM, Lu SC, Mato JM et al. Structure and function study of the complex that synthesizes S-adenosylmethionine. IUCrJ. 2014;1:240-9.
- 36. Ulanovskaya OA, Zuhl AM, Cravatt BF. NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink. Nat Chem Biol. 2013;9:300-6.
- 37. Shlomi T, Rabinowitz JD. Metabolism: Cancer mistunes methylation. Nat Chem Biol. 2013;9:293-4.
- Jakubowski H, Zhang L, Bardeguez A, Aviv A. Homocysteine thiolactone and protein homocysteinylation in human endothelial cells: implications for atherosclerosis. Circ Res. 2000;87:45-51.
- 39. Matherly LH, Wilson MR, Hou Z. The major facilitative folate transporters solute carrier 19A1 and solute carrier 46A1: biology and role in antifolate chemotherapy of cancer. Drug Metab Dispos. 2014;42:632-49.
- 40. Zhao R, Goldman ID. Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors. Mol Aspects Med. 2013;34:373-85.
- 41. Hou Z, Matherly LH. Biology of the major facilitative folate transporters SLC19A1 and SLC46A1. Curr Top Membr. 2014;73:175-204.
- 42. Hagner N, Joerger M. Cancer chemotherapy: targeting folic acid synthesis. Cancer Manag Res. 2010;2:293-301.
- 43. Shin M, Bryant JD, Momb J, Appling DR. Mitochondrial MTHFD2L is a dual redox cofactor-specific methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase expressed in both adult and embryonic tissues. J Biol Chem. 2014;289:15507-17.
- 44. Otani T, Iwasaki M, Hanaoka T, Kobayashi M, Ishihara J, Natsukawa S et al. Folate, vitamin B6, vitamin B12, and vitamin B2 intake, genetic polymorphisms of related enzymes, and risk of colorectal cancer in a hospital-based case-control study in Japan. Nutr Cancer. 2005;53:42-50.