Supplement Table 8. Bone Mineral Analysis at 5 months (µg/g) $\underline{\text{Male}}$

Mineral / Diet Group	AIN 76A	AIN 76A+ AQ	HFWD	HFWD+ AQ
Fluoride	1.09	0.91	1.15	0.79
Barium	4.36	5.9	7.72	4.16
Boron	< 0.5	< 0.5	< 0.5	< 0.5
Calcium	199500	199400	193100	209300
Copper	< 0.5	< 0.5	< 0.5	< 0.5
Iron	144	69	380	134
Lanthanum	1.24	1.13	1.26	0.88
Magnesium	3036	3250	2927	3208
Manganese	2	1.97	7.2	1.63
Phosphorus	95403	95565	90000	98306
Potassium	759	724	758	903
Selenium	< 0.5	< 0.5	< 0.5	< 0.5
Silicon	4.75	< 0.5	4.34	< 0.5
Strontium	50.2	210	112	231
Zinc	111	124	246	140

The long bones (one femur and tibia from each animal in the group) were "pooled" and analyzed for levels of trace metals found in the multi-mineral-rich product to give a single value at each time point. Some of these elements were recorded below detectable levels when their concentration level found below $0.5\mu g/g$. The levels of individual trace elements were determined by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) except Flouride which was done by AOAC 984.37 assay.