
SUPPLEMENTARY APPENDIX B:

THE DISTRIBUTION OF HEIGHT-FOR-AGE IN OUR SAMPLE,

AND CONSEQUENCES OF LOW VALUES

B1. Introduction

The height-for-age z-score data used in our main analysis is more widely dis-
persed than the WHO reference sample: many children in our sample from rural
India fall below the cutpoint of even -6 standard deviations below the mean. This is
one reason that our analysis replicates its results using log of height in centimeters
and dichotomized stunting as dependent variables.

Is the dispersion — and presence of extreme negative values – evidence against
the credibility of our data or our results? In this supplementary analysis, we provide
three pieces of evidence relevant to the dispersion of our data:

• Comparability with DHS and IHDS. First, in section B2, we compare
the dispersion of our data and the fraction of children whose measured
height is very short with two other widely used data sources: the DHS and
the IHDS. In so doing, we consider the role of zscore06, the standard and
widely-used Stata command we use to compute z-scores. In the DHS, we
find that a considerable number of children with height for age less than -6
are found when this command is used to compute height-for-age from raw
height. We further find that the dispersion in our data – and fraction of
extremely short heights – is less in our data than in the IHDS, a widely used
nationally representative dataset on the heights of children in India. These
facts may suggest that our sample of heights is not prima facie impossible
or erroneous.

• Robustness to omitting extreme or influential observations. Sec-
ond, in section B3, we demonstrate that our result is not driven by a few
apparently extremely short children, or by an otherwise influential small
number of outliers. Four different methods of identifying potentially ques-
tionable observations all agree that the result is robust to such observations’
exclusion.

• An alternative truncation sample. Finally, in section B4, we show that
our results are qualitatively similar in the most trustworthy specifications
if alternative cutpoints are used that discard children whose heights are
below the DHS India-wide truncation point of -6.

B2. Comparison with other data sources

B2.1. Demographic and Health Survey. One important source of data on child
height is the Demographic and Health Survey (DHS). The most recent DHS in
India was conducted in 2005-6, approximately the same time as our experiment.
The height for age z-scores included in the publicly available DHS data set are
truncated at -6 and 6. Therefore, any paper that uses these included z-scores is
constrained to this truncation, whether or not it is appropriate for that analysis.
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In our analysis, we computed z-scores using the Stata user-written command
zscore06 by Jef Leroy. This software constitutes a standard approach to the com-
putation of z-scores in health economics; it is widely downloaded, used, and cited.
For example, the Government of India’s recent Rapid Survey of Children includes
z-scores which exactly match those yielded if zscore06 is applied to its raw survey
data.

When zscore06 is applied to the height, age in months, and sex data in the In-
dian DHS, the computed z-scores are very similar but not identical to those included
in the DHS.1 5.6% of children under 5 in the DHS with sufficiently complete infor-
mation to compute a height-for-age z-score nevertheless do not have one reported
within the DHS data. Among children with a height-for-age z score included in the
DHS, the included scores have an R2 of 98% when regressed on scores computed
with zscore06.

What is relevant for our analysis is that even among the exact same sample of
children with DHS z-scores, the dispersion of z-scores is slightly greater for scores
computed with zscore06 than for the scores included in the DHS. Moreover, among
the rural DHS sample – which is the relevant comparison group for the all-rural
sample in our experiment – fully 2.4% of observations have a height for age z-score
below -6 as computed by zscore06. This is considerably more than the 0.6% of
rural observations that would be predicted to be below -6 height-for-age standard
deviations by applying the mean and standard deviation of the scores included in
the DHS to a normal distribution. However, this figure is comparable to the 3.8%
of observations in the sample from our experiment that we use in our main analysis.

Therefore, applying the same standard method of computing z-scores as is used
in our analysis to the DHS, a data source that is widely considered to be of relatively
high quality for econometric analysis of child height, we find that a non-trivial
fraction of observations present z-scores below -6. This finding suggests that it
is not the case that a survey of rural India should expect to find zero children of
height-for-age below -6; although we do not believe that the data that we use is as
high quality as is the DHS, these statistics provide no evidence that our data is of
sufficiently poor quality to be incredible.

Note that both in the main text of our paper and later in this supplementary
appendix we additionally present results using the log of height in centimeters as
a dependent variable, rather than height-for-age z-scores. Such a method assumes
that the effect of the program is a proportional percent (entering height in centime-
ters linearly would ignore the fact that a, say, 2 centimeter increase is different for
a four year old and a four month old). The robustness of our result to this change
indicates that neither z-scores in general nor the zscore06 software is responsible
for our findings.

B2.2. India Human Development Survey. The India Human Development
Survey (IHDS) collected data on the height of children under 5 years old in an
NIH-supported nationally representative sample of Indian households. Data were
collected in two waves: a first wave in 2005 and a second wave in 2012 that is
not publicly available. We were provided special access to this data by the team
that collected it for the purpose of assessing the quality of the height data. We

1At the end of this appendix, we include a Stata log file as a supplementary attachment to our

paper, documenting this computation. Because our paper does not use DHS data, it is beyond
the scope of this note to reconstruct how z-scores were computed in the DHS.
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Table B1. Dispersion of height-for-age in our data and in the IHDS

all observations rural observations rural, between -8 and 4
std. dev. below -6 fraction out mean std. dev.

our data 3.823 0.113 0.098 -2.334 1.919
IHDS-I 2005 3.793 0.214 0.118 -3.272 2.241
IHDS-II 2012 4.756 0.157 0.115 -2.71 2.155

are grateful to the University of Maryland and NCAER research team for sharing
these data.

If the IHDS contains more dispersed data, and specifically if the IHDS contains
more children with extremely negative height-for-age scores, then this would be
evidence that such observed heights are not impossible and that the quality of the
data we study is not implausibly low. Additionally, Spears (2012) reports that
height is particularly correlated with cognitive achievement in India (specifically
by more than in the United States), using the exact IHDS-2005 height-for-age data
used here; therefore, dispersion in height in the IHDS is not mere noise.

In table B1, we find that height-for-age of comparable children is more dispersed
in the IHDS than in our main data (Ahmednagar district, rounds 1-3, treatment
and control groups), by a variety of metrics. A larger fraction of the data is below
the -6 cutpoint used by the IHDS and a larger fraction is outside of the -8 to -4
range used in the main sample of our analysis. Within this range, the standard
deviation of height-for-age is greater in the IHDS than in our data.

As discussed above, the DHS only releases its computed z-scores for children
whose height-for-age is between -6 and 6. The mean and standard deviation of the
DHS data is -1.85 and 1.67 for children in rural India using their computations,
or -1.92 and 1.68 using zscore06. Because of the different selection of cutpoints,
the DHS must have a greater mean, but we note that the standard deviation in
our -8 to -4 data is closer to the DHS standard deviation than the IHDS standard
deviation in the same sample is to the DHS.

Figure B1 presents more evidence on the comparison between the IHDS and our
data, using estimated kernel densities. The graph truncates the data at the -8 to
+4 range used in our main analyses: notice that the density of our data is very
close to 0 at these cutpoints. In contrast, the density of the IHDS is visibly above
0 even at -8: it includes many more very short children than does our data.

B3. Extreme values are not responsible for our result

If our results were merely driven by apparent observations of extremely short
children which are in fact not trustworthy data, then we would expect an effect
of the program not to be found when such outliers are omitted from the analysis.
In this section, we consider three separate methods of identifying outliers and find
that the results are robust to their exclusion in each case.

B3.1. Omitting influential observations. Cook’s D and leverage are two stan-
dard measures of the influence of regression observations, used to identify outliers.
Figure B2 documents that our result is robust to the exclusion of influential obser-
vations by both of these measures. Presented are point estimates and confidence
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Figure B1. Kernel density of height-for-age in our data and in the IHDS
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intervals equivalent to the main result coefficient on the interaction between treat-
ment and period 3, comparable to column 2 of panel A of table 5 of the results of
the main paper.

To construct each panel, observations were sorted in decreasing order of the
measure of extremeness; moving right a larger set of observations was excluded.
So, for example, in the top graph the point 1 plots the confidence interval when
only the observation with the largest Cook’s D is excluded, and point 150 along the
horizontal axis plots the confidence interval for the regression coefficient obtained
when the 150 observations with the greatest Cook’s Ds are excluded. The vertical
line in panel (a) corresponds to the threshold of 4/n, where n is the number of
observations. Because there are 3,432 observations in the full sample, omitting
the 250 most extreme values (the furthest extent of graph) is omitting 7.3% of the
sample. As the flat profile of both panels shows, with either measure of extremeness,
omitting this large and most influential section of the sample does not change the
result.

B3.2. Omitting very short or tall children.

B3.2.1. Dropping the shortest children within each age-sex bin. One particular con-
cern is that the height data in our sample is not merely dispersed : in particular
many children are short. Could the apparently very short observations in our sam-
ple be responsible for our results? Figure B3 presents results from one approach to
omitting the shortest children. As in figure B2, the vertical axes present confidence
intervals for our main result: the interaction of treatment and period 3. The hor-
izontal axis records how many observations are omitted from each of the 120 age
and sex categories. For example, at the point marked 2, the shortest two children
are omitted from each combination of sex and age-in-months. This means that, at
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Figure B2. Effect estimate is robust to omitting influential observations
(a) Omitting results with high Cook’s D
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(b) Omitting results with high leverage
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the far right point 4, 480 (= 4 × 120) of the shortest observations are omitted, or
8.6% of the sample. Results are presented in panel (a) with height-for-age as the
dependent variable and in panel (b) with height in centimeters, for robustness. The
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Figure B3. Effect estimate is robust to omitting the shortest chil-
dren in each age×sex bin

(a) Dependent variable is height-for-age z-score
0

.2
.4

.6
.8

co
ef

fic
ie

nt
 o

n 
tr

ea
tm

en
t t

im
es

 p
er

io
d 

3

0 1 2 3 4
shortest x children omitted from each of 120 age by sex bins

estimate 90% CI

(b) Dependent variable is ln(height in centimeters)
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stability of the coefficient estimates suggests that our result is not driven by outlier
data from a few extremely short (or apparently extremely short) children.
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Table B2. Results are robust to omitting outliers within each
age-in-months × sex bin

(1) (2) (3) (4) (5) (6)
dependent variable: height-for-age height-for-age height-for-age ln(height) ln(height) ln(height)
sample: full not small not large full not small not large

treatment -0.0988 0.0186 -0.190 -0.00533 0.000230 -0.00874
(0.129) (0.129) (0.131) (0.00572) (0.00550) (0.00586)

treatment × period 2 0.236† 0.112 0.304* 0.00973 0.00415 0.0122†

(0.140) (0.124) (0.151) (0.00618) (0.00528) (0.00666)
treatment × period 3 0.418* 0.323† 0.359† 0.0180* 0.0132† 0.0158†

(0.195) (0.188) (0.185) (0.00817) (0.00775) (0.00796)
round FEs X X X X X X
age × sex FEs X X X X X X

n 3,432 3,320 3,365 3,432 3,320 3,365

B3.2.2. Dropping observations more than 1.96 standard deviations from the mean
of each age-sex bin. Table B2 presents results from an alternative, less arbitrary,
approach to excluding extreme values. Within each of the 120 age-in-months by
sex bins, the mean and standard deviation of those observations was computed.
Because there are 3,432 observations, the average bin has 28.6 observations. Ex-
ceptionally short observations are those more than 1.96 standard deviations below
the mean of their bin (using the standard deviation of their bin); exceptionally tall
observations are those more than 1.96 standard deviations above the mean of their
bin.

Columns 2 and 3 of table B2 present results omitting the exceptionally small and
exceptionally large observations, respectively. Columns 4 through 6 replicate these
regressions using the log of height in centimeters as the dependent variable, instead
of height-for-age z-scores. In all cases, the main result is qualitatively preserved,
even on this restricted sample. This approach offers no evidence that our result is
merely driven by exceptionally short children.

B4. Comparison with an alternative choice of truncation points

B4.1. Evaluation against a normal distribution. About 4 percent of our main
sample has height-for-age z-scores between -8 and -6; as we have seen, this frac-
tion is smaller than the corresponding fraction in the IHDS and larger than that
in the DHS (2.4 percent below -6 and 1.4 percent between -8 and -6), when com-
puted using the same Stata program. This section considers the consequences of
using the alternative cutpoint of -6 to 6, matching the truncation enforced into the
coded DHS, rather than our main analysis cutpoint of -8 to 4. For transparency,
Supplementary Appendix A presented results for many combinations of cut-points.

One standard by which to judge the plausibility of height data is its normality.
Before proceeding with this analysis, we note that a quantile-quantile (Q-Q) plot
against normality fails to recommend the alternative cutpoints of -6 to 6. As figure
S2 shows, our preferred cutpoints of -8 to 4 visibly more closely match a normal
distribution than does the alternative considered in this section.
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Figure B4. Q-Q plot against normality of our data using pre-
ferred and alternative cutpoints
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Table B3. Count of appearances of a child across rounds of our
data is associated with dispersion in measured height

number of rounds in which child appears
in 1 round in 2 rounds in 3 rounds

std. dev. of height-for-age 1.99 1.84 1.75
std. dev. of residuals after age and sex 2.09 1.86 1.81

B4.2. Estimates of treatment effect with alternative truncation. Despite
the closer match of our preferred -8 to 4 truncation point to a normal distribution,
we here consider whether and in which specifications use of the alternative -6 to 6
cutpoints produces similar results to use of our preferred cutpoints.

As discussed in the text, the experiment we study was designed as a panel of
villages, not a panel of children. However, some children were tracked through all
three rounds. Children who were young within the interval 0-5 at baseline and old
within this interval at endline were most likely to be tracked, by construction of the
age structure of the sample. Although our main results in the paper respect the
original intent of the study designers that this experiment be studied as a panel of
villages, for robustness we also show results in the paper exploiting the child-level
panel structure of the subset of the sample that was tracked; in this panel analysis,
the main text reports, we find similar results.

This supplement has used dispersion of the height-for-age measure as a measure
of data quality. In table B3, we note that children who were observed in more
rounds have higher-quality height data, as measured by the standard deviation of
height-for-age. This is not merely because they are more age-homogenous, because
this pattern persists in residuals after 120 dummies for age-in-months by sex, the
level at which height-for-age scores are constructed. This may be because families
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Table B4. Estimates of treatment effect with alternative trunca-
tion, various strategies

(1) (2) (3) (4)
truncation: -8 to 4 -6 to 6 -6 to 6 -6 to 6
level: child child child village
panel structure: none none if in > 1 within child, 1 to 3
n 3,432 3,339 2,305 247 × 2 = 494

Panel A: Height-for-age z-scores as dependent variable
treatment -0.0988 0.116 0.00688

(0.129) (0.147) (0.179)
treatment round 2 0.236 0.0980 0.215

(0.140) (0.154) (0.183)
treatment round 3 0.418 0.181 0.375 0.473

(0.195) (0.197) (0.210)
effect p-value: 0.036 0.36 0.078 0.052

Panel B: Dichotimized stunting as dependent variable
treatment -0.0126 -0.0343 0.00811

(0.0348) (0.0382) (0.0443)
treatment round 2 -0.00444 0.00928 -0.00715

(0.0393) (0.0418) (0.0482)
treatment round 3 -0.0705 -0.0465 -0.122 -0.135

(0.0487) (0.0501) (0.0607)
effect p-value: 0.153 0.36 0.049 0.098
In column 4, within-child differences are collapsed into village average differences, and the

p-values is computed from a non-parametric Komolgorov-Smirnov test on a sample of n = 60

villages.

with more experience with the survey team and measurement procedures were more
cooperative with height measurements (for example, helping to hold children still
on the measuring board) or because higher-quality surveyors both measured height
more carefully and were more diligent in tracking down panel members. Whatever
the explanation, this association provides a data-driven reason to consider the panel
subset of the data in this analysis of data quality and dispersion – noting that some
readers may in any event prefer the internal validity of the child-level panel.

Table B4 presents alternative estimates of the effect of the program using -6
to 6 truncation. Every regression is replicated with both height-for-age and di-
chotomized stunting as the dependent variable. Column 1 reprints the main esti-
mate of the paper. Column 2 reprints the estimate from supplementary appendix
section A4; column 5 conducts similar analysis for dichotomized stunting. Aver-
aging over many sets of cutpoints, that table found an average treatment effect of
0.30 with an average t of 1.96. However, in this cases the estimate of the effect is
smaller in absolute value and not statistically significantly different from zero.

Columns 3 and 4 report finding effects comparable to our main estimates using
the alternative -6 to 6 cutpoints, in the higher quality (less dispersed) subsample
where children were measured longitudinally in multiple panel rounds, both for
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continuous z-scores and for dichotomized stunting. Columns 3 merely excludes
observations that appear in only one round and repeating the main analysis.

Column 4 reports a conservative non-parametric analysis. First, for each panel
it computes within-child differences in height-for-age from rounds 1 to 3. Next, it
collapses these differences in the village means; this produces the average effect.
Finally, it conducts a non-parametric test to verify the significance of the small-
sample difference between the treatment and control groups in these average height
differences. The regressions and the non-parametric approach both find results
that are similar to one another and to our main results. Note that within-child
differencing would be expected to produce more precise estimates of child fixed
effects remove fixed heterogeneity in child-specific genetic potential height.

Therefore, although we believe it is correct to prefer the -8 to 4 sample, and
having considered in Supplementary Appendix A the sensitivity and robustness of
our conclusions to a large matrix of possible alternative cut-points, here we show
that in the alternative -6 to 6 sample there is some evidence in support of our
estimated treatment effect, although to be sure it depends on the specification. We
particularly see a comparable effect size if the panel structure of the highest-quality
data is fully exploited.

B5. Conclusion

As in many studies where the data were not collected by the researchers person-
ally, it is not ultimately possible for us to verify conclusively that the height data
that we use were collected correctly; we do not have any record of the interaction
between a surveyor and a child that produced our data beyond the dataset iteslf.
Moreover, it is clear that height as measured in our poor, rural sample is consid-
erably more dispersed than in the WHO’s healthy reference population. Some of
this dispersion certainly reflects the variance introduced by negative health shocks;
some of it may well be measurement error. In Supplementary Appendix A, we doc-
umented how our results sometimes are and sometimes are not influenced by a full
set of 36 alternative truncation cutpoints for our height sample. Here, we compare
our sample with other datasets and focus on the role of extremely short measured
heights and of an alternative -6 to 6 threshold. This supplementary appendix has
presented evidence that there is no reason to conclude that our main results merely
reflect questionable height data or the influence of a few apparently extremely short
observations.


