
Report
Risk Taking for Potential R
eward Decreases across
the Lifespan
Highlights
d Aging reduced risk taking for potential gains but not potential

losses

d Computational models revealed that a Pavlovian influence of

reward decreased with age

d Age-related dopamine decline can explain the decrease in

Pavlovian biases
Rutledge et al., 2016, Current Biology 26, 1634–1639
June 20, 2016 ª 2016 The Authors. Published by Elsevier Ltd.
http://dx.doi.org/10.1016/j.cub.2016.05.017
Authors

Robb B. Rutledge, Peter Smittenaar,

Peter Zeidman, ...,

Ulman Lindenberger, Peter Dayan,

Raymond J. Dolan

Correspondence
robb.rutledge@ucl.ac.uk

In Brief

Rutledge et al. used a large-scale

smartphone-based experiment to

investigate how aging affects decision-

making under uncertainty. Risk taking for

potential rewards but not losses

gradually decreased over the lifespan,

consistent with an explanation in terms of

age-related decline in the dopamine

system.

mailto:robb.rutledge@ucl.ac.uk
http://dx.doi.org/10.1016/j.cub.2016.05.017
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cub.2016.05.017&domain=pdf


Current Biology

Report
Risk Taking for Potential Reward
Decreases across the Lifespan
Robb B. Rutledge,1,2,* Peter Smittenaar,2 Peter Zeidman,2 Harriet R. Brown,2 Rick A. Adams,2 Ulman Lindenberger,1,3,4

Peter Dayan,5 and Raymond J. Dolan1,2
1Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK
2Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, UK
3Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
4European University Institute, San Domenico di Fiesole, 50014 Fiesole, Italy
5Gatsby Computational Neuroscience Unit, University College London, London W1T 4JG, UK

*Correspondence: robb.rutledge@ucl.ac.uk
http://dx.doi.org/10.1016/j.cub.2016.05.017
SUMMARY

The extent to which aging affects decision-making is
controversial. Given the critical financial decisions
that older adults face (e.g., managing retirement
funds), changes in risk preferences are of particular
importance [1]. Although some studies have found
that older individuals are more risk averse than
younger ones [2–4], there are also conflicting results,
and a recent meta-analysis found no evidence for a
consistent change in risk taking across the lifespan
[5]. There has as yet been little examination of one
potential substrate for age-related changes in deci-
sion-making, namely age-related decline in dopa-
mine, a neuromodulator associated with risk-taking
behavior. Here, we characterized choice preferences
in a smartphone-based experiment (n = 25,189) in
which participants chose between safe and risky
options. The number of risky options chosen in
trials with potential gains but not potential losses
decreased gradually over the lifespan, a finding
with potentially important economic consequences
for an aging population. Using a novel approach-
avoidance computational model, we found that a
Pavlovian attraction to potential reward declined
with age. This Pavlovian bias has been linked to
dopamine, suggesting that age-related decline in
this neuromodulator could lead to the observed
decrease in risk taking.

RESULTS

Risk and reward are tightly coupled, justifying the attention to

understanding risk across various fields. Pavlovian influences

are of particular significance for understanding anomalies

of choice. We recently identified one such anomaly with the

finding of a pervasive tendency to approach potential reward

and avoid potential punishments irrespective of option value

[6]. This effect is distinct from parametric decision models

based on prospect theory [7] that operationalize concepts
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like risk and loss aversion [8–11]. One important modulator

of appetitive Pavlovian influences is dopamine. We found

that boosting dopamine levels with levodopa (L-DOPA) dose-

dependently amplified the Pavlovian influence of potential

reward, increasing risk taking in situations with potential gains

but not losses [6]. This finding may account for why electrical

[12] and optogenetic [13, 14] stimulation of dopamine neurons

increases reward seeking and why dopamine drugs increase

risk taking [15] and pathological gambling in Parkinson’s

patients [16].

A profound change in the aging brain is a gradual decline in the

integrity of the dopamine system, corresponding to a likely func-

tional loss of dopamine. Dopamine receptor and transporter

densities decrease at rates estimated for many brain areas at

up to 10% per decade throughout the adult lifespan [17–19].

These neuromodulatory changes are linked to cognitive changes

[20–22] and changes in neural responses to reward [23–25].

Given the link between dopamine and risk taking, as well as

the critical significance of risk in financial decisions such as

saving for retirement, it becomes pressing to understand the

relationship between age and risk taking. Previous investigations

have been somewhat equivocal [5]. However, whether aging af-

fects Pavlovian influences on choice has not been previously

investigated.

We made several predictions for how decision-making under

uncertainty would be affected by aging. First, the number of

risky options chosen in trials with potential gains but not losses

would decrease with age, consistent with a finding that boosting

dopamine levels increases risk taking for potential gains but

not losses. Second, age-related decline in risk taking would

be monotonic, reflecting the gradual age-related decline in

the dopamine system. Finally, Pavlovian approach parameters

capturing a tendency to choose risky options with potential

reward would decrease with age and be more strongly associ-

ated with aging than risk-aversion parameters in standard

models. A standard clinical dose of 150mg of L-DOPA increased

choice to risky options with potential reward by 5% on average

[6]. Given this modest effect, addressing the prediction that

aging decreases risk taking for potential reward requires a sam-

ple size far greater than is typical for laboratory studies. Even a

small effect size [26] (e.g., r = 0.1) would have important eco-

nomic consequences given the large and growing elderly popu-

lation [27].
ors. Published by Elsevier Ltd.
commons.org/licenses/by/4.0/).
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Figure 1. Task Design

(A) Gain trials have only potential gains and

not potential losses. In an example gain trial, a

participant chooses between a risky option (here, a

potential reward of 95 points) and a safe option

(here, gaining 45 points). Mixed trials have both

potential gains and losses. Loss trials have only

potential losses and not potential gains.

(B) Participants self-identified into age bands, with

2,945 participants aged 50 and older.

(C) Decision reaction times increased with age

for both females and males. Error bars represent

the SEM.
To test our predictions, we utilized a smartphone-based plat-

form (The Great Brain Experiment, http://www.thegreatbrain

experiment.com), freely available for Apple iOS and Google

Android systems [28–30]. We collected a dataset with a sample

size (n = 25,189) many times larger than all previous laboratory

studies on aging and decision-making under uncertainty com-

bined (meta-analysis in [5]). Participants completed a 30-trial

game in which they tried to earn points. On each trial, partici-

pants faced a choice between safe and risky options with no

time limit to make their decisions (Figure 1A; see the Experi-

mental Procedures). Risky optionswere represented by spinners

with equal probabilities for two potential outcomes, and chosen

gambles were resolved immediately. There were three types of

trials: (1) gain trials, a certain gain or a gamble with a larger po-

tential gain or zero; (2) mixed trials, zero or a gamble with a po-

tential gain or loss; and (3) loss trials, a certain loss or a gamble

with a larger potential loss or zero. Importantly, losses were not

possible in gain trials and gains were not possible in loss trials,

allowing us to dissociate effects of age on risk taking in gain

and loss domains. The average player earned 580 points (start-

ing from an endowment of 500 points), greatly exceeding the 514

points a random player earns on average. A player that always

chooses the option with the higher expected value earns 678

points on average and chooses the risky option in 54% of trials

(gain, 57%; mixed, 65%; loss, 43%). Data were analyzed for

six different age groups spanning the range of 18–69 with the

oldest group (ages 60–69) containing 931 participants (Fig-

ure 1B). As expected, median decision reaction times (Figure 1C)

increasedwith age in bothmales and females (r = 0.22, p < 0.001;

all p values were computed by permutation test; see the Exper-

imental Procedures). Participants on average chose the risky

option in 64% of trials (gain, 69%; mixed, 67%; loss, 56%).

Age-related changes in the brain have been proposed to

lead to increased noise in either value representations or choice

mechanisms [31], either of which could reduce the consistency

with which participants make the same choice when faced

with similar options on multiple occasions. Participants were

overall consistent in their choices, making the same choice

70% of the time when offered similar options in two different tri-

als (see the Supplemental Experimental Procedures). There was

no age-related change in choice consistency (r = 0.001, p > 0.1),

arguing against the theory that increased noise might lead to

more frequent errors, at least for simple economic decisions.

Next, we tested whether risk-taking behavior changed across

the lifespan, starting by examining trials with potential losses

(Figure 2A). There was a small but significant increase in risk
taking in trials with both potential gains and losses (mixed trials:

r = 0.024, p < 0.001; Figure 2B). However, this change was not

monotonic, as would be expected if it resulted from gradual

age-related decline in dopamine. There was no change in risk

taking in trials with only potential losses (loss trials: r = �0.010,

p > 0.1). There was also no significant change in earnings across

the lifespan in mixed (r = �0.004, p > 0.1) and loss trials (r =

�0.008, p > 0.1; Figure 2C).

By contrast, there was a substantial decline in the number of

risky choices made in gain trials, which featured potential gains

but not potential losses (Figure 2A). This age-related changewas

gradual and monotonic, with all age groups making fewer risky

choices on average than the next younger age group (all five

pair-wise comparisons, p < 0.001 by permutation test after

Bonferroni correction). This monotonicity was present in only

0.4% of 10,000 resamples (see the Experimental Procedures).

The effect size for a linear model of decline was r = �0.103

(p < 0.001; Figure 2B), significantly greater than effect sizes in

mixed or loss trials (both comparisons, p < 0.001). Furthermore,

earnings in gain trials significantly declined over the lifespan

(r = �0.045, p < 0.001; Figure 2C), suggesting that the observed

age-related changes in decision-making may have important

economic consequences. We found a similar decline in risk

taking in gain trials in both the United Kingdom (n = 10,300,

r = �0.103) and the United States (n = 2,361, r = �0.098), the

two countries for which we had sufficiently large samples. After

excluding participants in the youngest age group (who may not

yet have completed university education), we found a similar

decline in participants with (n = 11,965, r = �0.082) and without

(n = 6,194, r = �0.074) a university degree. We also found a

similar decline for Apple iOS (n = 14,305, r =�0.098) and Google

Android (n = 10,884, r = �0.110) smartphones.

In a study examining the effect of pharmacologically boosting

dopamine [6], we previously described a model that included

three components: (1) loss aversion (parameter l) and risk

aversion in gain and loss domains (again and aloss) according

to established parametric models based on prospect theory

[8–11], (2) stochasticity of decision-making according to the

inverse temperature parameter (m) in the softmax equation,

and (3) Pavlovian approach-avoidance parameters applying

exclusively to gain trials (bgain) or loss trials (bloss). Boosting

dopamine affected only the Pavlovian influence of potential

reward (bgain). Based on the observation that the dopamine

system declines gradually over the lifespan, we tested the pre-

diction that this factor would underpin the observed decline in

gambling. The model-based approach permits testing which of
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A B C Figure 2. Risk Taking for Potential Reward

Decreased across the Lifespan

(A) The percentage of trials in which risky

options were chosen was relatively stable for

mixed and loss trials but declined steadily

over the lifespan in gain trials. Young partici-

pants chose more risky options in gain than

mixed trials, whereas the opposite was true

for older participants. Error bars represent

the SEM.

(B) The age-related decline in risk taking in

gain trials had an effect size equal to �0.103.

Risk taking did not decrease across the life-

span in trials with potential losses (mixed or loss trials). Error bars represent bootstrapped 95% confidence intervals.

(C) Compared to the youngest age group (18–24), earnings decreased significantly with age in gain trials, but not in mixed or loss trials. Error bars represent

the SEM.
the three model components (again, m, or bgain) is most strongly

associated with age.

This approach-avoidance decision model fitted choice data

from the smartphone sample (pseudo-r2 = 0.46 ± 0.25, mean ±

SD; see the Experimental Procedures) better than an established

decisionmodel based on prospect theory according to Bayesian

model comparison [32, 33] (lower Bayesian information criterion

[BIC] preferred: approach-avoidance decision model BIC =

12,737 versus prospect theory decision model BIC = 13,620).

Consistent with the observation above that choice did not

get noisier, we found that the stochasticity parameter m did

not change over the lifespan (males, r = 0.010; females, r =

�0.004). Loss aversion might be expected to increase with

age, but we found, if anything, evidence for a small decrease

(males, r = �0.015; females, r = �0.026). Average loss-aversion

coefficients (males, l = 1.91; females, l = 1.85) and risk-aversion

coefficients (males, again = 0.86 and aloss = 0.70; females, again =

0.82 and aloss = 0.63) were comparable to those reported in prior

studies [4, 9].

Increasing agewas accompanied bymodest decreases in eco-

nomic risk-aversionparameters (again; Figure 3A) inbothmales (r =

�0.034) and females (r =�0.024). Since risk-aversion parameters

less than 1 correspond to risk aversion, these modest decreases

are consistent with the overall pattern of decreased risk taking

with age. As we predicted, there was a highly significant age-

related decrease in Pavlovian approach parameters (bgain; Fig-

ure 3B) in bothmales (r =�0.090) and females (r =�0.064). Effect

sizes for the relationship between bgain and age were more nega-

tive than effect sizes for again (both males and females, p < 0.001;

Figure 3C), with an average effect-size ratio inmales of 2.69 (boot-

strapped 95% confidence interval, 1.39–9.29) and an average ef-

fect-size ratio in females of 2.60 (bootstrapped 95% confidence

interval, 1.56–5.70). Thus, we find that advancing adult age is

more strongly associated with a decreased Pavlovian influence

of potential reward than a decrease in a risk-aversion parameter

of standard decision models based on prospect theory.

DISCUSSION

Normal human aging affects many cognitive abilities [22, 34].

Given the increasing size of the global elderly population, under-

standing how aging affects economic decision-making is of crit-

ical importance. Using a smartphone-based methodology, we

collected a sample (n = 25,189) much larger than that of all pre-
1636 Current Biology 26, 1634–1639, June 20, 2016
vious laboratory studies on decision-making under uncertainty

combined [5].We observed a substantial decrease in the number

of risky options chosen in trials with potentials gains but not

losses. We observed a preference reversal by which younger

participants were more likely to choose risky options in gain

than mixed trials and the opposite for older participants. Two

possible explanations for risk-taking changes were increased

errors or decreased risk-aversion parameters [4]. However,

aging did not affect choice consistency and had only a modest

effect on risk-aversion parameters. We recently reported that

boosting dopamine with L-DOPA increased the Pavlovian influ-

ence of potential reward [6]. Such immediate dopaminergic ef-

fects are not explained by the established role of dopamine in

learning [35–38]. Given the widespread gradual decline in the

integrity of the dopamine system across the lifespan [17–19],

we hypothesized that normal cognitive aging would reduce the

Pavlovian influence of potential reward. Using a model-based

analysis, we found that adult age is more strongly associated

with a decrease in the Pavlovian influence of potential reward

than with a decrease in risk-aversion parameters.

An ideal playerwhoalwaysselects the optionwith thehigher ex-

pected value chooses the risky option in 57% of the gain trials on

average. If economic risk-aversionparametersareequal to1,pos-

itive Pavlovian approach parameters can reduce average earn-

ings. Economic risk-aversion parameters were on average less

than 1 in all age groups, reflecting a concave utility function that

leads to risk aversion and reduced earnings. In this case, positive

Pavlovianapproachparameters can increase earnings, explaining

why age-related decreases in this parameter are associated with

decreased earnings. Whether positive Pavlovian parameters

increase or decrease earnings also depends on the available

options. If risky options in most trials are worth less than certain

alternatives, a decrease in Pavlovian parameters could actually

increase earnings. The economic implications of decreased

Pavlovian parameters depend on situations routinely faced by

older individuals.Most financial investments featurebothpotential

gains and losses. Simple economic decisions in this domain may

be suboptimal due to loss aversion but relatively unaffected by

aging. However, financial options might be presented in such a

way as to appear similar to gain trials, and in this situation older in-

dividuals might choose risky options less frequently than younger

individuals even if they yield greater returns on average.

Smartphone-based data aremore representative of the overall

population than conventional laboratory experiments [39, 40].



A B C Figure 3. Pavlovian Approach for Potential

Reward Decreased across the Lifespan

(A and B) Model fits in both females and males

showed modest declines in economic risk-aver-

sion parameters (again; A) and larger declines in

Pavlovian approach parameters (bgain; B). Error

bars represent the SEM.

(C) For both females and males, effect sizes

for age-related decline in Pavlovian approach

parameters were larger in magnitude than for

economic risk-aversion parameters. Error bars

represent bootstrapped 95% confidence intervals.

*p < 0.001.
85%of users in the local university subject pool are currently uni-

versity students. In contrast, 73% of our participants are age 25

or older, and 42% report not having a university degree.

Given themany factors likely to contribute to economic prefer-

ences, addressing our hypothesis required a very large sample.

It would have been surprising to observe effect sizes larger than

those we found (r = �0.1) due to a single factor such as age-

related dopaminergic decline. In trials with potential gains and

not losses, we observed an 8% decrease in risk taking from

the youngest to the oldest age group, even larger than we antic-

ipated given the 5% increase observed in young volunteers after

taking L-DOPA [6]. Sample sizes in previous studies [5] may not

have been sufficiently large to identify age-related changes.

Task design may also play an important role in determining the

size of Pavlovian influences. Pavlovian approach parameters in

participants playing monetary lotteries were smaller than those

observed here with unpaid participants [6]. Conflicting results

reported in a recent meta-analysis [5] may reflect the varying de-

gree to which risk taking in different tasks depends on Pavlovian

influences.

In the domains of episodic memory [41] and working mem-

ory [42], pharmacological interventions with dopaminergic

drugs can restore youth-like brain activation patterns and

behavior in healthy older adults. Understanding the role of

dopamine in decision-making is particularly important when

it comes to addressing the unintended side effects of dopa-

minergic drugs, such as those commonly prescribed to indi-

viduals suffering from Parkinson’s disease, schizophrenia,

and attention deficit hyperactivity disorder. For simple eco-

nomic decisions, we found no decrease across the lifespan

in either choice consistency or risk taking for potential losses.

This selective pattern of changes is hard to reconcile with

general explanations unrelated to normal cognitive aging, such

as cohort differences in familiarity with computerized games.

However, this pattern of results is fully consistent with an expla-

nation in terms of age-related dopaminergic decline. At the

population level, knowing the specific choice situations in

which aging does and does not affect decision-making may

be useful for policymakers, and the existence of these age-

related changes in behavior may have important economic

consequences.

EXPERIMENTAL PROCEDURES

Participants

We tested 25,189 participants (aged 18–69, 11,951 male) who completed the

task between May 1, 2013 and September 1, 2014. All participants gave
informed consent, and the Research Ethics Committee of University College

London approved the study.

Smartphone-Based Experiment

Participants completed 30 choice trials and rated their happiness 12 times,

typically in 3–5 min. An analysis of happiness responses has been reported

previously [29]. Consistent with previous research [43], happiness increased

with age (Supplemental Experimental Procedures). Each play consisted of

11 gain, 8 mixed, and 11 loss trials (Supplemental Experimental Procedures).

Data Analysis

We analyzed the first play from each participant (Supplemental Experimental

Procedures). We report Pearson correlation coefficients for effect sizes of re-

lationships between task measures and age. All p values were computed

based on permutation tests using 10,000 random shuffles of age labels to

determine null distributions. Bootstrapped 95% confidence intervals were

computed based on 10,000 resamples with replacement in each age or age/

gender group. We fitted choices in individual participants with an approach-

avoidance decision model [6]. As in common parametric decision models

[4, 8–11], subjective values or utilities were determined as follows:

Ugamble = 0:5
�
Vgain

�again � 0:5lð�VlossÞaloss ;

Ucertain = ðVcertainÞagain if VcertainR0;

and

Ucertain = � lð � VcertainÞaloss if Vcertain < 0;

where Vgain and Vloss are the potential gain and loss from a gamble, respec-

tively, and Vcertain is the certain option value. Choice probabilities are

commonly determined by the softmax rule:

Pgamble =
1

1+ e�mðUgamble�UcertainÞ;

where the inverse temperature parameter m quantifies choice stochasticity.We

modified this equation to permit choice probabilities that differ from 0 or 1 in

the limit. For gain trials, gambling probability was determined by bgain:

Pgamble =

�
1� bgain

�

1+ e�mðUgamble�UcertainÞ + bgain if bgainR0

and

Pgamble =

�
1+ bgain

�

1+ e�mðUgamble�UcertainÞ if bgain < 0:

Model parameters were fit by the method of maximum likelihood in individ-

ual participants, and we used Bayesian model comparison techniques [32, 33]

to compare model fits.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and can be found with this article online at http://dx.doi.org/10.1016/j.cub.

2016.05.017.
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Supplemental Experimental Procedures 

 

Experimental Task Design 

Trials were randomly drawn from lists of 60 gain, 30 mixed, and 60 loss trials. The gain trial list consisted of 4 

certain amounts {30, 35, 45, 55} with gamble gain amounts determined by 15 multipliers on the certain amount to 

accommodate a wide range of risk sensitivity {1.64, 1.7, 1.76, 1.82, 1.88, 1.94, 2, 2.06, 2.12, 2.18, 2.26, 2.4, 2.7, 

3.2, 4}. The mixed trial list consisted of 3 gamble gain amounts {40, 55, 75} and gamble loss amounts determined 

by 10 multipliers on the gain amount to accommodate a wide range of loss sensitivity {0.2, 0.34, 0.5, 0.64, 0.77, 

0.89, 1, 1.1, 1.35, 2}. The loss trial list consisted of 4 certain amounts {-30, -35, -45, -55} and gamble loss amounts 

determined by the same 15 multipliers as gain trials. The maximum gain or loss possible from a single trial was 220 

points, and participants started the game with an endowment of 500 points. Participants were presented with the 

question ‘How happy are you right now?’ after every 2-3 trials. Participants indicated their responses on a rating line 

and pressed a button labeled ‘continue’ to proceed to the next trial. Participants were informed of their current 

earnings during all choice trials. Each play started and ended with a happiness question.  

An analysis of happiness responses during the task has been reported previously [S1]. Consistent with previous 

research [S2], we found that life satisfaction measures (collected when participants first downloaded the app) 

increased with age (r = 0.083, p < 0.001), rising from 6.5 to 7.2 on average (0-10 scale) from the youngest to the 

oldest group. We found similarly that average happiness during the task (12 ratings) increased with age (r = 0.113, 

p < 0.001), rising from 55 to 61 on average (0-100 scale) from the youngest to the oldest group. Variability in 

happiness ratings decreased with age (r = -0.089, p < 0.001), from a standard deviation of 15.4 to 13.6 from the 

youngest to the oldest group. 

Choice consistency in decision tasks can be quantified as the frequency with which participants make the same 

choice of the safe or risky option when presented with the same options in two trials [S3]. Due to the small number 

of trials per play, such a metric could not be computed. We instead computed a closely related consistency measure 

by sorting trials for each trial type according to option value and determining the consistency of choices for adjacent 

trial pairs in the sorted data. 

 

Computational Modeling 

We fitted choice behavior in each individual participant with an approach-avoidance decision model that allowed for 

value-independent tendencies to choose gambles [S3]. This model accounts for the effects of boosting dopamine 

with L-DOPA on decision making [S3]. This model also includes the parameters for risk and loss aversion in 

common parametric decision models [S4-S7] based on prospect theory [S8]. As in those models, subjective values 

or expected utilities of options were determined using the following equations: 

 

𝑈𝑔𝑎𝑚𝑏𝑙𝑒 = 0.5(𝑉𝑔𝑎𝑖𝑛)
𝛼𝑔𝑎𝑖𝑛 − 0.5𝜆(−𝑉𝑙𝑜𝑠𝑠)𝛼𝑙𝑜𝑠𝑠 

𝑈𝑐𝑒𝑟𝑡𝑎𝑖𝑛 = (𝑉𝑐𝑒𝑟𝑡𝑎𝑖𝑛)𝛼𝑔𝑎𝑖𝑛     𝑖𝑓 𝑉𝑐𝑒𝑟𝑡𝑎𝑖𝑛 ≥ 0 

𝑈𝑐𝑒𝑟𝑡𝑎𝑖𝑛 = −𝜆(−𝑉𝑐𝑒𝑟𝑡𝑎𝑖𝑛)𝛼𝑙𝑜𝑠𝑠     𝑖𝑓 𝑉𝑐𝑒𝑟𝑡𝑎𝑖𝑛 < 0 

 

where Vgain and Vloss are the potential gain and loss from a gamble, respectively, and Vcertain is the certain option 

value. The degree of curvature in the utility function in the gain domain is determined by gain and thus the degree of 

risk aversion for potential reward. An individual that is risk-neutral in gain trials has gain = 1, and would be 

indifferent between a certain gain and a gain gamble with the same expected value. A risk-seeking individual would 

have gain > 1 and a risk-averse individual would have gain < 1. Degree of risk aversion for losses is determined by 

loss. An individual with loss < 1 would be risk seeking in loss trials and if loss > 1 would be risk averse in loss 

trials. The parameter  determines the degree of loss aversion. A gain-loss neutral individual would have  = 1 and a 

loss-averse individual would have  > 1. 

  



 

 

Choice probabilities in established models [S5, S6] are often determined by the softmax rule: 

 

𝑃𝑔𝑎𝑚𝑏𝑙𝑒 =
1

1 + 𝑒−𝜇(𝑈𝑔𝑎𝑚𝑏𝑙𝑒−𝑈𝑐𝑒𝑟𝑡𝑎𝑖𝑛)
 

 

where the inverse temperature parameter  quantifies the degree of choice stochasticity. The softmax rule maps 

subjective value differences to probabilities from (0, 1). In our approach-avoidance decision model [S3], we 

modified the softmax rule to permit choice probabilities that differ from 0 or 1 in the limit. This allows for value-

independent effects on choice behavior that might account for Pavlovian influences. Computation of option 

subjective values was unaffected. We allowed for separate parameters for gain trials and loss trials. For gain trials, 

the probability of gambling was determined by gain:  

 

𝑃𝑔𝑎𝑚𝑏𝑙𝑒 =
(1 − 𝛽𝑔𝑎𝑖𝑛)

1 + 𝑒−𝜇(𝑈𝑔𝑎𝑚𝑏𝑙𝑒−𝑈𝑐𝑒𝑟𝑡𝑎𝑖𝑛)
+ 𝛽𝑔𝑎𝑖𝑛    𝑖𝑓 𝛽𝑔𝑎𝑖𝑛 ≥ 0 

𝑃𝑔𝑎𝑚𝑏𝑙𝑒 =
(1 + 𝛽𝑔𝑎𝑖𝑛)

1 + 𝑒−𝜇(𝑈𝑔𝑎𝑚𝑏𝑙𝑒−𝑈𝑐𝑒𝑟𝑡𝑎𝑖𝑛)
    𝑖𝑓 𝛽𝑔𝑎𝑖𝑛 < 0 

 

For loss trials, the probability of gambling was determined in a similar manner by loss: 

 

𝑃𝑔𝑎𝑚𝑏𝑙𝑒 =
(1 − 𝛽𝑙𝑜𝑠𝑠)

1 + 𝑒−𝜇(𝑈𝑔𝑎𝑚𝑏𝑙𝑒−𝑈𝑐𝑒𝑟𝑡𝑎𝑖𝑛)
+ 𝛽𝑙𝑜𝑠𝑠    𝑖𝑓 𝛽𝑙𝑜𝑠𝑠 ≥ 0 

𝑃𝑔𝑎𝑚𝑏𝑙𝑒 =
(1 + 𝛽𝑙𝑜𝑠𝑠)

1 + 𝑒−𝜇(𝑈𝑔𝑎𝑚𝑏𝑙𝑒−𝑈𝑐𝑒𝑟𝑡𝑎𝑖𝑛)
    𝑖𝑓 𝛽𝑙𝑜𝑠𝑠 < 0 

 

If either  parameter is positive, the function maps choice probabilities in that domain from (, 1). If either  

parameter is negative, the function maps choice probabilities in that domain from (0, 1+). The parameter  acts as a 

value-independent (but valence-dependent) influence on the probability of gambling. 

Model parameters were fit by the method of maximum likelihood for data from individual participants. 

Economic preference parameters were constrained to the range of values that could be estimated based on the design 

matrix (: 0.5-5, gain: 0.3-1.3, loss: 0.3-1.3). We used Bayesian model comparison techniques [S9, S10] to compare 

fits for the economic decision model and for the approach-avoidance decision model. For each participant, we 

computed the Bayesian information criterion (BIC), which penalizes for parameter number, and then summed BIC 

across participants. The model with the lowest BIC is the preferred model. 
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