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Supplementary information for the methods 
 
Bacterial strains, culture conditions, RNA-sequencing data and chromatin immunoprecipitation 
Mycoplasma pneumoniae M129 (passage 34) was grown in modified Hayflick medium and transformed by 
electroporation as previously described (Yus et al., 2009). 
Cells in exponential (6 hours post-inoculation) or stationary phases (96 hours) were collected after various 
perturbations or by over-expressing different regulators in Qiazol (see Table S2). RNA isolation was performed 
following the manufacturers' instructions (miRNeasy kit from Qiagen), and an in-column DNase treatment was 
included. RNA was measured using a Nanodrop (Thermo) and integrity was confirmed in a 6000 Nano chip 
Bioanalyzer (Agilent). In order to obtain a paired-end strand–specific RNA-seq library, the TruSeq Stranded mRNA 
Sample Prep Kit v2 (Illumina) was employed according to the manufacturer's instructions. Briefly, 100 ng of total 
RNA was fragmented to approximately 300 bases. cDNA was synthesized using reverse transcriptase (SuperScript 
II, Invitrogen) and random primers. The second strand of the cDNA incorporated dUTP in place of dTTP. Double-
stranded DNA was further used for library preparation. dsDNA was subjected to A-tailing and ligation of the 
barcoded Truseq adapters. All purification steps were performed using AMPure XP beads. Library amplification was 
performed by PCR using the primer cocktail supplied in the kit.  Final libraries were analyzed using Agilent DNA 
1000 chip to estimate the quantity and check size distribution, and were then quantified by qPCR using the KAPA 
Library Quantification Kit (KapaBiosystems) prior to amplification with Illumina’s cBot. Libraries were sequenced 
paired-end, 100 nts (2x50) on Illumina HiSeq 2500, in pools of 6 samples. 
Chromatin immunoprecipiation (ChIP-seq) of RNAP (TAP-tagged, see (Kühner et al., 2009)) was performed as 
previously described (Yus et al., 2012). In this case the libraries were single-end and pooled in blocks of 12. 
Resulting raw reads were mapped to the M. pneumoniae reference genome (NC_000912, NCBI) with MAQ software 
(default parameters, and one mismatch allowed) (Li et al., 2008). Counts per gene were extracted from the pileups 
using our genome annotation. In the case of RNA-seq, the expression per gene was extracted and then normalized, 
first by the length of the gene, second by the corresponding counts obtained for rRNAs (16S gene). Sequencing data 
have been deposited in the NCBI Short Read Archive (http://www.ncbi.nlm.nih.gov/sra, accession numbers: E-
MTAB-3771, E-MTAB-3772, E-MTAB-3773, E-MTAB-3783).  Altogether, we generated 282 samples 
corresponding to 141 different conditions. 
 
TSS sites and manual annotation of operons and sub-operons 
Taking advantage that small non-coding RNAs (tssRNAs) are ubiquitously associated to transcription start sites 
(TSSs) we could identify all mRNA TSSs (Yus et al, 2012).  Next, we used a previously described method (Lloréns-
Rico et al., NAR 2015) to identify productive promoters at TSSs of mRNAs and non-coding RNAs and distinguish 
them from short tssRNAs (Yus et al, 2012).  Regarding 3' sites, we used strand specific deep sequencing and tiling 
array data to define approximately their positions (Güell et al., 2009). The operon and sub-operon annotation that 
was published previously (Güell et al., 2009) has thus been refined with the last genome annotation published by our 
group (Wodke et al., 2015) (Table S1).  Specifically, operons were defined manually by looking at microarrays, 
tiling arrays and deep sequencing of M. pneumoniae transcriptomes at 6 and 96h of the growth curve (Yus et al, 
2012). They were defined as regions with a tssRNA, no internal tssRNA associated to a RNA level increase (<0.8 
log2) and where RNA levels did not drop significantly between two consecutive genes (<0.8 log2). Sub-operons 
were defined as regions of an operon where different expression levels were found for consecutive genes, and/or 
having an internal tssRNA with a promoter associated to a gene. To this end, we used both deep sequencing and 
tiling array experiments (Güell et al., 2009; Yus et al, 2012). 
 
Identification of conditions with similar transcriptomes to analyze basal transcriptional co-expression 
In order to analyze basal transcriptional co-expression, we extracted a set of 227 similar samples out of the 282 
initial ones, altogether corresponding to 115 different conditions. To this end, we first computed all pairwise 
similarities (Pearson coefficient) among the 282 initial transcriptomes. As a result, we obtained a bimodal 
distribution of similarities (Figure 1A), allowing us to define a threshold (!! = 0.91, vertical black line on Figure 
1A) to separate pairs of conditions with high similarities (S ≥ S!"#) from pairs of conditions with moderate 
similarities (! < !!). Using these similarities, we next built a network by connecting any two pairs of profiles with 
high similarity. The resulting network of profiles was composed of 24 disconnected components (schematically 
represented in Figure 1A), with the largest one containing 227 samples, which we used to analyze basal 
transcriptional co-expression. 
 
 



Matrix of basal co-expression 
To analyze basal co-expression between genes, we first defined the start and end of genes, which were given by the 
translation start codon and Stop codon for protein-coding genes, and by the TSS and transcription termination site 
(TTS) for small RNAs – for most analyses this definition prevented possible bias coming from a manual annotation 
of TSS; note also that in our analysis both protein-coding sequences and small RNAs are considered as genes. We 
next sorted these genes according to their middle position ((start+end)/2) and removed those that were included in 
other genes (like many small RNAs). From our initial set of 1083 genes, we eventually analyzed the expression of 
869 genes, of which 701 encode proteins (Lluch Senar et al., 2015). 
The 227 RNA-seq expression profiles were used to define a transcriptional activity !!" for every gene ! in every 
sample !, by averaging the values associated with the corresponding RNA-seq reads. Using these activities, we 

defined for any pair !, !  of genes a basal correlation !!" =
!"# !!"!!!!! ∙!"# !!"!!!!!!,!!

!!! , where the sum runs over all 
pairs !, !!  of conditions (! = 227) and where the sign function, !"# ! , is equal to 1 if  ! ≥ 0 and -1 if ! < 0. 
This basal correlation has a simple meaning: it corresponds exactly to the fraction of pairs of conditions for which 
the genes ! and ! vary in the same direction (!"# !!" − !!!! ∙ !"# !!" − !!!! = 1) minus the fraction of condition 
pairs for which the genes vary in opposite directions (!"# !!" − !!!! ∙ !"# !!" − !!!! = −1), independently of the 
amplitude of the variations (Figure S1). It is for instance close to 0 when genes are uncorrelated (same amount of 
pairs for the two sets). Notably, while !!" might be regarded as a simplified form of a Pearson correlation to which it 
is tightly related, compared to the latter but also to other correlation measures that are more robust to outliers than 
Pearson correlation (Song et al., 2012), !!" is more sensitive to basal co-expression, that is, to the systematic 
tendency for genes to have their expression vary in the same direction (Figure S1). 
 
Genomic co-expression dendrograms and corresponding gene domains 
From the basal co-expression matrix, we generated a dendrogram constrained to respect the 1D organization of the 
genome (Figure 1C). In this dendrogram, only pairs of genes that are adjacent along the chromosome can be 
connected, which was implemented by hierarchically fusing genes on the basis of their basal co-expression. 
We defined the Γ-domains of the dendrogram as the resulting clades obtained by cutting the dendrogram at depth Γ, 
with Γ that can take all possible values in [-1,1]. Γ-domains thus correspond to the maximal segments of the genome 
inside which all pairs of adjacent genes have a basal co-expression larger than Γ (Figure 1C). 

 
Properties of adjacent genes and of their intergenic regions  
For every pair of adjacent genes along the DNA, we computed several properties as a function of their level of basal 
co-expression, including: 
- their relative orientation, with co-directional genes aligned along the same strand, and genes belonging to 

opposite strands that can be either divergent or convergent, depending on whether their start-to-start distance is 
smaller or, respectively, larger than their end-to-end distance (Figure 2A). 

- whether genes overlap, which occurs when genes share a common piece of DNA. 
- the distance between co-directional genes (in base-pairs (bps)), which is given by the distance that separates the 

Stop (or TTS for the non-coding RNAs) of the upstream gene from the translation start codon (or TSS for the 
non-coding RNAs) of the downstream gene. 

- the presence of intrinsic terminators in the intergenic regions. Potential intrinsic terminators were defined as a 
RNA hairpin immediately followed by a U-tract with at least 2 U’s. RNA hairpins were identified as previously 
described (Mathews et al., 1999). To evaluate the statistical significance of the results, we considered a null 
model where the positions of the intergenic regions were translated by a certain amount of bps (!!"). To provide 
statistical power, we performed this procedure 200 times, with !!" taking equally separated values from 10 kbps 
to 400 kbps. 

- the presence of RNAP occupancy domains (RPOD) in the intergenic regions. RPODs were identified by the 
presence of significant peaks in ChIP-seq data obtained for the α-subunit of the RNAP (gene MPN191) at 6 and 
96h (Table S4) (see below for further details on ChIP-seq analyses performed in this work) Peaks were 
identified using a custom R implementation of the Matlab function “findpeaks”. To evaluate the statistical 
significance of the results, we used the same procedure as that for the intrinsic terminators. 

- the relative stability of transcripts, defined as 1 − !!"!!!"#$
!!"!!!"#$

, with !!" and !!"#$ the transcript half-lives of the 

upstream and downstream genes, respectively; this parameter is close to 1 for similar half-lives and close to 0 
for very different ones. RNA half-lives were determined experimentally using a DNA gyrase inhibitor 



(Novobiocin), which alters the chromosomal supercoiling releasing the RNAP, thus stopping transcription (Yus 
et al., manuscript in preparation; see also Dorman, 2011). After treatment with Novobiocin, RNA was extracted 
at different time points and whole transcriptome sequencing by RNA-seq was performed to determine transcript 
levels. RNA decay was fitted to an exponential decay according to the following equation: !"# = [!"#]! ∙
!!!", from which the decay rate ! was obtained. Half-lives were then calculated as !!/! = log(2)/!. See below 
for further details. 
 

Co-expression of adjacent genes: highlighting the role of transcriptional read-through 
To apprehend the mechanisms underlying the co-expression between adjacent co-directional genes, we compared the 
co-expression between these genes with that between the downstream gene and the sense intergenic region (Figure 
3A). To this end, we analyzed the behavior of adjacent genes belonging to different operons and considered the 
intergenic region located between the TTS of the upstream operon and the TSS of the downstream operon. To further 
discard any effect coming from uncertainties in the identification of the TTS of the upstream gene, we considered 
only the second half of the intergenic region to measure the intergenic expression (similar results were obtained 
using the whole intergenic regions). 
 
Transcriptional read-through analysis at the TTSs 
To quantify the TRT occurring at the TTSs inside the pairs of adjacent co-directional genes (382 TTSs analyzed), 
first we defined the regions upstream and downstream each TTS. Regions upstream the TTS span from the TTS until 
the previous junction (either TSS or TTS) located in the same strand in the genome. Regions downstream the TTS 
span from the TTS until the next junction located in the same strand in the genome (Figure 4A). When these regions 
were longer than 1000 bases, they were trimmed to 1000 bases. Once the upstream and downstream regions were 
defined, expression was calculated for each of these regions at each of the 115 analyzed conditions. Expression was 
determined as the average number of read counts per base (in log2) across the entire region: 
!"# = !

! !"#!(!"!)!
!!! , where ! = 1, 2,… ,! bases in each region and !"! represents the number of read counts 

at base !. After calculating all the expression values, we compared each condition with its corresponding control, to 
calculate ∆!" and ∆!"#$ for each of the 382 TTS for 96 different perturbations. These represent the difference of 
expression between a given condition and its control – we thus used 19 (=115-96) conditions as a control. To assess 
the significance of the changes, we performed for each case a Student’s t-test comparing the control and the 
perturbation. We considered as “extreme variations” those changes in which the t-test yielded a p-value smaller than 
0.05, and the absolute difference of expression was larger than 2 standard deviations of the distribution of changes of 
the entire population. 
Finally, to distinguish TTS types, for each and every TTS, given all its values of ∆!"#$ and ∆!", we computed two 
p-values, !! and !!, respectively associated to the null hypotheses “∆!"#$ and ∆!" are not linearly (and positively) 
correlated” and “in average, ∆!"#$ is equal to ∆!"”. To this end, we used a Benjamini–Hochberg procedure to build 
two corresponding p-value thresholds, !!∗ and !!∗, such that to work with a false discovery rate FDR=0.05. In this 
context, we considered !! and !! as cases showing statistical significance if !! < !!∗ and !! < !!∗, respectively. 
 
Real time quantitative PCR and list of oligos 
In order to demonstrate the presence of TRT between pairs of adjacent co-directional genes, real-time PCR of cDNA 
of ca. 800 bases regions encompassing the intergenic region and overlapping with the ORFs was performed. Briefly, 
cells were collected in the indicated conditions (exponential phase, heat shock at 43C for 30 min or cold shock at 
15C for 15 min) and RNA was purified as described before. Retrotranscription and real-time quantitative PCR were 
done in one step (RT-qPCR) with the GoTaq® 1-Step RT-qPCR System (Promega) following the manufacturer’s 
instructions. Two 10 µl reactions of two biological data were prepared. Oligos (Table S5) were used at 0.15 µM and 
25 ng total RNA was used as template. An mRNA that usually doesn’t show much variation (namely MPN517) was 
used as control and reference. 
 
 
Details on ChIP-seq analysis 
After the read mapping procedure, two curves were obtained corresponding to the plus and minus strand pileups of 
the M. pneumoniae chromosome.  
For each of these curves, the signal was normalized with the signal of a control experiment (a ChIP-seq experiment 
in which the immunoprecipitation was performed only with the secondary antibody), so that the sample and the 
control experiments have equal baselines. Then, the signal from the control experiment was subtracted from the 



RNAP signal. After the subtraction, noise was modeled as following a Gaussian distribution, and a threshold was set 
to reject all the values whose probability of being noise was greater than 1e-6. To check whether noise followed a 
Gaussian distribution, we performed ChIP-seq and control experiments of a wild-type strain of M. pneumoniae, 
without overexpression of any DNA-binding protein. We observed that our model held true and that after subtracting 
the control signal the values followed a Gaussian distribution. Then, a smoothing algorithm was applied to the 
processed data, and peaks were called separately in each of the strand curves. The peak calling was performed by 
using the “findpeaks” function with the following parameters, chosen to maximize the performance of the function in 
our datasets:  

• Slope threshold = 0.0001 (minimum slope to consider in a peak) 
• Amplitude threshold = 5 (minimum peak width) 
• Smoothing width = 15 (number of points to consider to smooth the curve) 
• Peak group =15 (number of data points to take to fit a peak) 

After the peak calling in both strands, a further filtering step was applied. In ChIP-seq, it is expected to find the same 
peaks in both strands, but with the peak in the minus strand displaced to the right with respect to the peak in the 
minus strand. This is due to the fact that the read length in the sequencing procedure is usually smaller than the 
fragment length after sample sonication, and only the ends of the fragment are thus sequenced. Therefore, we 
associated each peak found in the plus strand to its corresponding peak in the minus strand, provided that the 
distance between the center of both peaks was smaller than 300bps. The peak position was then relocated to the mid-
point between the associated partners. The mean inter-peak distance of all the matched peaks was calculated, as it is 
expected to be similar for all the peaks within the same experiment. For single peaks without associated partners in 
the opposite strand, the peak position was relocated according to this mean inter-peak distance. Finally, a score 
defining how well a pair of peaks matches this distance was given to each peak in the experiment. Single peaks were 
not assigned any score. 
 
Details on RNA half-life determination 
Transcription in bacterial cells can be modeled in a simple manner as the continuous balance between transcription 
production and degradation, according to the following equation: ![!"#]!" = ! − ![!"#], where α and k are the 
production and degradation rates, respectively. A straightforward manner of determining the degradation rate k is to 
make the production (α) equal to zero and then solve the differential equation to obtain that !"# = [!"#]! · !!!". 
In order to experimentally make the transcription rate α equal to zero, we used a DNA gyrase inhibitor, Novobiocin. 
When applied to M. pneumoniae cells, it alters the chromosomal supercoiling, releasing the RNAP and thus stopping 
transcription. We confirmed that the RNAP was released off the chromosome by performing a ChIP-seq experiment 
of the RNAP after addition of the drug. Therefore, we treated M. pneumoniae cells in exponential growth phase with 
Novobiocin and extracted total RNA at different time points after the addition: 0 (as a control, without the drug), 2, 
4, 6, 8, 10 and 15 minutes, with two biological replicates for each point. Whole transcriptome sequencing was 
performed and transcript levels were calculated for each of the samples. Transcript levels were transformed to copy 
numbers per cell using an experimentally determined adjust function (Maier et al., 2011, see below) and then to RNA 
concentrations, considering an approximate volume of 0.055µm3 for M. pneumoniae (Hasselbring et al., 2006). After 
this transformation, the time-course values were adjusted to an exponential decay according to the formula 
!"# = [!"#]! · !!!", and the degradation rates were determined for each gene. Given the degradation rates, we 

determined the half-live of all genes in M. pneumoniae as t1/2=log(2)/k. 
 
To compute copy numbers, short reads from each of the RNA-seq experiments were mapped to the reference 
genome of M. pneumoniae using MAQ (Li et al., 2008). Only one mismatch with the reference sequence was 
allowed. Reads mapping to more than one genomic position were discarded. After the mapping, a custom R script 
was used to calculate gene expression in CPKM (Counts Per Kilobase  per Million reads mapped), a measure that is 
similar to RPKM. In this context, the experimental relationship between the copy number and the CPKM is the 
following: !"#$%&'()* = 2!.!"#∙!"#!(!"#$)!!.!"#! . This equation was obtained after fitting RNA-seq data to the 
experimental values previously obtained for microarray data (Maier et al., 2011). 
  



Legends of supplementary tables 
 
Table S1. Related to the paragraph “TSS sites and manual annotation of operons and sub-operons” in Experimental 
procedures. Sheet 1: List of known or putative transcriptional regulators in M. pneumoniae. The last column 
indicates the name of the strains in which the TF is perturbed (see Table S2). Sheet 2: Manual operon and sub-operon 
annotation of the M. pneumoniae genome. The table indicates the following information for each of the manually 
annotated transcriptional units (operons and sub-operons): operon number, sub-operon ID, genes belonging to each 
sub-operon, TSS of the sub-operon, TTS of the sub-operon and strand.  
 
Table S2. Related to the paragraph “RNA-seq and ChIP-seq data” in Experimental procedures. Sheet 1: list of RNA-
seq experiments used in this work. For each sample, we indicate the strain (wt, M129 or mutant), transgene 
(indicates the gene that was overexpressed or mutated), timeOfGrowth_experimentPerformedAt in h (time of growth 
after inoculum), medium used, treatment (type of drug/perturbation), perturbant (drug, condition…), 
finalConcentration_perturbant (working dilution), durationOfPerturbation in min, Filtered? (in case it was left out of 
the analysis, see main Materials and Methods). Sheet 2: list of samples discarded for the co-expression analysis. 
Sheet 3: Corresponding list of conditions effectively used in the analysis of basal co-expression and of TRT 
variations. The last column indicates whether the condition was analyzed for TRT variation or if it corresponded to a 
control. The red names indicate that a single gene was perturbed, in contrast to more global perturbation (various 
stress shocks, Novobiocin treatments, etc…). The yellow boxes indicate that the perturbed gene is a putative TF (see 
Table S1). 
 
Table S3. Related to Figure 4. Sheet 1: Leftmost list: conditions leading to an overall repression of TRT, that is, 
showing a tendency for having ∆!"#$≤ ∆!". The average value of ∆!"#$ − ∆!" (third column) is computed over all 
the TTSs. The list is sorted according to the p-values of the bias of the distribution of ∆!"#$ − ∆!" (second column, 
one sample t-test value). The horizontal dashed and full lines respectively indicate the values where the false 
discovery rate (FDR) is equal to 0.005 and 0.05 (Benjamini–Hochberg procedure). Rightmost list: same thing but for 
conditions leading to an overall activation of TRT, that is, showing a tendency for having ∆!"#$≥ ∆!". Sheet 2: 
Leftmost list: perturbations for which no pair of adjacent genes shows an extreme variation of TRT. Rightmost list: 
perturbations for which at least 12 pairs of adjacent genes show an extreme variation of TRT. The color codes are 
those of Table S2. 
 
Table S4. Related to Figure 5. ChIP-seq peaks associated to RNAP (see Methods and Materials and Supp. Methods 
text for experimental procedures and for the identification of peaks). For each of the peaks, the following information 
is displayed: peak position (in bps); peak height (in arbitrary units); peak width (in bps covered); peak score, based 
on the confidence in the intra-peak distance (see Supplementary Methods); associated TSS(s), if any, otherwise is 
“NONE”; associated TSS strand(s), if any, otherwise is “NONE”; and time point of the corresponding experiment 
(6h or 96h). 
 
Table S5. Related to Figures 4 and 5. Oligos used for the RT-qPCR. 
  



Legends of supplementary figures 
 
Figure S1. Related to Figure 1. Comparison of the Pearson correlation, the biweight midcorrelation (bicor) and our 
basal correlation. Left column – As indicated in the upper panel, the Pearson and bicor correlations (Song et al., 
2012) are based on an analysis of the variations of the input signal with respect to a global property of the signal as 
schematically indicated by the arrows and the horizontal dashed value, the latter respectively representing the 
average (Pearson) and the median (bicor) values. Note that by construction bicor is more robust to the presence of 
outliers than Pearson as it provides an analysis of the variations with respect to the median value instead of the 
average value of the signal (Song et al., 2012). In contrast, our basal correlation is computed by considering equally 
the variations between all possible pairs of conditions. This is indicated by the +/- 1 value for the various variations 
obtained with different amplitudes. Right column – Four different stylized datasets showing the robustness of our 
correlation in the identification of basal co-expression. From top to bottom: a) for two signals that differ by a small 
random noise, the three correlations are close to 1; b) for uncorrelated signals, they are close to 0; c) in this dataset, 
the two signals are uncorrelated, except for conditions 50 to 59 where there is a global shift of the signal; this dataset 
thus corresponds to a globally low basal co-expression with, nevertheless, a similar shift for the conditions 50 to 59. 
Notably, the Pearson and bicor correlations indicate a significant co-expression, whereas the Basal co-expression 
does not; d) here the two signals are perfectly synchronized, except for conditions 50 to 59 where there is an overall 
opposite shift; this dataset thus corresponds to a globally strong basal co-expression with, nevertheless, an opposite 
shift for the conditions 50 to 59. Notably, the Pearson and bicor correlations indicate a negative co-expression value, 
whereas the Basal co-expression indicates a significant positive value. 
 
Figure S2. Related to Figure 2. A,B,C,D: Same as Figure 2 but using Pearson correlation. E: same as Figure 3A but 
using Pearson correlation. 
 
Figure S3. Related to Figure 3 and 4. A) Simple model of co-regulation of adjacent operons involving TRT with 
efficiency !. In this model, we suppose that for !! transcripts of the upstream operon (!), the !!! transcripts 
obtained after TRT extend to the downstream operon (!). As a consequence, the expression level [!] is equal to the 
sum of the expression level resulting from the TSS of ! (denoted by !) plus the contribution of the read-through that 
can be measured just before the TSS of ! (denoted by [!]). B) Estimation of ! for 7 different pairs of genes (the 3 
pairs on the first line are in the vicinity of the ribosomal cluster) using RNA-seq data obtained in 3 different 
conditions (exponential phase (Expo), cold shock (CS), heat shock (HS)) – note that we also added the RNA-seq 
profiles of the stationary phase to show more clearly the TSSs of the downstream operons (for clarity, the profiles in 
the figure were translated such that the mean value of the exponential phase was equal to 7). The profiles were 
normalized with respect to the expression of the stable gene MPN517 (same normalization as in RT-qPCR) and two 
values of ! corresponding to two replicates were reported in each case. Mean expressions were taken to be equal to 
2RNA-seq intensity, [!] was measured as the expression at the stop codon of the upstream gene (indicated by the vertical 
dashed gray line) and [!] just before the TSS of the downstream gene (the TSS was specifically refined by hand in 
each case as indicated by the color arrows). For the overlapping case (MPN155a-MPN155; MPN155a is a new small 
protein described in Lluch Senar et al., 2015), ! was set to 1; note that for the strongly correlated pair MPN227-
MPN228, we observe high and stable values of ! as well, although the genes do not overlap. In the case of MPN161-
MPN162 (low correlation), one can observe a poor correlation between the changes in ! (and [!]) and the changes in 
[!] for the cold shock experiment, likely indicating that only a small amount of TRT actually extend to the 
downstream gene. C) According to the model, the level of transcripts extending from the first operon to the second 
operon should correspond to [!]. By performing a RT-qPCR of extended transcripts, that is, of sequences that 
encompass the intergenic regions and that overlap with the ORF of the genes (small drawing at the bottom), we 
estimated quantitatively the variation of extended TRT in cold shock and heat shock with respect to the exponential 
phase (RT-qPCR data were normalized with respect to the stable gene MPN517). Remarkably, the two approaches 
(model and RT-qPCR) led to similar results, both qualitatively and quantitatively (error bars indicate 95% 
confidence intervals); note here that [!] was estimated from the RNA-seq data by considering the minimum value of 
the RNA-seq profile in the region [!!",!""], where !!"indicates the position of the RT-qPCR oligo in the upstream 
ORF (see small drawing). The order of panels correspond to the order of panels in (B). Overall, we can conclude that 
TRT is globally enhanced during cold shock, while it tends to be reduced during heat shock. 
 
Figure S4. Related to Figure 5. A) Number of hairpins in the intergenic regions of co-directional genes as a function 
of their co-expression level. B) Number of hairpins in the intergenic regions of co-directional genes as a function of 



the length of the region. The control corresponds to positions of the intergenic regions that were shifted by 10 kbps. 
These results show that without any additional constrains such as, e.g., the presence of U-tracts (see Figure 5A), the 
tendency observed on panel A is mainly an effect of the fact that the lower the co-expression, the larger the 
intergenic region. C) Fraction of intergenic regions containing an RPOD as a function of the length of the intergenic 
regions. 
 
Figure S5. Related to Figure 5. – A) A simple model of condition-dependent transcription en bloc capturing the 3-
level organization of co-expression, according which the RNAP has three possibilities after the transcription of a 
gene (or an operon): 

1. It can systematically continue the transcription process (green light). In this case the system is 
reminiscent of an operon unit, although the downstream gene may contain a TSS as indicated by the 
small red arrow. 

2. It can continue transcription only from time to time (orange light). Such stochastic transcription en 
bloc can occur within a given condition, given rise to a sub-operon pattern as schematically 
represented on the figure and as shown in Figure 5C. Variations of the capacity of transcribing en bloc 
can also occur between conditions as shown in Figure 5C, in which case a specific regulatory 
mechanism should be involved. 

3. It never transcribes the two genes en bloc, in any condition. In this case, the genes might behave 
independently, provided that local concentration effects are not too strong. 

B) In a scenario of a transcription en bloc, the upstream operons should be more prone to transcription initiation, 
otherwise downstream operons would be more transcribed than upstream ones, leading to a gradient of gene 
expression within the domain. This phenomenon could be explained by the fact that the upstream negative 
supercoiling produced by a transcribing RNAP can enhance the activation of operons by favoring the melting of 
DNA promoters (Meyer & Beslon, 2014). In this context, RPODs can act as topological barriers upstream the 
domain, while both intrinsic terminators and RNAPs can prevent transcriptional read-through downstream the 
domain. 
 
Figure S6. Related to Figure 2. We performed the same analysis as that reported in Figure 2 for E. coli and B. 
subtilis. For E. coli, we used micro-array data obtained across 466 conditions, for more than 4000 genes (McClure et 
al., 2013). For B. subtilis, we used RNA-seq data obtained across 269 conditions (Nicolas et al., 2012). Following 
our network approach to discard possible outliers (see main text), we identified thresholds (vertical black lines) 
around 0.7 in E. coli and around 0.9 in B. subtilis (leftmost panels). In E. coli, the resulting network was composed 
of a single connected component, meaning that we considered the whole set of conditions in this case. In B. subtilis, 
the largest component contained 120 conditions. Using these conditions to compute co-expression among genes, we 
obtain qualitatively the same results as in Figure 2, both in E. coli and in B. subtilis, although with different 
thresholds for the 3-level organization of the co-expression of adjacent genes – note here that only protein-encoding 
genes were considered in these studies. 
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