Supplementary Information

Emergence of new red-shifted carbon nanotube photoluminescence based on proximal doped-site design

Tomohiro Shiraki^{*1,2}, Tomonari Shiraishi¹, Gergely Juhász³ & Naotoshi Nakashima^{*1,2}

¹ Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. ² International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan. ³ Department of Chemistry, Graduate School of Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.

Correspondence and requests for materials should be addressed to T.S. (email: shiraki.tomohiro.992@m.kyushu-u.ac.jp) or N.N. (email: nakashima.naotoshi.614@m.kyushu-u.ac.jp).

Figure S1. Synthetic routes of the 2DzArn (n = 3, 5 and 9).

Figure S2. PL spectral changes of (a) SWNT/1Dz and (b) SWNT/2DzAr5 with respect to concentrations of the added diazonium compounds.

Figure S3. Deconvoluted PL spectra of (a) SWNT/2DzAr3, (b) SWNT/2DzAr5 and (c) SWNT/2DzAr9 in D₂O. [2DzArn] = 0.4μ M.

Figure S4. PL spectra of (a) SWNT/2DzAr3, (b) SWNT/2DzAr5 and (c) SWNT/2DzAr9 prepared by using different concentrations of 2DzArn: [2DzArn] = 0.10 (light blue), 0.20 (dark green), 0.40 (bright green), 0.80 (orange) and 1.6 μ M (red).

Figure S5. G/D ratios of SWNT/2DzArn, SWNT/1Dz and pristine SWNTs. The laser light with 570 nm was utilized for excitation and was irradiated to the D₂O dispersion samples. $[2DzArn] = 0.4 \mu M$ and $[1Dz] = 0.8 \mu M$ was used for chemical modification to prepare the same concentrations based on the diazonium group.

Figure S6. Integrated area ratio of E_{11}^{2*} to E_{11}^{*} as a function of the diazonium concentrations for SWNT/2DzAr3 (green dot) and SWNT/2DzAr9 (red dot).

Figure S7. PL spectrum of SWNT/2DzAr9 prepared by using 0.80 µM 2DzAr9.