Supplemental Methods

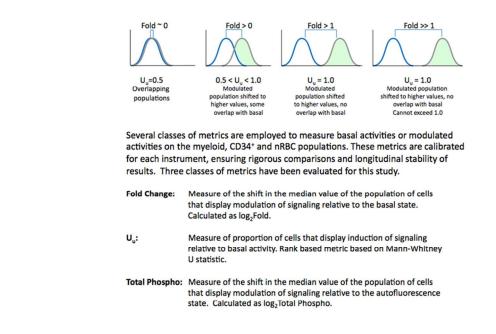
Establishment of Instrument Compensation Settings

- Add 50μl healthy donor whole blood to each tube labeled as Unstained, Alexa488, FITC, PE, Qdot605, PerCP, PacBlue, Alexa647, and Alexa700.
- 2. Add 20μ l of appropriate compensation cocktail to corresponding tube.
- 3. Incubate 20 minutes at ambient temperature in the dark.
- 4. Lyse samples by adding 1mL of BD Pharmlyse (prepare fresh with 18mL DI H2O and 2mL 10X stock BD Pharmlyse) and incubating 15 minutes at room temperature.
- 5. Centrifuge 5 minutes at 400xg.

17

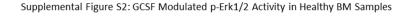
John Wiley and Sons, Inc.

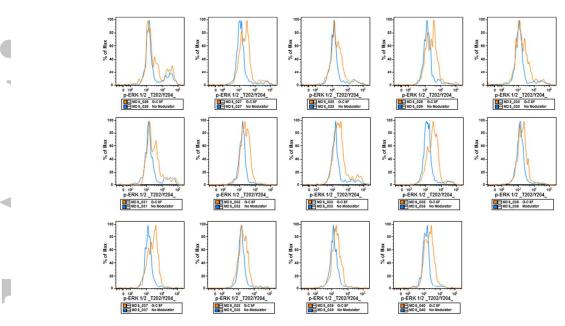
- 6. Decant tubes to ~100 μ l and gently rack rake to resuspend cell pellets.
- 7. Add 2mL 1X PBS + 2% FBS to tubes and centrifuge 5 minutes at 400xg.
- 8. Decant tubes to ~100 μ l and gently rack rake to resuspend cell pellets.
- 9. Resuspend tubes in 1mL 1% PFA.
- 10. Transfer 150μ l of the unstained tube and compensation tubes to a 96-well plate.
- 11. Place the plate on the instrument HTS (High Throughput Sampler) unit.
- 12. Under the instrument setup folder click the 96-well plate icon titled "Compensation Plate".
- 13. Use appropriate settings for the HTS unit, "Parameter" and "Threshold" in the cytometer. Ensure that all compensation values are set to 0.0.
- 14. After the plate has finished acquisition all the instrument setup files must be exported.
- 15. In the FACSDiva "Browser" window, click "Instrument Setup" and chose export FBS files.
- 16. Export the data for Winlist analysis and compensation determination.


Aqua Compensation

- Prepare Aqua positive and Aqua negative cells for compensation setup. Peripheral blood mononuclear cells were used and split into two condictions:

 unstained cells (Aqua negative): cells were fixed/permeabilized in
 - paraformaldehyde/methanol; 2) Aqua stained cells (Aqua positive): cells were fixed/permeabilized in paraformaldehyde/methanol, washed out of methanol in fluorescence-activated cell sorting buffer, and then Aqua stained in PBS. After Aqua staining, cells were quenched with RPMI 10% FBS, fixed with paraformaldehyde, and permeabilized with methonal. The two condictions were then mixed 1:1 and store at -80°C.
- 2. Add 250μl fixed 1:1 Aqua positive: Aqua negative cells (~250,000 cells) to a tube.
 - 3. Wash cells by adding 2mL PBS + 2%FBS.
 - 4. Centrifuge tube 5 minutes at 400xg.
 - 5. Decant tube to ~100 μ l and gently rack rake to resuspend cell pellets.
- 6. Resuspend cells in 1ml PBS + 2%FBS.
- 7. In FACSDiva "Browser" window, select the "AquaComp" specimen in the "Instrument Setup" folder and ensure that the "AquaComp" tube is active.
- 8. Place the Aqua comp tube on the instrument, acquire and record the data.
- 9. Export the data for Winlist analysis and compensation determination.


Supplemental Figure S1: Metrics


4

254x190mm (96 x 96 DPI)

Accept

254x190mm (96 x 96 DPI)

1

Supplemental Table S1: Characteristics of samples that failed minimum viability/signaling criteria

Screening Failures

Donor ID	Age	Gender	IPSS	FAB	wно	Cyto	WBC (K/uL)	Hgb (g/dL)	Plt (K/ul)	BM Blast (%)	Reason for Failure
MDS_006	72	м	INT-1	RAEB	RAEB-1	dip	2.8	10.3	56	8	Poor viability
MDS_007	62	F	INT-1	RAEB	RAEB-1	miscellaneous	11.4	11.8	3	5	Poor signaling
MDS_008	75	м	INT-1	RAEB	RAEB-1	dip	4.1	8.2	23	6	Poor viability
MDS_011	62	м	INT-1	RARS	RARS	+8	3.1	13	141	3	Poor viability
MDS_012	61	м	INT-1	RARS	RARS	dip	2.5	9.3	50	3	Poor signaling

Poor Viability: live and non-apoptotic cells (i.e. Aqua and c-PARP negative) < 50%

Poor Signaling:

MDS_007: no GCSF response (Uu=0.44-0.49); no data for EPO nodes (numbers of events recorded for the nodes were below the cut-off, <100) MDS_012: no EPO response (Uu=0.49-0.51);

no data for GCSF nodes (not enough cells for the assay, sample fell off)

254x190mm (96 x 96 DPI)

Accept

ų.

Supplemental Table S2: Modulators and Nodes Tested

A) List of Nodes Tested

ų.

Functional Signaling	Modulator		Node: Readout	
STAT Pathway	EPO	p-STAT1	p-STAT3	p-STAT5
STAT Pathway	GCSF	p-STAT1	p-STAT3	p-STAT5
PI3K Pathway	GCSF	p-Akt	p-Erk1/2	p-S6

B) Modulators and Technical Conditions

Modulator	Final Concentration	Modulation Time	Manufacturer (Location)
EPO	3 IU/mL	15 min	R&D Systems (Minneapolis, MN)
GCSF	50 ng/mL	15 min	R&D Systems (Minneapolis, MN)

254x190mm (96 x 96 DPI)

Accept

Supplemental Table S3: Antibodies and Non-Antibody Reagents

Antibody	Species & Isotype	Clone	Fluorophore	Manufacturer (Location)
CD34	Mouse IgG1	8G12	PerCP	BD (San Jose, CA)
CD45	Mouse IgG1	HI30	Alexa Fluor 700	Invitrogen (Carlsbad, CA)
CD71	Mouse IgG2a, k	M-A712	Biotin	BD (San Jose, CA)
CD235a	Mouse IgG2b, k	HIR2	PE	eBioscience (San Diego, CA)
p-STAT1 (Y701)	Mouse IgG2a	4a	Alexa Fluor 488	BD (San Jose, CA)
p-STAT3 (Y705)	Mouse IgG2a, k	4/P-STAT3	Pacific Blue	BD (San Jose, CA)
p-STAT5 (Y694)	Mouse IgG1	47	Alexa Fluor 647	BD (San Jose, CA)
p-Akt (S473)	Rabbit IgG	193H12	Alexa Fluor 647	CST (Danvers, MA)
p-S6 (S205/236)	Rabbit IgG	2F9	Alexa Flour 488	CST (Danvers, MA)
p-Erk1/2 (T202/204)	Mouse IgG1	20A	Pacific Blue	BD (San Jose, CA)
cleaved PARP (Asp214)	Mouse IgG1, k	F21-852	FITC	BD (San Jose, CA)
Non-Antibody				Manufacturer (Location)
Live/Dead Fixable Aqua	Dead Cell Stain			Invitrogen (Carlsbad, CA)
Streptavidin-Qdot605				Invitrogen (Carlsbad, CA)

254x190mm (96 x 96 DPI)

Accept

Supplemental Table S4: Antibody Staining Panels and Compensation Settings

A) List of Antibody Staining Panel

Staining Panel	Alexa488	PE	Qdot605	PerCP	Pacific Blue	Aqua	Alexa647	Alexa700
STAT Pathway	p-STAT1	CD235a	CD71	CD34	p-STAT3	Aqua	p-STAT5	CD45
PI3K Pathway	p-S6	CD235a	CD71	CD34	p-Erk1/2	Aqua	p-Akt	CD45
Staining Panel	FITC	PerCP	Aqua	Alexa700				
Viability	Cleaved PARP	CD34	Aqua	CD45				

254x190mm (96 x 96 DPI)

Accept

B) List of Compensation Matrix

Compensation Matrix of STAT Staining Panel								
	Alexa Fluor 488-A	PE-A	Qdot 605-A	PerCP-A	Pacific Blue-A	Aqua-A	Alexa Fluor 647-A	Alexa Fluor 700-A
Alexa Fluor 488 A		16.98	4.05	1.50	0.00	0.40	0.00	0.00
PE-A	0.99		40.97	22.23	0.00	7.08	0.00	0.00
Qdot 605-A	0.23	2.17		1.28	0.00	8.85	0.00	0.00
PerCP-A	0.05	0.00	0.00		0.00	0.00	10.42	3.50
Pacific Blue-A	0.10	0.00	0.00	0.00		11.60	0.00	0.00
Aqua-A	0.13	0.00	0.00	0.00	15.26		0.00	0.00
Alexa Fluor 647-A	0.10	0.00	0.00	2.44	0.05	0.05		40.61
Alexa Fluor 700-A	0.57	0.21	0.14	3.26	0.07	0.15	5.61	

Compensation Matrix of PI3K Staining Panel

	Alexa Fluor 488-A	PE-A	Qdot 605-A	PerCP-A	Pacific Blue-A	Aqua-A	Alexa Fluor 647-A	Alexa Fluor 700-A
exa Fluor 488-A		13.86	3.61	1.37	0.00	0.51	0.00	0.00
PE-A	1.34		35.61	20.12	0.00	5.39	0.00	0.00
Qdot 605-A	0.09	4.33		1.01	0.00	8.03	0.06	0.00
PerCP-A	0.00	0.00	0.00		0.00	0.00	16.88	5.04
Pacific Blue-A	0.00	0.00	0.00	0.00		11.10	0.00	0.00
Aqua-A	0.68	0.16	0.06	0.00	25.50		0.00	0.00
exa Fluor 647-A	0.00	0.00	0.00	2.83	0.06	0.00		34.15
exa Fluor 700-A	0.57	0.20	0.13	3.28	0.13	0.15	6.63	

	FITC-A	PerCP-A	Aqua-A	Alexa Fluor 700-A
FITC-A		2.21	1.57	0.00
PerCP-A	0.05		0.00	3.50
Aqua-A	0.13	0.00		0.00
Vexa Fluor 700-A	0.57	3.26	0.15	

254x190mm (96 x 96 DPI)

